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Abstract: A biochemical dynamic pathway is usually modeled as a nonlinear system described by a set of nonlinear 
ODEs. In most cases, only partial states can be measured. Moreover, the system parameters, reaction rates, may be 
unknown or poorly known. Therefore, it is of significance to estimate the states and parameters, for analyzing the 
biochemical dynamic pathway. Due to the limitation of some traditional parameter estimation approaches, it is natural to 
choose sequential methods such as extended Kalman filter to do the parameter estimation for biochemical dynamic 
pathways. In this paper, dual/joint state and parameter estimation with iterative extended Kalman filter (EKF) are 
investigated to obtain state and parameter estimates for a biochemical pathway simultaneously. The simulated results 
between two methods are compared to show the validity of parameter estimation for a biochemical dynamic pathway. It 
has shown that, for the nonlinear biochemical system, the joint state and parameter estimation with EKF, can give 
desirable convergence and estimation performance.  

1. INTRODUCTION 

Systems biology learns about a biological system by 
analyzing the mathematical models expressed by a set of 
ODEs of the system. In most cases, only a restricted number 
of concentrations and reaction rates can be measured/known 
for a biochemical network, and many of the parameters 
describing the dynamics of these pathways are unknown or 
poorly known. Therefore it is worth investigating how to 
estimate the unknown parameters in the mathematical 
models just from the partially noisy measured data. There are 
indirect and direct methods for parameter estimation. The 
advantage of using the indirect methods is that there are a 
number of effective parameter estimation algorithms 
available, e.g., least squares(LS), multistage least squares 
(MLS), and generalized least squares(GLS). And the existing 
algorithms used to directly estimate continuous model 
parameters, such as nonlinear least squares(NLS), system 
reference adaptive model(SRAM), prediction error(PE), and 
maximum likelihood(ML) algorithms, are all very time 
consuming [1]. 

The common used estimation method, least square 
estimation, is good for functions that can be linearized and 
generally best used with data sets containing complete data. 
Least-square estimators assume that the noise contaminating 
the data is of zero mean, which yields an unbiased parameter 
estimate. If the noise variance is known, an minimum-
variance parameter estimate can be obtained by choosing 
appropriate weights on the data [2]. However, numerous 
studies have been conducted, which clearly show that least  
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squares estimators are vulnerable to the violation of these 
assumptions. Least squares uses the complete data and the 
outliers can not be eliminated. Sometimes even when the 
data contains only one bad datum, least squares estimates 
may be completely perturbed. To overcome the shortcoming, 
weighted least square(WLS), random sample consensus least 
square(RANSAC) and least median of squares(LmedS) have 
been used. For nonlinear model, nonlinear least square(NLS) 
can be used [3]. 

Unfortunately, for a dynamic biochemical pathway, the 
measured data is usually a sequential sequence and is 
uncompleted, it may be difficult to obtain large enough 
complete data to get the unbiased estimation with traditional 
parameter estimation methods. Then, sequential methods, 
like Kalman filter(KF), are natural choice for the problem. 
When the system is linear, Kalman filtering technique is 
equivalent of the least-squares technique, because Kalman 
gain is chosen to minimize the estimated state covariance. 
Due to the recursive nature of Kalman filter, it is more 
suitable to the problems where the measurements are 
available in a serial manner, and can take the data 
uncertainty into account, therefore, it can be used as a robust 
estimated method [3-5]. For a nonlinear dynamic model, 
nonlinear versions of Kalman filter can be used.  

Up to now, it is still a problem to get the estimation of 
model parameters based on the sequential simulation [6], and 
only few works relative with parameter estimation of 
nonlinear ODEs used to model the biochemical dynamic 
pathway have been developed [7]. In other areas, the 
nonlinear versions of KF have been developed to solve the 
problems of state estimation and parameter estimation, such 
as hydrology [8], soil carbon [9], ecosystem [10], thermal 
conductivity [11], target directed dynamics [12], reservoir 
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[13], structural dynamics [14], wave dynamics [15] etc. 
Although there are some applications of nonlinear versions 
of KF for parameter and state estimation of a biochemical 
system, it is just first step towards more sophisticated 
approach [7]. 

There are different methods which have been used to get 
the parameter estimates for a dynamic system [16, 17], such 
as joint state and parameter estimation method [13, 14, 18-
20], dual state and parameter estimation method [7, 21] and 
batch processing methods. In which, with dual/joint state and 
parameter estimation methods, the state and parameter 
estimates can be obtained simultaneously with sequential 
methods, and for batch processing methods, such as LS, all 
observations have been considered and make a penalty 
function minimize to get the parameter estimation. For a 
biochemical dynamic pathway, the general case is that the 
kinetic model structure is known but its parameters, kinetic 
rate and equilibrium constants, are unknown or poorly 
known, then have to be identified from time-series 
measurements of chemical species. Unfortunately, the 
measured data can only include partial states, which means 
that the unmeasured states and the unknown parameters 
should be estimated. The measurement and the system 
uncertainties are also the major challenge for the parameter 
and state estimators applied to the biochemical dynamic 
pathway [22, 23]. Therefore, it is a natural choice to obtain 
the estimation of the states and parameters for a biochemical 
dynamic model simultaneously by using dual/joint methods.  

Stefano Mariani applies dual/joint state and parameter 
estimation with EKF for identification of the interlaminar 
model and of the debonding surface(s) on the basis of free-
surface measurements only [24]. By comparing the results of 
state and parameter estimation with dual/joint EKF in 
pseudo-experimental testing and actual experimental testing 
for noise-free and noisy environment, the authors give some 
conclusions about dual/joint state and parameter estimation, 
and think that dual EKF is better than joint EKF. However, 
the conclusions are obtained by comparing the results 
between different methods. Unfortunately, the results depend 
on the initial conditions, which may bring some randomicity. 
Literatures [23, 25] also points out the convergence of EKF 
may be relative with the initial estimation of state, correct 
noise assumption, linearization methods etc.. Furthermore, a 
biochemical dynamic pathway is always described by a set 
of continuous-time ODEs, the parameters to be estimated are 
the parameters of the continuous-time ODEs, which should 
be discretized firstly for numerical analysis. However, 
different discretization methods will bring different 
accuracy, which will also affect the accuracy of the last 
parameter estimation. A biochemical dynamic pathway is of 
different dynamic features from the system discussed in [24], 
then the experimental methods shown in [24] may not 
necessarily address the specific challenges posed by the 
biochemical dynamic pathway well. It is worth investigating 
the dual/joint state and parameter estimation with EKF for a 
biochemical dynamic pathway. With the same reasons, 
literatures [16, 18, 20, 21, 26] just show that EKF is a best-
known and effective method for parameter estimation of 
dynamic systems. Especially, some literatures, such as [21], 
give some different results from [24], which shows that the 
performance of joint EKF may be better than that of dual 

EKF. All of these also provide proofs to us that it is 
meaningful to study the methods for parameter estimation of 
a biochemical dynamic pathway.  

In this paper, aim at the parameter estimation with 
incomplete measured data for a biochemical dynamic 
pathway, the validity of dual/joint state and parameter 
estimation methods with iterative EKF for the parameter 
identification of a biochemical dynamic pathway and the 
convergence of the two methods under different initial 
conditions for implementing EKF algorithm will be 
investigated. By this way, it can be found which one is better 
for parameter estimation of a biochemical dynamic pathway. 
In the following sections, the algorithm of parameter 
estimation with EKF is firstly given for a biochemical 
dynamic pathway; then the results with dual/joint EKF under 
different noisy measurement environment and initial 
conditions will be investigated to compare the effect between 
the two methods for parameter estimation of a biochemical 
dynamic pathway; at last, some conclusions on the two 
methods can be obtained. 

2. THE ALGORITHMS OF PARAMETER 
ESTIMATION WITH ITERATIVE EKF FOR A 
BIOCHEMICAL DYNAMIC PATHWAY 

2.1. Biochemical Dynamic Pathway 

A biochemical dynamic pathway can be modeled as a 
nonlinear system described by a set of nonlinear ODEs. 
Linear ODEs only can be used to model an irreversible chain 
reaction [23]. Even for a linear model, when the parameters 
are regarded as unknown variables and estimated with the 
state simultaneously, just like what will be done in the paper 
later, the linear model will become a nonlinear model too. 
Furthermore the linear model is just a special case of a 
nonlinear model. So without loss of generality, the parameter 
estimation problem is investigated for a biochemical 
dynamic pathway modeled with a set of nonlinear ODEs. A 
dynamic signal pathway can be modeled with the following 
ODEs representation 

 
&x t( ) = f x t( ),u(t),!( ) +w t( ) ,                  (1) 

( ) ( )tvtxgtz += )),(( ! ,                             (2) 

Where equation (1) is the system dynamic model and 
equation (2) is the measurement model. n

Rx!  is the system 
states. p

R!"  is the parameters of the model, for a 
biochemical dynamic pathway, which stands for reaction 
rates. i

Ru!  is the input, for a biochemical pathway, which 
represents external cellular signals, if only the intracellular 
biochemical pathway is studied, or the biochemical pathway 
is not subject to external cellular signals, it can  be taken as 

0=u . f !( )  denotes linear or nonlinear functions which 

corresponding to the biochemical reactions; g !( )  determines 
which states can be measured. For a simple case, it can be a 
linear model. m

Rz!  shows the measured states. w  is 
process noise error, whose covariance is Q = E ww

T( )  and v  

is the measurement noise error, whose covariance is 
R = E vv

T( ) . 
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The continuous-time ODEs model should be discretized 
firstly for analysis purpose. Unfortunately, there is no 
general direct discretization mapping for nonlinear ODEs, 
therefore, other methods should be found to discretize the 
nonlinear continuous-time model. Literature [23] compares 
some one-step system discretization methods, such as 
Taylor-Carleman method, Monaco and Normand-Cyrot’s 
method, and multi-step system discretization methods, such 
as Runge-Kutta method. From the comparison, it has shown 
that Runge-Kutta method can be a natural choice for 
discrete-time system representation. In numerical analysis, 
the Runge-Kutta methods are an important family of implicit 
and explicit iterative methods for the approximation of 
solutions of ODEs. It propagates a solution over an interval 
by combining the information from several Euler-style steps 
and then uses the information obtained to match a Taylor 
series expansion to some higher order [23, 27]. 

( ) ( ) ( )( )kxhfkxkx +=+1 ,                             (3) 

where h  is the sampling interval, htt
kk
+=+1

. 
The discrete-time representation of continuous-time 

pathway model (1) and (2) can be rewritten as follows by 
using Runge-Kutta method: 

( ) ( ) ( )( ) ( )( )!,1 kxFkxRkxkx =+=+ ,              (4a) 

( ) ( )kvkxgkz += )),(( ! .                          (4b) 

The commonly used method in the family of Runge-
Kutta methods is often referred as “RK4” or simply as “the 
Runge-Kutta method”, which is the fourth-order Runge-
Kutta formula. 
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Runge-Kutta method takes multi-step information, which 
enhances the discretization accuracy and reduces the 
complexity of mathematical expressions compared with that 
using higher-order derivative approximation in one-step 
discretization. Moreover, Runge-Kutta method could provide 
a general discrete-time ODE representation for either linear 
or nonlinear ODEs [23]. 

2.2. Dual/Joint Parameter and State Estimation 
Algorithm with EKF 

With the discrete-time dynamic system model shown as 
equation (4), iterative extended Kalman filter(EKF) can be 
used to get the state and parameter estimation simultaneously 
[28,  29]. 

A. EKF Algorithm 

Kalman filter is quite easy to be implemented and an 
optimal estimator for a linear system. However, as shown 
above, most of biochemical dynamic pathways are 
unfortunately nonlinear, and should be linearized for using 

Kalman filter. Extended Kalman filter linearizes the 
nonlinear system by calculating the Jacobians of nonlinear 
functions for the dynamic system model (shown in the 
equation (4a)) and measurement model (equation (4b)) [30-
32] 
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The Jacobians matrices 
k
A ,

k
H  will vary in time with 

the estimated state 
k
x̂ . Then the EKF can be implemented 

like a regular Kalman filter which includes two update: 

 (a) time update equations 

x̂
k k!1

= F x̂
k!1 k!1

,"( )  ,                                                            (8) 

k

T

kkkkkk
QAPAP +=

!!! 111

ˆˆ ;                              (9) 

 (b) measurement update equations 

x̂
k k
= x̂

k k!1
+ Kk zk ! g x̂

k k!1( )( ) ,                                          (10) 

K
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T + R
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!1  ,                                     (11) 

P̂
k k
= I ! K

k
H

k( ) P̂k k!1 .                                                        (12) 

B. Dual State and Parameter Estimation with EKF (DEKF)  

For a dual state and parameter estimation method, a 
separate state-space representation is used for the state and 
the parameters. Two EKFs are run simultaneously for state 
and parameter estimation respectively. At every time step, 
current parameter estimation is used in the state filter, and 
the current state estimate is used in the parameter filter, then 
the states and parameters can be estimated simultaneously. 
The algorithm for dual extended Kalman filter 
implementation is [21]  

  (a) time-update equations 
  For the parameter filter are 

111

ˆˆ
!!!

=
kkkk

""  ,                                                              (13) 

11

1

1

ˆˆ
!!

!

!
=

kkkk
PP
"" # ;                                                      (14) 

Where ]10(!"  is referred as the “forgetting  factor”. In the 
simulation of this paper, it is taken as  9999.0=! . 

For the state filter are  

x̂
k k!1

= F x̂
k!1 k!1

,"̂
k k!1( ) ,                                             (15) 

P̂
xk k!1

= AkP̂xk!1 k!1Ak
T
+Qk

;                                         (16) 

(b) measurement update equations 
For the state filter are  
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x̂
k k
= x̂
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k k!1( )( ) ,                                          (17) 
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And for the parameter filter are 
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Where              ek = zk ! g x̂
k k!1( ) , 

 
1

ˆ

11
ˆ)ˆ(

!"

"
=

"

"
=

"

"
!=

!!

kk

kk

k

kkk
k

x
H

xge
C

#

#

###
. 

C. Joint State and Parameter Estimation with EKF (JEKF) 

In the joint state and parameter estimation method, the 
states and parameters are concatenated into a single joint 
state vector. By using sequential methods, like EKF, UKF, 
EnKF, the state and parameter estimation can be obtained 
simultaneously [18-20]. Therefore, firstly a new state vector 
must be constructed, which includes the states and unknown 
parameters to be estimated. Suppose the dimension of 
states

s
x is 

x
n  and that of unknown parameters !x  is 

p
n , 

the new state vector can be written as 

!!
"

#
$$
%

&
=

'x

x
x

s  ,                                                (22) 

The dimension of the new state vector x  is 
px
nnn += . 

After that the standard extended Kalman filter algorithm 
shown in the section (2.2) A can be used to obtain the state 
and parameter estimates simultaneously.  
D. The Iterative Dual/Joint State and Parameter 
Algorithms 

The algorithm for dual/joint state and parameter 
estimation used in our simulations is described as the 
following: 
Step 1 Initialization  

Take the initial state and parameter estimation 
0
x̂  and 

0
!̂ ; the process noise covariance Q and measurement noise 
covariance R; the iterative times N ; the length of observed 
data L=length(zobserve), where zobserve is the data vector 
of a measured state. In this paper, a small non-zero value is 
taken as process noise covariance corresponding to the 
estimated parameters that also includes the uncertainty in the 
parameters to be estimated;  
Step 2 Parameters Estimated with  Iterative EKF 

(a) for dual state and parameter estimation approach 
for j=1:N(iterative times) 

if j==1 
00
!̂! = ; else 

0
!  should be the values of last step 

of pre-iteration; end  

    The initial state and parameter estimation error covariance 
are 

P̂
x0
= x̂

0
!x

0
true( ) x̂ 0!x0true( )

T  

and P̂! 0 = !
0
"!true( ) ! 0

"!true( )
T  respectively; 

In practice, the true values of states truex
0

and 
parameters true!  may be not known, then the initial 
covariance could be taken by basing on the prior knowledge. 

for i=1:L(time series points of measured data) 
Implementing the dual state and parameter estimation 

algorithm shown in section (2.2) B. 
end of once iterative EKF 
end of N times iterative EKF 
(b) for joint state and parameter estimation approach 

for j=1:N 

if j==1 
00
!̂! = ; else 

0
!  should be the values of last step 

of pre-iteration; end 

The initial joint state vector is ]ˆ[ 000 !xx =  and the true 
joint state vector is ][ 0 truetruexxtrue != ; 

The initial state estimation error covariance is 
P̂
0
= x

0
!xtrue( ) x 0!xtrue( )

T or taken by basing on the 
prior knowledge. 

for i=1:L 

Implementing the joint state and parameter estimation 
algorithm shown in the section (2.2) C. 

end of  once iterative EKF 

end of N times iterative EKF 

Step 3 Take the values at the end of last iteration for  
JEKF and DEKF algorithm as the parameter estimates and 
the values of the last iteration as the state estimates  for the 
biochemical dynamic pathway 

Step4 Compute and compare the residual mean-square 
error(RMSE) of the state estimates between different 
methods and relative root squared error(RRSE) between 
the estimated parameters and true parameters. 

3. RESULTS AND DISCUSSION  

Example: Simulation Results Illustration 

In this paper, Michaelis-Menten model is used as an 
example for nonlinear model stimulation. Within this 
framework, the conversion of the substrate S into the product 
P is catalyzed by the enzyme E. The enzyme and the 
substrate form an intermediate enzyme-substrate complex ES 
which can degrade into the reactants or into product and 
enzyme. The kinetic mechanism can be presented in the 
graphical form [31] 

PEESSE
k

k

k
+!"!!"#+ 3

2

1 .                                       (23) 
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Where the 
i
k  (i=1,2,3) denote the rate coefficients for each 

elementary reaction. 
4321

,,, xxxx  denote the concentrations 
of components E,S,ES,P, the kinetic rate equations for the 
pathway shown in the equation (23) are now a system of four 
coupled differential equations 
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Where ]'[ 321 kkk=!  is unknown and time-invariable and 
will be estimated. Eq. (24) is the Michaelis-Menten system 
model which includes 4 states and 3 parameters. Suppose 
that only the change of concentration E, i.e. [

1
x ] can be 

measured, and the measurement function is linear, then the 
measurement model (4b) can be rewritten as  

( ) ( ) ( )kvkxHkz
sss

+= ,                                                        (25) 

Where ]0001[=
s

H  and x
s
= x

1
x
2
x
3
x
4[ ] ' . For a joint 

state and parameter estimation application of the model, a 
new single state vector including the four states and three 
parameters can be written as 

'][][ 3214321 kkkxxxxxx
s

== !  ,                         (26) 

Then the continuous-time model can be expressed with 
the single state vector as: 
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And 
s

H  should be changed into ]0000001[=H , the 
measurement model is 

( ) ( ) ( )kvkHxkz += .                                                            (28) 

Solving the ODEs denoted in the equation (24) with 
ode45 and initial state and parameter values ]001212[0 =x  
and ]23.002.018.0[=! , the output of the states can be 
used as the true state output. Because only the change of the 
concentration of E can be measured, the measured data can 
be obtained by adding different normal noise on the true 
data, zobserve=z+sqrt(R)*randn(size(z)) for the following 
simulation, where z is the output [E] of ODE solvers.  In the 
following, the algorithms described in the 2.2(D) are used to 
obtain the parameter estimation. The values used to solve 
ODEs are taken as the true values of the initial state and 
parameters , i.e. suppose 
x
0
true = [12 12 0 0] ,!true = [0.18 0.02 0.23] .  

In the following, we will investigate the results of 
parameter and state estimation with DEKF and JEKF under 
different initial conditions and different noisy environment 
for Michaelis-Menten Model.  

A. Under the Weak Measurement Noisy Environment 

(a) The measurement data with noise covariance R=0.01, 
initial state estimation is 

0
x̂ =[10 10 0.2 0.2], process noise 

covariance is Q=1e0*eye(4), initial state estimation 
covariance is P̂

x0
= x̂

0
!x

0
true( ) x̂ 0!x0true( )

T , and the true 

parameters is true! . By implementing EKF algorithm 
shown in (2.2)A, we can get the state estimates with true 
parameters shown in the figure 1(b)(with dot line).  

Then it is supposed that the initial parameter estimation is 

0
!̂ =[0.2 0.2 0.2], the iteration times is N=100. With the 
DEKF and JEKF algorithms, the parameter estimates of the 
model are shown in the Fig. (1a). the state estimates at the 
last iteration with DEKF and JEKF are also shown in the 
Fig. (1b). In the figure, dash dot lines denote the state 
estimation with JEKF, dashed lines denote the state 
estimation with DEKF and dot lines denote the state 
estimation with standard EKF and the true parameters.  

The root mean-square error(RMSE) of state estimation is 
defined as eq. (29). The comparison for the RMSE of the last 
iteration with DEKF and JEKF and that of standard EKF 
with true parameters are shown in the Table 1a. For showing 
the estimation error of the parameters at every sampled time 
step, the relative root squared error(RRSE) (shown in the eq. 
(30)) is introduced to evaluate the error of parameter 
estimation. 

( ) LxtruexRMSE

L

i

i!
=

"=
1

2
ˆ ,                                           (29) 

*

* ˆ

!

!!
ik

RRSE

"
= .                                                             (30) 

Where *! denotes the true parameters and 
ik
!̂  denotes the 

estimated parameter at a time step k in the ith iteration. Table 
(1b) shows the last estimated parameters and their RRSE at 
the end of last iteration with different methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (1). The output of estimated parameters and states with 
different methods and initial conditions (a). 
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Table (1a). The RMSE of State Estimates at the Last Iteration 
with DEKF, JEKF and EKF 

RMSE with EKF with DEKF with JEKF 

[E] 0.10877 0.10876 0.1486 

[S] 0.16759 0.20895 0.46217 

[ES] 0.62001 0.64248 0.4059 

[P] 0.75685 0.59619 0.33003 

Total 1.6532 1.5564 1.3467 

 
Table (1b).  Estimated Parameters with Different Methods 

Parameters k1 k2 k3 

True  0.18 0.02 0.23 

Initial  1.0 0.3 0.8 

DEKF/RRSE  0.1836/0.0199 0.0522/1.6084 0.2246/0.0233 

JEKF/RRSE 0.1801/0.0003 0.0200/0.0011 0.2300/0.0001 

 
(b) Change the initial state and parameter estimations to 

0
x̂ =[5 5 5 5], 

0
!̂ =[0.5 0.5 0.5] and keep other initial 

conditions in (a) unchanged, implementing the algorithms 
again, the results are shown in the Fig. (2) and Table 2 
respectively.  

 

 

 

 

 

 

 
Fig. (2). The parameter estimation with different methods and 
initial conditions (b). 
 
Table 2. Estimated Parameters with Different Methods 

Parameters K1 K2 K3 

True  0.18 0.02 0.23 

Initial  1.0 0.3 0.8 

DEKF/RRSE  0.1933/0.0740 0.0400/0.9996 0.2412/0.0489 

JEKF/RRSE 0.1801/0.0003 0.0200/0.0011 0.2300/0.0001 

 
Compare Fig. (1) with Fig. (2) and Table 1 with Table 2, 

it can be found that with different initial conditions, the 
parameter estimates with DEKF change significantly and 
they still have not converged to the true parameters after 100 
iterations, while those with JEKF keep almost same accuracy 

and converge to the true parameters at about 5th iteration. 
That is to say, with JEKF, we can obtain more robust and 
accurate parameter estimation than with DEKF. From Table 
1a, an amazing result can also be found. Though true 
parameters are applied when the standard EKF algorithm is 
implemented, the more accurate state estimates with JEKF 
and DEKF can be obtained. For the results, we think the 
explanation may be that for a nonlinear system, the EKF 
algorithm itself is an approximate estimation algorithm, 
while the dual/joint EKF also learns an approximate model, 
which could be better matched to the state estimation 
approximation [21]. Furthermore, JEKF and DEKF use 
iterative EKF algorithm, which is less sensitive to the choice 
of the filter’s parameters(such as process and measurement 
noise covariance, initial state estimation etc.) than standard 
EKF [33].  
B. The Noisy Measurement Environment  

The validity of DEKF and JEKF is investigated further 
for parameter estimation of a biochemical dynamic pathway 
under different initial conditions and different noisy 
measurement data. 

(c) The measured data has been contaminated by noise 
badly, the measurement noise covariance is R=10, the initial 
state and parameter estimation are 

0
x̂ =[10 10 0.2 0.2] and 

0
!̂ =[1.0 0.3 0.8], the iteration time still is N=100, process 
noise covariance is Q=1e-3*eye(4), the initial state 
estimation covariance is P̂

x0
= x̂

0
!x

0
true( ) x̂ 0!x0true( )

T . 
The results are shown in the Fig. (3) and Table 3. 

 

 

 

 

 

 

 

Fig. (3). The parameter estimation with different methods and 
initial conditions (c). 
 
Table 3. Estimated Parameters with Different Methods 

Parameters k1 k2 k3 

True  0.18 0.02 0.23 

Initial  0.1 0.3 0.8 

DEKF/RRSE  0.1843/0.0237 0.0215/0.0727 0.2330/0.0129 

JEKF/RRSE 0.1798/0.0008 0.0199/0.0071 0.2307/0.0031 

 
(d) Keep other initial conditions in (c) unchanged, change 

the process noise covariance to Q=1e0*eye(4). The results 
are shown in the Fig. (4) and Table 4. 
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Fig. (4). The parameter estimation with different methods and 
initial conditions (d). 
 
Table 4. Estimated Parameters with Different Methods 

Parameters k1 k2 k3 

True  0.18 0.02 0.23 

Initial  1.0 0.3 0.8 

DEKF/RRSE  0.1854/0.0298 0.0218/0.0915 0.2337/0.0162 

JEKF/RRSE 0.1794/0.0036 0.0202/0.0101 0.2300/0.0002 

 
(e) Keep other initial conditions in (d) unchanged, change 

the initial state and parameter estimation to x0=[0 0 0 0] and 

0
! =[0.5 0.5 0.5]. The results are shown in the Fig. (5) and 
Table 5. 
 
 
 
 
 
 
 
 

Fig. (5). The parameter estimation with different methods and 
initial conditions (e). 
 
Table 5. Estimated Parameters with Different Methods 

Parameters K1 K2 K3 

True  0.18 0.02 0.23 

Initial  0.5 0.5 0.5 

DEKF/RRSE  0.1884/0.0467 0.0326/0.6309 0.2371/0.0309 

JEKF/RRSE 0.1794/0.0036 0.0202/0.0101 0.2300/0.0002 

 
By comparing Figs. (3,4,5) and Tables 3,4,5, we still can 

get the conclusions which are same as that in the weak noisy 
environment. Furthermore, when large enough measurement 

noise is taken, the DEKF and JEKF algorithms can keep 
more robust for different initial state estimation and process 
noise covariance. From the cases (c)(d)(e), it can be seen that 
the parameter estimations with different methods almost 
keep the same accuracy. However, the accuracy of parameter 
estimates with JEKF is still better than that with DEKF, 
furthermore, parameter estimation with JEKF is of faster 
convergence. All these cases show that JEKF is more robust 
than DEKF for parameter estimation of a biochemical 
dynamic pathway. By the way, the time implementing JEKF 
is shorter than that of DEKF. Use Sony laptop with Intel 
T2600(2.16GHz), 1GB DDR2 memory, the initial conditions 
in the case (e), the 100 iteration times, and 101 measured 
data points, the time for JEKF is 4.5160 s, while that for 
DEKF is 5.4690s.  

We have shown the validity of joint/dual state and 
parameter estimation with iterative EKF for the parameter 
estimation of the biochemical dynamic pathway, however, 
due to the limitation of EKF, such as first-order 
approximation which may lead to suboptimal and even 
divergence of the filter [6], the difficulty of implementing it 
because the Jacobian matrix should be computed to linearize 
the nonlinear system [34], it is difficult to be used for high 
dimension and complex biochemical dynamic pathways to 
get the state and parameter estimation simultaneously.  

FURTHER DISCUSSION 

To show whether the joint method with iterative EKF is 
effective for large biochemical dynamic pathways or not, the 
method is investigated further for NF-κB pathway . 

The nuclear factor κB (NF-κB) signaling pathway (see 
Fig. 6) is an important cellular signaling pathway, of which 
protein phosphorylation is a major factor controlling the 
activation of further downstream events [34-36]. The 
pathway includes 26 reaction species participating in 64 
reactions. Out of the 26 reaction species, 24 species are 
changing dynamically and their concentrations are defined as 
the state variables.  

 
 

 

 

 

 

 

 

 

Fig. (6). IκB-NF-κB signal pathway module. 
 

If the dynamic behavior of a biochemical signaling 
pathway is highly dependent on the values of some of the 
parameters, then these parameters are essential for the 
accuracy and reliablity of the biochemical dynamic model. 
Therefore it is important to estimate them accurately. 
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Literature [26] has studied the sensitivity of the parameters 
and shown that parameters k9, k28, k29, k36, k38 and k52 
are key parameters which capture the essential dynamics of 
the signaling pathway. We suppose these parameters are 
unknown and should be estimated, other parameters are 
known. Use the joint state and parameter estimation 
approach, so the new state vector is x = x

s
x
p( ) , whose 

dimensions is 30624 =+=+=
px
nnn .  

The ODEs model for the pathway can be obtained from 
the literature [26]. By using the iterative JEKF algorithm 
shown in the section 2.2(C) and (D), the state and parameter 
estimation can be obtained. 

The true initial state values are x0true=[0.1902 0.0003 
0.0821 0.0214 0.0091 0.0153 0.0065 0 0 0.1 0 0 0 0 0.0002 
0.1931 0.0014 0.0219 0.0003 0.0156 0.0002 0.0055 0.0006 
0.0005]; 

The true values of parameter k9, k28, k29, k36, k38 and 
k52 are true! =[1.221 1.02713 0.0168 0.2448 0.018 11.1]; 

Suppose the initial state estimation is
0
x̂ = 

x0true+0.001*exp(0.3*randn(1,24)); the initial parameter 
estimation is 

0
! = true! +0.001*exp(0.3*randn(1,6)); Q=[1e-

4*eye(24) zeros(24,6); zeros(6,24) 1e-6*eye(6)]; R=10, 
which is a little larger than the actual measurement noise. 
Iterative times N=30. 

Unfortunately, the simulation results show that some of 
the estimates have divergence with the algorithm. It also can 
be found that it is difficult to take right initial conditions to 
implement the iterative JEKF algorithms for large 
biochemical pathways and keep reliable with the increasing 
nonlinearity. The implementing of the iterative EKF 
algorithm becomes more sensitivity to the initial conditions 
and is difficult to tune due to the limitation of  the algorithm 
itself. Therefore, it is difficult to be used for large and 
complex biochemical dynamic pathway to get the state and 
parameter estimation simultaneously. Instead, unscented 
Kalman filter(UKF) [20, 37], ensemble Kalman filter(EnKF) 
[8, 10], even particle filter(PF) [38, 39] could be used to 
solve the parameter estimation problem for complex and 
large biochemical dynamic pathways, which are also the 
subject of our future work. 

CONCLUSIONS   

With iterative EKF algorithm, the state and parameter 
estimation can be obtained for a biochemical dynamic 
pathway simultaneously by taking dual/joint state and 
parameter estimation approaches. However, it can be seen 
that with joint state and parameter estimation approach, more 
accurate and robust parameter estimates can be obtained and 
the estimated parameters converge to the true parameters 
faster, while the convergence of estimated parameters with 
dual state and parameter estimation method could be very 
slow under some initial conditions. It is also noticed that 
when large enough measurement noise is taken and the SNR 
is in a concessional level, the output of parameter estimation 
with the two approaches become robust for different initial 
state and process noise covariance estimation. It also can be 
found that the inherent linearization of extended Kalman 

filter can limit its applicability to biochemical pathways, e.g. 
when the states undergo large variations. And its 
applicability can be improved by choosing a small initial 
value of the covariance matrix to eliminate the possible 
inadvertent reliance on an unreliable tuning [4, 40]. 
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