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Abstract: One of the difficults for fault detection techniques for non-linear stochastic systems via model-based methods 

is the design of residual generation. In this paper, a new fault detection (FD) approche for non-linear stochastic systems is 

proposed. The non-linear system is represented by a discrite Takagi-Sugeno (TS) fuzzy model. The use of (TS) theory 

allows to represent non-linear systems as a set of linear systems, which represent the local system behavior around 

different operating points. The global system behaviour is described by a fuzzy fusion of all systems. The FD system for 

each local sub system is designed by solving the corresponding Discrite Algebra Recati Equation (DARE). Optimization 

algorithm based on minimizing the residual covariance matrix is used to obtain a robust FD for global system behavior. 

The observer gain matrices are solved using a set of Linear matrix Inequalities (LMIs).  

1. INTRODUCTION  

 Over the past two decades, fault detection (FD) system 
has made a significant progress and recived considerable 
attension in both research and application domain. It leads to 
robust FD system for technical processes that can be 
modelled as linear time invarient (LTI) systems. If LTI 
system contains measurement noise, kalman filter is used to 
design FD system [1, 2]. Recently Takagi-Sugeno (TS) fuzzy 
model was developed successfully to investigate non-linear 
system [3]. The robust fuzzy observer was discussed for TS 
fuzzy system with parameter uncertainties [4]. For systems 
with measurement disturbances, new descriptor observer 
approach was developed [5-7]. Extended kalman filter 
design method based on basic of adaptive fuzzy logic is 
shown in [8]. Robust fault estimation approach for vehicle 
lateral dynamic model is shown in [9]. In this paper, another 
fault detection approach is used. The proposed approach use 
fuzzy logic basics to design kalman filter for each fuzzy sub-
system by solving the corresponding Discrite Algebra Recati 
Equation (DARE). Optimization algorithm based on 
minimizing the residual covariance matrix is used to obtain a 
robust FD for global system. The generated filter is robust 
against stochastic noise and sensitive with respect to faults. 

 This paper is organized as follows: Section 2 shows some 
prelimininaries about Takagi-sugeno (TS) fuzzy model, fault 
generation and fault evaluation, the proposed approache is 
presented in section 3; an application example is found in 

section 4; the conclusions are given in section 5.  

2. PRELIMINARIES  

 Some concepts relevant to this work are reviewed. First, 
the TS fuzzy model for non-linear system is present. Then  
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residual generation and residual evaluation concepts are 
briefly described. 

2.1. TS Fuzzy Model Construction  

 The fuzzy model proposed by Takagi and Sugeno is 
described by fuzzy IF-THEN rules, which represent local 
linear input-output relations of a non-linear system [3]. In 
order to consider stochastic noises and faults in the discrete 
TS fuzzy systems, we propose the discrete TS fuzzy system 
in which the 

i
th rule is formulated in the following form:  

Rule i : IF z1 is Mi1 and... and z  is Mi  Then  

x(k + 1) = Aix(k) + Biu(k) + En,in(k) + Ef,if(k)  

y(k) = Cix(k) + Diu(k) + Fn,in(k) + Ff,if(k)  
(1) 

where Mij(i = 1, 2,..., p, j = 1, ···, ) are fuzzy sets, z 
=[z1,..., z ] are premise variables, x(k) R

n 
is state vector, 

u(k)  R
p 

and y(k)  R
q
 

 
are the input and measured output 

vectors respectively, n(k)  R
m 

vector of zero mean white 
Gaussian noises with positive definite covariance matrix n, 
f(k)  R

l 
is the fault to be detected. Ai, Bi, En,i, Ef,i, Ci, Di, 

Fn,i, Ff,i are known matrices with appropriate dimension. The 
defuzzified output of TS fuzzy system (1) is represented as:  

  

x(k +1) = μ
i
[A

i
x(k)+ B

i
u(k)+ E

n,i
n(k)+ F

f ,i
f (k)]

i=1

p

y(k) = μ
i
[C

i
x(k)+ D

i
u(k)+ F

n,i
n(k)+ F

f ,i
f (k)]

i=1

p
 (2) 

where i(z(k) ) = 

  

h
i
(z(k))

h
i
(z(k))

i=1

p
,  hi(z(k)) = 

  

M
ij
(z

j
(k)).

j=1

 

Mij(zj(k)) > 0 is the grade of membership of zj(k) in Mij. 

Assume that 
  

M
ij
(z

j
(k)) 0.

j=1i=1

p
 We have 
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k h
i
(z(k)) = 1

i=1

p

 

 For simplifying notation μi(z(k)) is replaced by μi, which 
will also be adopted in the sequent sections if no confusion is 
caused. 

 Under the assumption that the current error is 
independent of the current noise, we provide 

  
E[e

k
n

i

T
] = E[n

k
e

i

T
] = 0, for all i,k . 

2.2. Problem Formulation 

 Fault detection problem can be formulated as design fault 
detection system which is robust with respect stochastic 
noises and sensitive with respect to faults. 

2.3. Residual Generation 

 The first step to achieve robust FD system is to generate 
residual signal which is decoupled from the input signal u(k). 
In this case, we consider the so-called TS fuzzy filter which 
is described as follows: 

Rule i: If z1 is Mi1 and... and z  is Mi  Then 

  

x̂(k +1) = A
i
x̂(k)+ B

i
u(k)+ (L

i

*
+ L

i
)[y(k) ŷ(k)]

ŷ(k) = C
i
x̂(k)+ D

i
u(k)

 (3) 

where 
  
L

i

*
is the filter gain matrix for sub-model i obtained 

from solving DARE for each local system, Li is increment 

in gain matrices obtained from reducing covariance matrix of 

residual signal. The fuzzy filter based residual generator is 

inferred as the weighted sum 

  

x̂(k +1) = μ
i
[A

i
x̂(k)+ B

i
u(k)+ (L

i

*

i=1

p

+ L
i
)( y(k) ŷ(k))]

ŷ(k) = μ
i
[C

i
x̂(k)+ D

i
u(k

i=1

p

))],

 (4) 

where μi is the same weight function used in TS model (2). 
To analyze the convergence of the filter, the state error 
vector e(k) = x(k)  

  
x̂(k)  is given by the following difference 

equation. 

  

e(k +1) = μ
i
μ

j
j=1

p

i=1

p

[( A
i

(L
i

*
+ L

i
)C

j
)e(k)

+(E
n,i

(L
i

*
+ L

i
)F

n, j
)n(k)+ (E

f ,i
(L

i

*
+ L

i
)F

f , j
) f (k)]

r(k) = μ
1
[C

i
e(k)+ F

n,i
n(k)+ F

f ,i
f (k)],

i=1

p

 (5) 

where r(k) is residual signal. Eq. (5) can be represented as: 

  

e(k +1) = μ
i
μ

j
j=1

p

i=1

p

[( A
ij

L
i
C

j
)e(k)+ (E

n,ij
L

i
F

n, j
)n(k)

+(E
f ,ij

L
i
F

f , j
) f (k)]

r(k) = μ
i
[C

i
e(k)+ F

n,i
n(k)+ F

f ,i
f (k)],

i=1

p

 (6) 

where 
  
A

ij
= A

i
L

i

*
C

j
, E

n,ij
= E

n,i
L

i

*
F

n, j
 and 

  
E

f ,ij
 = Ef,i  

  
L

i

*F
f , j

.  Eq. (6) can be more simplified and represented as 

   

e(k +1) = μ
i
μ

j
j=1

p

i=1

p

[( A
ij
e(k)+ E

n,ij
n(k)+ E

f ,ij
f (k)]

r(k) = μ
i
[C

i
e(k)+ F

n,i
n(k)+ F

f ,i
f (k)],

i=1

p
 (7) 

where 
  
A

ij
 = 

 
A

ij
  LiCj, 

   
E

n,ij
 = 

  
E

n,ij
  LiFn,j and 

   
E

f ,ij
 = 

  
E

f ,ij
  LiFf,j. 

2.4. Residual Evaluation  

 After the design of the residual generator, the remaining 
important task for robust fault detection is the evaluation of 
the generated residual. Based on [10], threshold value Jth > 0 
can be calculated. Using the following logic relationship for 
fault detection:  

||r(k)||2,N < Jth     no fault 

||r(k)||2,N < Jth       fault, 
(8)

  

where the so-called residual evaluation ||r(k)||2,N is 
determined by  

||r(k)||2,N = 

  

r
T (k)r(k)

k=0

N

1

2

,  (9)  

with N is length of the evaluated window. Since an 

evaluation of the signal over the whole time range is 

impractical, it is desired that the fault will be detected as 

easy as possible. Based on (7), we have ||r(k)||2,N = ||rn(k) + 

rf(k)||2,N where rn(k) and rf(k) are defined as: rn(k) = r(k)|f(k) =0, 

rf(k) = r(k)|n=0. Moreover, the fault-free case residual 

evaluation function is ||r(k)||2,N  | |rn(k)||2,N  Jth,n, where Jth,n 

= supn L2
 ||rn(k)||2,N.

 
We choose the threshold Jth as Jth = Jth,n. 

Where Jth is constant and can be evaluated off-line. 

3. ROBUST FAULT DETECTION DESIGN  

 Robust fault detection design is shown in the following 
sub-sections. 

3.1. Gain Matrix Design Based on DARE  

 The gain matrix for each local sub-system is obtained. 
The computation of covariance of residual signal generated 
by kalman filter-based residual generator and fault detection 
filter is shown. Consider system (7) with ΔLi = 0, the 
following system is obtained.  

  

e(k +1) = μ
i
μ

j
j=1

p

i=1

p

[( A
ij
e(k)+ (E

n,ij
n(k)+ E

f ,ij
f (k)]

r(k) = μ
i
[C

i
e(k)+ F

n,i
n(k)+ F

f ,i
f (k)]

j=1

p

r(k) = r
n
(k)+ r

f
(k),

 (10) 

Based on [11], the following theorem provides a solution to 
obtain 

  
L

i

*
,  the proof for linear system is given in [12]. 

Theorem 1. Each sub-system is stable and satisfy H norm 
if  
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L

i

*

  = (S + 
 
A

i
PC

i

T
) (

 
C

i
PC

i

T   
+ R) 

1
,  (11) 

where Q = En,i n
  
E

n,i

T
,  R = Fn,i n

  
F

n,i

T
,  S = En,i n

  
F

n,i

T  
and P  

0 is the covariance of the estimation error, it is given as a 

solution of the following DARE  

  
P = A

i
PA

i

T
+Q (S + A

i
PC

i

T )(C
i
PC

i

T
+ R) 1(S + A

i
PC

i

T )T ,  (12)  

3.2. Covariance of Residual Generated by Kalman Filter  

 For FD of the dynamic system with only stochastic noise, 
the steady-state one-step predictive kalman filter is often 
used as residual generator [13, 14]. In this case, the 
generated residual is a zero-mean white Gaussian signal with 
minimal covariance in the fault-free case, and the residual 
covariance can be easily calculated. Based on the statistical 
characteristic of residual signal, the covariance matrix r(i) 
of residual r(k) is equal to the covariance matrix of noise 
induced residual signal rn(k), therefore  

r(l) = rn (l) = CiP
 
C

i

T  
+ R     l = 0 

r(l) = rn (l) = 0,                     l  0,  
(13)

  

Since the residual vector rk s,k in the evaluated window is 
defined as rk s,k =[r

T 
(k  s),..., r

T 
(k)]

T,
 thus the covariance 

matrix of residual vector rk s,k is  

                      
  

= E{r
k s,k

r
k s,k

T }  

   

=

r
(0)

r

T (1)
r

T (S )

r
(1)

r
(0)

0

r
(S ) 0

r
(0)

(s+1) (s+1)

=

C
i
PC

i

T
+ R 0 0

r
(1)

0

r
(s) 0 C

i
PC

i

T
+ R

(s+1) (s+1)

 (14)  

Since the generated residual r(k) is un-correlated, it can be 
found from above expression, the covariance matrix of 
residual signal rk s,s is a block diagram matrix, there fore a 
statistical residual for the residual vector rk s,k can be easily 
carried out based on this property.  

3.3. Increment Gain Matrix Design Based on LMI  

 Incremented gain matrix ΔLi shown in (7) is designed. 
For this purpose, the residual covariance will be firstly 
analyzed. If the residual dynamic is stable, the unique 
stabilizing solution of following DARE denoted by  is the 
covariance of estimated error  

  

lim
k=

E{e(k +1)eT (k +1)}=

= μ
i

4{( A
ii

L
i
C

i
) ( A

ii
L

i
C

i
)T

i=1

p

+(E
n,ii

L
i
F

n,i
) (E

n,ii
L

i
F

n,i
)}

n

+
1

4
μ

i

2μ
j

2{( A
ij

L
i
C

j
+ A

ji
L

j
C

i
)

i< j

p

i=1

p

 

eq. (15) contd….. 

  

( A
ij

L
i
C

j
+ A

ji
L

j
C

i
)T

+(E
n,ij

L
i
F

n, j
+ E

n, ji
L

j
F

n,i
)

n

(E
n,ij

L
i
F

n, j
+ E

n, ji
L

j
F

n,i
)T }

 (15) 

Since the estimated error e(k + 1) is independent of n(k), the 
covariance of residual signal r is  

  

lim
k=

E{r(k)rT (k)}=
r
= μ

i

2

i=1

p

{C
i

C
i

T
+ F

n,i
F

n,i

T

n
}

+
1

4
μ

i
μ

j
{(C

i
+C

j
) (C

i
+C

j
)T

i< ji=1

p

+(F
n,i
+ F

n, j
) (F

n,i
+ F

n, j
)T }

n

 (16)  

Therefore,  

  

tr(
r
) = tr μ

i

2

i=1

p

C
i

C
i

T
+ μ

i

2

i=1

p

F
n,i

F
n,i

T

n

+
1

4
μ

i
μ

j
(C

i
+C

j
) (C

i
+C

j
)T

i<1

p

i=1

p

1

4
μ

i
μ

j
(F

n,i
+ F

n, j
) (F

n,i
+ F

n, j
)

n

T

i<1

p

i=1

p

= tr μ
i

2

i=1

p

C
i

C
i

T
+ tr μ

i

2

i=1

p

F
n,i

F
n,i

T

n

+
1

4
tr μ

i
μ

j
(C

i
+C

j
) (C

i
+C

j
)T

i<1

p

i=1

p

+
1

4
tr μ

i
μ

j
(F

n,i
+ F

n, j
) (F

n,i
+ F

n, j
)

n

T

i<1

p

i=1

p

 (17) 

where  

  

tr μ
i

2
F

n,i
F

n,i

T

n
i=1

p

  

+
1

4
tr μ

i
μ

j
(F

n,i
+ F

n, j
)

n
i<1

p

i=1

p

(F
n,i
+ F

n, j
)T  is 

only decided by noise and is a positive scalar constant. As 

tr(AB) = tr(BA) then, 

  

tr(
r
) = tr( μ

i

2

i=1

p

C
i
C

i

T
+ μ

i

2

i=1

p

F
n,i

T

n
F

n,i

T

+
1

4
μ

i
μ

j
(C

i
+C

j
)(C

i
+C

j
)T

i< j

p

i=1

p

1

4
μ

i
μ

j
(F

n,i
+ F

n, j
) (F

n,i
+ F

n, j
)

n

T
)

i< j

p

i=1

p

 (18) 

 Based on the above results, the optimization of FD 
design can be expressed as: Find ΔLi such that, the residual 
dynamic (7) is stable and  

  

tr μ
i

2
C

i

T
C

i
i=1

p

+
1

4
tr μ

i
μ

j
(C

i
+C

j
)T (C

i
+C

j
)

i< j

p

i=1

p

min
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Based on [15], the following lemma is obtained.  

Lemma 1. Assume that the matrices Li stabilizes the 
residual dynamics (7) then  

  

tr( V ) = tr μ
i

2
C

i

T
C

i
i=1

p

+
1

4
tr μ

i
μ

j
(C

i
+C

j
)T (C

i
+C

j
)

i< j

p

i=1

p
 (19) 

where 

  

V = μ
i

4 (E
n,ii

L
i
F

n,i
) (E

n,ii
L

i
F

n,i
)T

n
i=1

p

+
1

4
μ

i

2μ
j

2 (E
n,ij

L
i
F

n, j
+ E

n, ji
L

j
F

n,i
)

i< j

p

i=1

p

(E
n,ij

L
i
F

n,i
+ E

n, ji
L

j
F

n,i
)T ,

n

 

and  > 0 is the unique stable solution of DARE  

  

= μ
i

4[( A
ii

L
i
C

i
)T ( A

ii
L

i
C

i
)+C

i

T
C

i
)]

i=1

p

+
1

4
μ

i

2μ
j

2[A
ij

L
i
C

j
+ A

ji
L

j
C

i
]T

i< j

p

i=1

p

[A
ij

L
i
C

j
+ A

ji
L

j
C

i
]+ (C

i
+C

j
)T (C

i
+C

j
).

 (20) 

Proof: From the solution of DARE (15) and (16), we know 
that  

  

tr μ
i

2

i=1

p

C
i

T C
i
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1

4
tr μ

i
μ

j
(C

i
+C

j
)T (C

i
+C

j
)

i< j

p

= tr μ4 ( A
ii

L
i
C

i
)lV ( A

ii
L

i
C

j
)lT C

i

T C
i
)

i=1

p

l=0

+
1

4
tr μ

i

2μ
j

2 ( A
ij

L
i
C

j
+ A

ji
L

j
C

i
)l

i< j

p

i=1

p

V ( A
ij

L
i
C

j
+ A

ji
L

j
C

i
)lT (C

i
+C

j
)T (C

i
+C

j
))

= tr( μ4 ( A
ii

L
i
C

i
)lT C

i

T C
i
( A

ii

l L
i
C

j
))

i=1

p

l=0

+
1

4
tr μ

i

2μ
j

2 ( A
ij

L
i
C

j
+ A

ji
L

j
C

i
)lT

i< j

p

i=1

p

 

  
(C

i
+C

j
)T (C

i
+C

j
)( A

ij
L

i
C

j
+ A

ji
L

j
C

i
)lV = tr V , (21) 

 Based on lemma 1, the following theorem is used to 
obtain the change in gain matrix ΔLi.  

Theorem 2. Assume that ΔLi is given and there exists a 
symmetric matrix X > 0 and  >0 such that: 

1. 
2
I + 

 
L

i

T  
X Li > 0 

2. 4
2
I  ( Li + Lj)

T
X( Li + Lj) > 0 

3. X + 
  
A

ii

T
XA

ii
+C

i

T
C

i
+ A

ii

T
X L

i
 (

2
I  

 
L

i

T
X Li)

1 

 
L

i

T
 X

  
A

ii
 < 0 

4. 4X + (
   
( A

ij
+ A

ji
)T

X ( A
ij
+ A

ji
)  + (Ci + Cj)

T
(Ci + Cj) 

+ 
   
( A

ij
+ A

ji
)T

X( Li + Lj)(
2
I  ( Li + Lj)

T
X( Li + 

Lj))
 1

( Li + Lj)
T
X

   
( A

ij
+ A

ji
)  < 0, 

are satisfied for I,j. Then: 

i) system (7) is stable 

ii)  < X consequently tr(

  

μ
1

2

i=1

p

C
i

T
Ci) + 

  

1

4
tr( μ

i
μ

j

i< j

p

i=1

p

(Ci + Cj)
T
(Ci + Cj)) < tr(XV). 

Proof: The results (i) follows directly from the bounded real 
lemma [16]. For the results (ii), based on the schur 
complements lemma, condition (3) is equivalent to the 
following LMI:  

   

2
I + L

i

T
X L

i
L

i

T
XA

ii

A
ii

T
X L

i
X + A

ii

T
XA

ii
+C
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T
C

i

< 0,  (22)  

for 1  i  p hold if X > 
  
A

ii

T
XA

ii
+C

i

T
C

i
. And condition (4) is 

equivalent to the following LMI:  

   

4 2l + ( L
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j
)T X ( L
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+ L

j
)

( A
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+ A

ji
)T X ( L

i
+ L

j
)
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+(C
i
+C
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)T (C

i
+C
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 (23) 

for 1 < i < p hold if  

4X > 
   
( A

ij
 +

   
A

ji
)T

X ( A
ij
+ A

ji
)+ (C

i
+C

j
)T (C

i
+C

j
) . 

 Compering (22) and (23) with DARE (21), based on the 
monotonicity of the DARE [17], we know   X. And based 
on Lemma 1, we have that  

  

tr( μ
i

2
C

i

T )+
1

4
tr( μ

i
μ

j
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i
+C

j
)T

i< j

p

i=1

p

i=1

p

(C
i
+C

j
)) = tr( V ) tr( XV )

 

 Based on Theorem 2, the previous problem can be 
reformulated as: for a given  > 0 and symmetric X > 0, find 
ΔLi such that:  

   

X + A
ii
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XA

ii
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T
C

i
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ii
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X L

i
( 2
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 (24)  

and tr(XV )  min for 1  i  p  
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ji
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 (25) 
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and tr(XV )  min. for 1  i < j  p. It is known that  

  
tr( XV ) = tr (E

n,ii
L

i
F

n,i
)T

X
n

1/2
(E

n,ii
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i
F
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for 1 i  p and  
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for 1  i < j  p. Therefore the minimization of tr(XV), can 
be realized with the following method,  
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 This formulation can be represented as LMI as:  

  

S(E
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T
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T
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* X
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for 1  i  p, and  
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for 1 i < j  p,  

where S = 

  

,
n

1/2

 Yi = XΔLi. Therefore, this problem can be 

reformulated as the following optimization problem:  

 For a given  > 0, find symmetric matrices X > 0 and 
matrix Y, so that the following LMIs:  

  

X XA
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i
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for 1  i < j  p where  

M(ij) = 
 
XA

ij
 YiCj + 

 
XA

ji
  YjCi. Then the problem can be 

solved and the solution for ΔLi is ΔLi = X
1
Yi.  

4. LATERAL VEHICLE DYNAMIC MODEL  

 In recent years many research have been done in the field 
of vehicle dynamics, many achievements have been fulfilled 
[18-20]. And in many applications different vehicle dynamic 
models have been achieved. The derivation of the vehicle 
dynamic model is based on the physical motion equations, 
therefore the different models can be classified according to 
the quality of model’s freedom. The general used one-track 
model (or bicycle model) is a 3 DOF model [21], for the 
vehicle is simplified as a whole mass with the center of 
gravity on the ground, which can only move in x axis, y axis, 
and yaw around z axis. The coordinate system is shown in 

 
Fig. (1). Coordinate system of vehicle model. 
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Fig. (1), which is fixed to the CG. For the purpose of 
studying the roll motion of the vehicle, the CG is not 
assumed on the ground. Comparing with one track model, 
the roll motion around the x axis is introduced, so it is called 
a 4 DOF model. For a more precise description of the vehicle 
dynamic, the vehicle is modeled as a multi-body system. 
Some large DOF models have been constructed, such as the 
vehicle simulation software Trucksim which includes a 14 
DOF model. But such kind of model is too complicated to be 
used for the on-line application, only suitable for some off-
line or simulation application. 

 In IFATIS project [21], in order to establish a design 
framework of model based monitorinng system for vehicle 
lateral dynamics control systems, the 4 DOF model and one-
track model have been studied. In this paper, one-track 
model is used. Because of TS fuzzy model can be used with 
time varing systems so TS fuzzy model can be obtained for 
Vehicle Lateral Dynamic model. 

4.1. Simulation Results  

 Sensor fault for Lateral vehicle dynamic model is 
studied. Lateral acceleration sensor fault and Yaw rate sensor 
fault with stochastic noises are detected. In this case, discrete 
TS fuzzy model is used. After the discretization of each sub 
system, using 10 milliseconds as sampling time, the vehicle 
lateral dynamic model is represented ba the following:  
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where 
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4.2. Residual Generator Design  

 As introduced above, the residual for nonlinear system is 
represented by TS fuzzy filter of the form like  

  

x̂(k +1) = μ
i
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i
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i
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 (33)  

where Li and Li are defined as in (7). The following are the 
details of the sub models and corresponding filter-based 
residual generators.  

The First Sub Model 

 In this case, the steering angle is taken as input signal, 
and lateral acceleration as output signal. The residual 
generated is  

  
r
1
= a

y
â

y
 (34)  

 The gain matrices obtained from solving the DARE (11) 
are  
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 The increment in gain matrices are obtained by solving 
(28) -(31)  
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 The covariance matrices for each sub-system based on 
(14) are  

   

=
n,1

390.1355 0
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21 21
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The Second Sub Model  

 In this case, the steering angle is adopted as input signal, 
yaw rate as output signal, the residual generated is  

  
r
2
= r r̂  (35)  
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 The gain matrices obtained from solving the DARE (11) 
are  
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 The increment in gain matrices are obtained by solving 
(28) -(31) 
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 The covariance matrices for each sub-system based on 
(14) are  
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4.3. Residual Evaluation  

 After the design of the residual generator, the remaining 
important task for robust fault detection is the residual 
evaluator. The residual evaluation consists of evaluation 
function and threshold value. Using L2 norm as evaluation 
function with the length of evaluation window N = 20. The 
threshold value is calculated at fault free case. 

The First Sub Model 

 The known input (steering angle) with noise is shown in 
Fig. (2a). The data with an offset sensor fault of 5m/s

2 

occured at t = 48 second is used to validate the designed 
robust FD system. The threshold value in this case is Jth = 
207.1923. In Fig. (2b), from t = 48 second the evaluated 
signal has exceeded the threshold value.  

The Second Sub Model  

 The known input (steering angle) with noise is shown in 
Fig. (3a). The data with an offset sensor fault of 5m/s

2 

occured at t = 44 second are used to validate the designed 

 

Fig. (2). Robust fault detection for lateral acceleration with stochastic noises. 
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robust FD system. The threshold value in this case is Jth = 
172.3031. In Fig. (3b), from t = 44 sec and the evaluated 
signal has exceeded the threshold value. 

5. CONCLUSIONS  

 In this paper, robust FD approach for non-linear system 
with measurement noises has been developed. The non-
linear system is represented by TS fuzzy model. The 
generated algorithm consists of two parts, in the first part, 
the fault detection for each fuzzy subsystem is obtained by 
solving DARE, in the second part, the incremented fault 
detection is obtained from reducing covariance matrix of 
residual signal. The generated FD system is robust against 
stochastic noises and sensitive to the fault. The design 
procedure has been provided in term of LMIs. 

REFERENCES 

[1]  S.X. Ding, P. Zhang, P.M. Frank and M. Sader, “Multiobjective 
design of fault detection filters”, ECC’03, Technical Session 4, 

Cambridge, UK, 2003. 
[2]  D. Simon, “Kalman filter for fuzzy discrete time dynamic 

systems”, Applied Soft Comuting, vol. 3, pp. 191-207, 2003.  
[3]  T. Takagi and M. Sugeno, “Fuzzy identification of systems and its 

applications to modelling and control”, IEEE Tranaction on System 
Man and Cybernetics, vol. 15, no. 1, pp 166-132, 1985.  

[4]  M.G. El-ghatwary, S.X. Ding and Z. Gao, “Robust fault detection 
for uncertain Takagi-Sugeno fuzzy systems with parametric 

uncertainty and process disturbances”, Proceeding of IFAC 
Symposium SAFE PROCESS, Beijing, China, 2006.  

[5]  Z. Gao, X. Shi and S.X. Ding, “Observer design for T-S fuzzy 
systems with measurment output noises”, IFAC World Control 

Congress, Prague, 2005.  

[6]  Z. Gao, T. Chai and H. Wang, “A robust fault detection filter for 

stochastic system via descriptor estimator and parametric gain 
design”, IET Proceedings Control Theory Applications, vol. 1, no. 

5, pp. 1286-1293, 2007.  
[7]  Z. Gao and S.X. Ding, “Sensor fault reconstruction and 

compensation for a class of nonlinear state-space systems via 
descriptor system approach”, IET Proceedings Control Theory 

Applications, vol. 1, no. 3, pp. 578-585, 2007.  
[8]  N. Zhang, C. Donald and I. Wunsch, “An extended Kalman filter 

(EKF) approach on fuzzy system optimization problem”, IEEE 
International Conferance of Fuzzy Systems, 2003, pp. 1465-1470.  

[9]  Z. Gao, S.X. Ding and Y. Ma, “Robust fault estimation approach 
and its application in vehicle lateral dynamic systems”, Optimal 

control Applications and Methods, vol. 28, no. 3, pp. 143-156, 
2007.  

[10]  S.X. Ding, P. Zhang and P.M. Frank, “Threshold calculation using 
lmi-technique and its integration in the design of fault detection 

systems”, Proceedings of the 42nd IEEE Conference On Decision 
and Control, 2003, pp. 469-474.  

[11]  Y. Ma, “Integrated design of observer-based fault diagnosis 
systems and its application to vehicle lateral dynamic control 

systems”AKS, Duisburg, German, 2006.  
[12]  M. Zhong, S.X. Ding, B. Tang and J. Lam, “An optimization 

approach to fdf design for uncertain discrete-time systems”, 
Proceedings 15th IFAC World Congress, 2002.  

[13]  M. Basseville and I.V. Nikiforov, “Detection of abrupt changes: 
theorem and application”, Prentice Hall, Inc., 1993.  

[14]  S.X. Ding, P. Zhang, B. Huang, E.L. Ding and P.M. Frank, “An 
approach to norm and statistical methods based residual 

evaluation”, 10th International Conference on Methods and Models 
in Automation and Robotics, 2004.  

[15]  Y. Ma and S.X. Ding, “Integrated design of fault detection system 
with multi-objective optimization”, Proceedings of IFAC 

Symposium, SAFEPROCESS, Beijing, China, 2006.  
[16]  K. Zhou, “Essential of robust control”, Prentice-Hall, Inc, 1998.  

[17]  S.X. Ding, P.M. Frank, E.L. Ding and T. Jeinsch, “A unified 
approach to the optimization of fault detection systems”, 

International Journal of Adaptive Control and Signal Processing, 
vol. 14, pp. 725-745, 1988.  

 

Fig. (3). Robust fault detection for yaw rate with stochastic noise. 



Robust Fuzzy Fault Detection The Open Automation and Control Systems Journal, 2009, Volume 2     53 

[18]  T.D. Gillespie, “Fundamentals of vehicle dynamics”, Society of 

Automatic Engineers, Warrendale, USA, 1992.  
[19]  M. Borner and R. Iserman, “Adaprive one-track model for critical 

lateral driving situations”, In International Synposium on 
Adavanced Vehicle Control (AVEC), Japan, 2002.  

[20]  Y. Fukada, “Slip-Angle estimation for vehicle stability control”, 

Vehicle System Dynamics, vol. 32, no, 4, pp. 375-388, 1999.  
[21]  D. Arnt, “IFATIS Vehicle Models of WP8”, Technical Reprot, 

IFATIS, 2002. 

 

Received: December 05, 2008 Revised: December 15, 2008  Accepted: December 26, 2008 
 

© El-ghatwary and Ding; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. 

 

 


