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Abstract: In this study, to cope with the needs of the predictive maintenance for complex systems, a hybrid dynamic Arti-
ficial Neural Network (ANN) based fault and degradation diagnosis and tolerance method is designed. The multi-layer 
feed forward ANN and recurrent ANN are combined, so as to be able to form a dynamic identification model for the non-
linear time-varying system. It has three work modes, and can perform the fault and degradation diagnosis and tolerance by 
using these modes alternately. The result of its application in an Electro-Hydraulic Servovalve of a Hydroelectric Genera-
tion Unit shows that it is effective and feasible, has the advantages of the simple and fast algorithms, working online, and 
no disturbance signals importing to the system. 

1. INTRODUCTION 

Today, the goal of service and maintenance is not only 
the after-the-event repair, but also elimination of the down-
time of the machines and cutting down the maintenance cost 
for the user. As the modern machines are becoming more 
and more complex, the costs of the service and maintenance 
have account for a big part of their whole life cycle cost, up 
to 15%~40%, and about one third of which is caused by un-
necessary and inaccurate maintenance activities due to the 
scheduled or corrective maintenance strategies [1]. So, the 
advanced method should be implemented to improve the 
accuracy of maintenance, to apply right maintenance action 
at right time in right place, i.e. to realize the predictive main-
tenance [2].  

One key problem of the predictive maintenance is how to 
detect the failure and degradation, so as to provide timely 
maintenance before the failures become serious. Model-
based diagnosis is one kind of the important method for fault 
or degradation detection and tolerance [3, 4], but the precon-
dition of its implementation is the accurate model of the 
plant [5, 6]. Most complex industrial processes are nonlinear 
and time-varying system, it’s very hard to get an accurate 
model. To overcome these obstacles, many artificial intelli-
gence based fault diagnosis methods are developed [7-9]. As 
the Artificial Neural Network (ANN) is a nonlinear system, 
and has the ability of self-learning and self-organising, it has 
been widely adopted to solve the problems of control and 
fault diagnosis of the complex system [10, 11]. 

In the paper, an ANN-based fault and degradation diag-
nosis and tolerance method is designed for the purpose of the 
predictive maintenance of a Hydroelectric Generation Unit 
(HGU). It can carry out the diagnosis of the abrupt failures 
and gradually formed faults, and achieve the fault tolerant 
control of an Electro-Hydraulic Servovalve (EHS). In section  
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2, some key points of the predictive maintenance are dis-
cussed. In section 3, a hybrid ANN-based fault diagnosis and 
tolerance method is designed. In section 4, the application of 
this method in an EHS of the water-turbine governing sys-
tem in a HGU is introduced.  

2. THE PREDICTIVE MAINTENANCE AND THE 
FEATURE VALUES OF THE FAULT   

Normally, the faults of a plant can be classified into two 
types. One is the gradually formed failure; another is the 
abrupt failure [12].  

The abrupt failure, as there are rare symptoms before the 
failure emerges, is hardly to be forecasted, but should be 
detected and isolated as quickly as possible. In fact, most 
faults of machines do not occur instantaneously but are 
gradually formed. There are usually some kinds of degrada-
tion state between the normal condition and the failure, and 
the symptoms will emerge as the degradation is becoming 
serious. If these symptoms can be monitored during the deg-
radation process, the appropriate maintenance actions can be 
scheduled and implemented before the failure, that is, to re-
place “post-mortem” and “blind” maintenance with “just in 
time” and “accurate” maintenance. This is the main target of 
the predictive maintenance. The methods introduced in the 
paper try to carry out the diagnosis of these two kinds of 
failure, and achieve the fault tolerant control while some 
kinds of faults occur. 

Three key abilities are essential for the predictive main-
tenance, i.e. monitoring and forecasting, diagnosis and prog-
nosis, and maintenance decision-making [13]. To assess the 
healthy state of a plant, or to incarnate the symptoms of the 
fault, a suitable set of parameters, which are called the fault’s 
feature values (FFVs) and can denote the healthy state of the 
plant, should be defined carefully, as well as the thresholds 
for classifying the state of the plant. In most cases, the FFVs 
are not measurable directly. The way to get these FFVs is 
one key problem of the fault and degradation diagnosis and 
maintenance decision making. 
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3. THE ANN-BASED FAULT DIAGNOSIS AND TOL-
ERANCE (ANN-FDT) METHOD 

3.1. The Principle of the ANN-FDT Method 

To get the immeasurable FFVs, a simple way is to feed 
the system with some special selected excitation signals, and 
calculate the FFVs from the responses of the system. But 
when is executed online, the pattern and strength of the exci-
tation signal are limited in order to avoid serious detraction 
of the system. When this is executed offline, the plant should 
be stopped, and this is usually impossible for the industrial 
process.  

The structure of the designed ANN-FDT system is shown 
in Fig. (1), in which the ANN model is the key element for 
the fault diagnosis and tolerance. An industrial process is 
usually nonlinear and time-varying, whose dynamic charac-
teristics are variant with the change of operation conditions, 
or with the aging of its components. The ANN model in Fig. 
(1) acts as a representation or identifier of the plant, with the 
self-adaptive ability to track the changes of the plant, even in 
degradation situation. In the FFV extraction and fault diag-
nosis period, the pre-selected excitation signals are inputted 
directly into the ANN model instead of the plant. By this 
way, the excitation signals can be selected optionally, with-
out worrying about the disturbance to the plant. From the 
output of the ANN model, the corresponding FFVs can be 
calculated. As the ANN model is ensured to have the same 
dynamic characteristics as the plant, the values of these 
FFVs can also be regarded as that of the plant. With these 
FFVs, the healthy state of the plant can be assessed; the fault 
and degradation of the plant can be diagnosed. When there is 
a fault within the plant, the ANN model accepts the same 
input as the plant and can be used as a reconstruction of the 
plant to achieve the fault tolerant control. The errors between 
the outputs of the plant and the ANN model are used to 
amend the ANN model, as well as monitoring the state of the 
plant. 
 
 
 
 
 
 
 

Fig. (1). The structure of the ANN-FDT system. 

3.2. The FFV Extraction and State Monitoring Method 
Based on the Hybrid ANN 

3.2.1. The Structure of the Hybrid ANN-Based Identifier 

In order to simulate an industrial process, and extract the 
FFVs of faults, a hybrid ANN based identifier is formed, and 
sketched as Fig. (2). The multi-layer feedforward ANN (like 
the Back Propagation (BP) ANN) had been proved to be able 
to approximate any continuous finite nonlinear function [14]. 
But as a static ANN, it cannot describe the dynamic charac-
teristics of the system. On the contrary, the recurrent ANN 
(like Hopfield ANN) utilises the historic signals of the dy-

namic system. It is a dynamic system, but can’t ensure to be 
able to approximate any nonlinear system. Here, these two 
kinds of ANN are combined to form a dynamic identification 
model of the nonlinear time-varying system.  
 
 
 
 
 
 
 
Fig. (2). The structure of the ANN-based dynamic identifier. 
 

The ANN model in Fig. (2) is a multi-layer feedforward 
ANN, but its input data is combined with the present and 
historic data of the input and output of the plant, so as to 
obtain the dynamic information of the plant. The identifier 
has two modes according to the source of its input data. One 
mode is active when a part of the input data is coming from 
the output of the physical system, while the switch S1 in Fig. 
(2) turns to position 1. It is called the serial-parallel identifi-
cation model (SPM), and is mainly used as a self-adaptive 
identifier to form the dynamic model that can track the 
change of the plant’s state. Another mode is active when a 
part of the input data is coming from the output of the ANN 
model itself, while the switch S1 in Fig. (2) turns to position 
0. It is called the parallel identification model (PM), which is 
mainly used as a stand-in model of the plant and is operating 
in parallel with the plant during the process of the FFV ex-
traction and fault diagnosis and tolerance.  
3.2.2. The Characteristics of the SPM and PM 

The SPM and PM have their special characteristics, the 
process of the fault diagnosis and tolerance is the procedures 
to use these two kinds of models respectively. 

Considering a discrete dynamic system: 

Yo(k+1)=f [yo(k), yo(k-1)…yo(k-n+1); ui(k) 
               …ui(k-m+1)]                           (1) 

Its state equation is: 
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where，X(k)∈Rn、Y(k)∈Rp∨U(k)∈Rm are the states, outputs 
and inputs of the system. The system satisfies the following 
constraints: 

C1: Let  U(k)∈Ω! Rm, then ∨U(k)∈Ω, X(0)∈Rn. For a finite 
K, 

‖X（K）‖+‖Y（K）‖<∞ 

That is to say, the system is stable. 
C2: Function ! : Rn+m→Rn and ! : Rn+m→Rp are con-

tinuous, and satisfy Lipschitz condition, i.e. the solution of 
the system is exclusive. 

C3: With the above two constraints, if the ANN can sat-
isfy the constraint: for any ε>0, and any continuous function 
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f：C→RP（C! RP is a closed set） 
there exists network parameter W，which can make the out-
put of  ANN f*(X,W) satisfying 

*
max || ( , ) ( ) ||
X C

f X W f X !
"

# <  

In Fig. (2), when the switches S1 and S2 are in position 
1, the identifier is in SPM formation, which can be modelled 
as: 

*

( 1) [ ( ), ( 1), ( 1); ( ), ( 1), ( 1)]i i io o o o
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When the switch S1 is in position 0 and S2 is in position 
1, the identifier is in PM formation, which can be modelled as:  

)]1(),1(),();1(),1(),([)1(
****
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where, ][•F represents the mapping of the input of ANN to 

its output. )(kyo  is the output of the plant and )(
*
kyo  is the 

output of the ANN model. 
The hybrid ANN in SPM and PM formation has the fol-

lowing characteristics： 
(i) The system is bounded-input and bounded-output 

(BIBO), all the signals used by the ANN model are bounded. 
This can ensure the stability of the ANN model. 

(ii) When in SPM formation, the ANN has no feedback, 
it’s possible to implement static error backward propagation 
(EBP) learning algorithm to train the ANN. 

(iii) When the ANN is fully trained in SPM formation 
and can ensure that the simulating error of SPM is small 
enough, the PM will also get an accurate enough simulating 
result and can act as a representation of the physical system.  

The point (iii) can be explained as follows: 
Suppose the non-linear discrete dynamic system (2) satis-

fies the constraints C1 and C2. When the SPM is utilized, the 
ANN satisfies the constraint C3: 
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* *

( 1) [ ( ), ( ), ]

( ) [ ( ), ( ), ]

s

s

X k X k U k W

Y k X k U k W

!

"

!

"

+ =

=

#$
%
$&

                    (5) 

If X*(0)=X(0)=X0∈Rn, U(k)∈Ω! Rm, where Ω is a closed set, 
for any ε, there exist network parameters *

!W  and *

!W , 
which for any U(k) � Ω, the SPM has the accurate enough 
output approaching to the dynamic system (2), i.e.: 
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 (M is a positive integer)               (6) 
and: 
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    (M is a positive integer)         (7) 

In case the PM is utilized, the same ANN system can be 
expressed as: 

* * *
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Then, the output error between SPM and PM is finite: 
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                  (M is a positive integer)         (9) 

Proof: 

With the constraints C1 and C2, for the system (2), there 
exist positive integers 
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With the constraint C3, for the ANN model, there exist 
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!W , which let: 
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Thus, for the system (2), the errors between the outputs 
of SPM and that of PM are finite when they have the same 
inputs, and the error between the output of the PM and the 
physical system depends only on the precision of SPM. 
Thus, the output of the PM can be fully approached to the 
output of the physical system when the ANN trained in the 
SPM formation is accurate enough. 

This conclusion is very important and it is the foundation 
of the designed ANN-FDT method. For the SPM, it can util-
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ize the output and input of the plant to train online the ANN 
model and make it representing accurately enough the dy-
namic characteristics of the plant.  And for the PM, it can get 
accurate enough simulating outputs by utilizing the trained 
ANN model and doesn’t need the outputs of the plant, but 
needs only the historical outputs of the ANN model itself. 
Thus, the PM can be used to extract the FFVs with any op-
tionally selected exciting input signals, but without appre-
hension of detraction of the physical system. This is very 
important also for the fault tolerance in the case when there 
are some faults with the sensor of the plant’s output. To per-
form the fault diagnosis and tolerance, these two kinds of 
formation (SPM and PM) are used alternately.  

3.3. The Work Modes of the ANN-FDT System 

The designed ANN-FDT system has three work modes: 
the state supervising and tracking work mode, the FFV ex-
tracting and state inspecting work mode and the fault isolat-
ing and tolerating work mode. The work procedure of the 
ANN-FDT system is sketched as the Fig. (3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (3). The work procedure of the ANN-FDT system. 
 
3.3.1. The State Supervising and Tracking Work Mode 

In this work mode, SPM is adopted. The switches S1 and 
S2 are in position 1. The input Ui(k) is given to the plant and 
the ANN model synchronously. When there are some 
changes in the plant, the error of the outputs between the 
plant and the ANN model is increasing. When it is bigger 
than a given track-trigger threshold L1, but less than the 
fault-level threshold L2, it is indicated that the dynamic 
properties of the plant is changed and the ANN model cannot 
simulate it accurately enough. Then the ANN model is ad-
justed online based on a leaning algorithm. By this way, the 
ANN model can adapt itself to track the change of the time-
varying system, even when a degradation state occurs, and 
provide a representation of the plant to the following work 
modes. 
3.3.2. The FFV Extracting and State Inspecting Work 
Mode 

This mode is used for the detection of the gradually 
formed failures. In the state inspecting time windows, the 

system works in this mode, the ANN model is in PM forma-
tion and can be a representation of the plant. The switches S1 
and S2 are in position 0, thus the input of the PM is formed 
by the selected exciting signal Ue(k). From the excitation 
signal and the corresponding output of the PM, the relevant 
FFVs can be calculated easily. From these FFVs, the state of 
the plant can be assessed, as well as the presence of any 
faults or degradations and how serious they are at that time. 
By investigating the further trend of these FFVs, the future 
state of the plant can also be predicted for maintenance deci-
sion making.  
3.3.3. The Fault Isolating and Tolerating Work Mode 

If an abrupt failure appears, the output error between the 
ANN model and the plant will increase rapidly, and will ex-
ceed the fault-level threshold L2 (L2>L1) within a very short 
time. In this situation, the work mode of the ANN-FDT sys-
tem will change to fault isolating and tolerating work mode. 
The PM formation is adopted, but maintain the input of the 
ANN model with the same input of the plant Ui(k). That is, 
the switch S1 in Fig. (1) will turn to position 0 and S2 to 
position 1. The adjustment of the ANN is stopped; the ANN 
maintains its parameters and structure; and can be regarded 
as a representation of the normal state of the plant just before 
the abrupt failure occurred. The outputs of the ANN model 
can represent the outputs of the plant as if it were in normal 
state. The difference between the outputs of the ANN model 
and the plant can be used to identify the kind and the reason 
of the abrupt fault. If the fault is of the output feedback loop 
of the plant, the outputs of the ANN model can be used to 
replace the feedback data of the plant and keep it working 
normally. Thus, the fault tolerance is achieved. 

4. THE APPLICATION OF THE ANN-DP METHOD  

This method has been applied in a maintenance and tech-
nical management workstation to support the predictive 
maintenance of an electro-hydraulic servovalve in a water-
turbine governing system.  

4.1. The EHS and the FFVs of its Faults 

The function of the EHS is to convert the electric signal 
into the movement of the guide vane of a HGU. The EHS is 
a servo system and acts as a pure power amplifier [15]. It is 
composed of a pressure oilcan, a voltage-hydraulic pressure 
conversion valve, a hydraulic pressure amplifier, a connector 
and a position transducer, as shown in Fig. (4).  
 
 
 
 
 

Fig. (4). Composition of the EHS. 
 

When the pressure of the oilcan is supposed to be con-
stant, the block diagram model of the EHS can be built as 
Fig. (5), in which several non-linear elements exist. The dead 
band (with Width ε) represent the insensibility of the output 
hydraulic signal to the input electric signal of the voltage-
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hydraulic pressure conversion servo valve; the first satura-
tion element (with Bound ψl1 and ψh1) is determined by the 
maximum open and close speed of the guide vane; the sec-
ond saturation element (with Bound ψl2 and ψh2) is deter-
mined by the maximum open and close position of the guide 
vane; the machinery gap (with Width δ) is caused by the 
mechanical activation clearance of the connector. The pa-
rameters of the studied EHS are:   

Ky =Ky0=10; Ty =Ty0=0.3; Tx =Tx0=0.015;
 ε=ε0=+0.005; a=3 
      ψl1=-0.1; ψh1=0.1; ψl2=0; ψh2=1; δ=δ0=0.001; 
 Kf=Kf0=1; 

where the parameters with subscript 0 are their ordinary 
normal values. 

There are several kinds of fault mode with the EHS, such 
as the abnormal excursion of the output, the drift of the hy-
draulic pressure balance, vellication of the connector, degra-
dation of the static and dynamic performance, etc. The rea-
sons of these faults may lay in the blockage of the oil injec-
tion hole, the lost or loose contact of the work coil or feed-
back coil, the error of the position sensor, too large dead 
band or machinery gap, etc.. Some of these faults are gradu-
ally formed, and others are abrupt. 

In different fault modes, the response of the EHS is dif-
ferent. After a detail simulation of the EHS in different fault 
modes and careful analysis of the responses, the FFVs and 
the excitation input signals can be educed. 

Consider the faults in the feedback loop of the EHS as an 
example. It may be the break of the feedback, which means 
Kf=0; or the error in the feedback, which means Kf≠Kf0. 
When the step input is 0.5, the output of the EHS with differ-
ent Kf is shown in Fig. (6), and the plot of the steady state out-
put error versus the feedback amplification coefficient (FAC) 
Kf is shown in Fig. (7). When the Kf decreases with a speed of 
0.01 per 3 seconds, the output of the EHS is shown in Fig. (8). 
 
 
 
 
 
 
 

Fig. (6). The response of EHS with different Kf. 

From these plots, it is clear that the faults in the feedback 
loop lead to the variety of the steady state error of the output, 
and the error has a fixed corresponding relationship with the 
FAC. Thus, to detect the faults in the feedback loop, the step 

input can be adopted as excitation signal, with the steady 
state output error as the FFV of the faults. 

4.2. The ANN Model and its Training 

The ANN model used here is a 4×7×1 feedforward 
ANN, with four inputs: previous control value U(k-1), cur-
rent control value U(k), two latest stroke values Y(k) and Y(k-
1) of the connector. The output of the ANN Y*(k+1) is the 
estimated output of the EHS. The training algorithm is based 
on the EBP method, combined with the learning-rate adapta-
tion procedure based on the delta-delta learning rule [16] to 
speedup the training of the ANN. The method of adding the 
weighted term [17] is used to avoid local minimum.     

The ANN is trained off-line at first with the sample data 
set which is composed of the pseudo-random binary se-
quence (PRBS) as input and the corresponding output of the 
plant. Fig. (9) shows respectively the responses of the plant, 
the trained ANN model, and their difference. The same in-
put, that is, a step input with the amplitude of 0.7, followed 
by a slope signal with the slope of -0.1, and than a RPBS 
with the amplitude of 0.25 and the period of 12.75 second is 
used. The plots indicate that the trained ANN model can 
simulate the EHS accurately enough (less than 3% differ-
ence). 
 
 
 
 
 
 
 
 
 

Fig. (9). Response of plant and the trained ANN model with given 
input. 

 

 

Fig. (5). The block diagram model of the EHS. 

 

 

 

 

Fig. (7). Relationship of steady state error and FAC. 

 

 

 

 

 

 
Fig. (8). Response of EHS when Kf is decreasing. 
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4.3. The Online Adjustment of ANN Model to Trace the 
Change of the Plant 

No matter in normal or in degradation state, the EHS is a 
non-linear and time-varying system. This may cause the er-
ror between the output of the pre-trained ANN model and 
EHS. When the error is bigger than L1=2.5% but less than 
L2=5%, the ANN model is trained online to track the change 
of the EHS’s properties. As the bound needed to be adjusted 
is very small each time, the time needed to train the ANN is 
very short. For example, Fig. (10) shows for a constant input 
0.5, the output of the EHS (curve 1), the ANN model (curve 
2) and the error between them (curve 3) when the FAC of the 
EHS decreases at the rate of 0.01 per 3 seconds. The ANN 
model is adjusted 54 times within 180 seconds and can track 
the change of the EHS with an acceptable error. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (10). Online adjustment result of ANN model. 

4.4. The Extraction of the FFVs and the Diagnosis of the 
Gradually Formed Fault in the EHS 

One of the gradually formed failures of EHS is the FAC 
creeping. It has an inherent relationship with the steady state 
error as mentioned before. Fig. (7) shows this relationship 
when the input of the EHS is fixed as 0.5. Thus the steady 
state error of the system with a step input can be the FFV 
and excitation signal respectively. To retrieve the steady 
state error, the ANN-FDT system works in FFV extracting 
and state inspecting work mode, the switches S1 and S2 are 
in position 0, the excitation signal of the constant 0.5 is im-
ported into the ANN model, and the steady state output error 
can be calculated easily and sketched in Fig. (10), curve 4. 
The FAC creeping value can be identified by the synthesis of 
the results in Fig. (7) and Fig. (10), as shown in Fig. (11).  
From these plots, the fault mode is clear to be the FAC 
creeping, and its seriousness can be assessed. 

4.5. The Diagnosis of the Abrupt Failure of the EHS and 
the Fault Tolerance 

One of the abrupt failures is the break of feedback loop, 
which means Kf=0. The corresponding response of the EHS 
is shown in Fig. (6). The output stroke of EHS will increase 
rapidly to 100%.  

If the feedback loop is broken, the error between the out-
put of the ANN model and that of the EHS will increase rap-

idly, and will exceed a previously defined threshold L2 (5%) 
within a very short time. In this case, the ANN-FDT system 
will switch to the fault isolating and tolerating work mode 
immediately, with PM and the switch S1 in the position 0 
and S2 in position 1. The parameters of the ANN model will 
no longer change, so that the state of the EHS before the 
failure is maintained by the ANN model. As explained in 
section 3.2.2, the ANN model can also give an accurate 
enough output in PM formation when the ANN is fully 
trained in SPM. So, the feedback value of the output of the 
EHS can be replaced with the output value of the ANN 
model. Thus, the faults in the feedback loop of the EHS are 
isolated. Fig. (12) shows the responses of the EHS with and 
without the replacement of the feedback value by the output 
of the ANN model in the case that the feedback loop breaks 
at 10s while the input of the EHS is 0.2. The EHS can stabi-
lise its output at 0.205 at around 15s when its feedback sig-
nal is reconstructed by the output of the ANN model. In this 
case, the fault tolerance is achieved.  
 
 
 
 
 
 
 

Fig. (12). Fault tolerance with the ANN-FDT. 
 
CONCLUSION 

The implementation results show that the designed hy-
brid ANN-based fault diagnosis and tolerance method has 
the ability to track the change of the dynamic properties of 
an industrial process, to extract necessary FFVs for state 
assessment by utilizing the SPM and PM alternately, so as to 
diagnose the gradually formed failures, detect and isolate the 
abrupt failure, and achieve fault tolerant control. The algo-
rithm is simple and fast enough to satisfy the requirement of 
real-time applications. Any kind of excitation signals can be 
adopted as the input of ANN model for the FFV extraction, 
so as to facilitate the online detection of the failures, without 
worrying about importing disturbance signal into the physi-
cal system. The method meets the requirement of the fault 

 

 

 

 

 

 

Fig. (11). Estimation of the FAC. 
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diagnosis and tolerance of the non-linear time-varying dy-
namic system, and support the predictive maintenance. 

NOMENCLATURE 

ANN  = Artificial Neural Network  
ANN-FDT = ANN-Based Fault Diagnosis And Tol-

erance Method 
EHS = Electro-Hydraulic Servovalve  
FAC = feedback amplification coefficient of 

EHS 
FFV = Fault’s Feature Value 
HGU = Hydroelectric Generation Unit 
PM =  Parallel Identification Model of the 

ANN-FDT 
PRBS = Pseudo-Random Binary Sequence 
SPM = Serial-Parallel Identification Model of 

the ANN-FDT 
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