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Abstract: This paper presents the experimental results of the investigation of the effects of the observer poles for shaping 
the dynamic responses of state-space systems with system poles placed by state vectors obtained from full-order observers 
instead of the original full state vectors, which is assumed to be unavailable. The particular parameters considered in the 
shaping of the dynamic responses in this paper are the settling time and percent overshoot. A large number of observer 
poles on the complex plane were selected evenly. The corresponding observer state vectors were computed. These state 
vectors were used for system pole placement. All the system poles were placed at the same locations. The resulting dy-
namic responses were simulated and the settling times and percent overshoots were measured. Even though the system 
poles were the same, the dynamic responses, in particular, the settling time and percent overshoot were not identical and 
depended on the locations of the observer poles. The relationship between these parameters and the observer poles were 
analyzed and the results are presented in this paper. 
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1. INTRODUCTION 

A common technique for shaping the dynamic response 
of a state space system is by pole placement with full state 
vector ([1] and [2]). For example, consider the double inte-
grator state space description in [3]. 
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It is desired to stabilize the system and to limit the 2% 
settling time to be approximately equal to 4.5.  

Such requirements can be achieved by placing the system 
poles at locations with real part approximately equal to -
0.889. For example with system poles chosen to be 

j1.056,0.889- ± the step response of the state space system 
(1) with full state feedback. 

i.e., u = –Kx+r, is shown in Fig. (1). The settling time is 
noted to be 4.35 in the figure and roughly meets the specifi-
cation.  

This gain vector K in the input equation u = –Kx+r was 
computed by the “place” command [4] of Matlab and is 
equal to [1.9055 1.7780]. More accurate settling time can be 
attained by fine tuning the location of the system poles. 
 The assumption of no finite zero in the closed-loop  
transfer function is necessary. It is because finite zeros will 
contribute to the dynamics of the step response just like the 
poles but in different manners. 
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If the state vector x in the input u = –Kx+r is not avail-
able, the full order observer state vector can be used as a 
substitute ([5, 6]). However, there is an issue which was 
briefly reported in [1, 7]. The issue was that the locations of 
the observer poles could increase or decrease the settling 
time. The references [1, 7] did not provide extensive investi-
gations. In this paper, results of extensive investigations are 
provided. A deeper study of the effects of the locations of the 
observer poles on the dynamic responses and the findings are 
described below. 

The contents of the rest of this paper are arranged as fol-
lows: the observer approach used in this paper is reviewed in 
the rest of this section. Section 2 presents the extensive 
simulation results and the analysis of the effects of the loca-

Fig. (1). Step response of equation (1). 
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tions of the observer poles on the dynamic responses. Sec-
tion 3 provides concluding remarks.  

Generally for a single-input, single-output controllable 
and observable state-space system  
&x Ax Bu

y Cx

= +

=

 (2) 

with full state vector x being available, the input u can be 
constructed as 

Kxru !=  (3) 

such that the eigenvalues of A-BK are placed at the desired 
locations that meet the dynamic response, in particular, step 
response performance criteria.  

If the state vector x is not available. An observer can be 
used to construct an estimate ( x̂ ) of the original system state 
vector. This estimate, which is the observer state vector, can 
be used in place of the original state vector in the pole 
placement method for placing the system poles at the desired 
locations. A summary of this approach follows. Consider a 
state-space model  
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The corresponding observer equation is: 
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and the input equation is:  

xKru ˆ!= , (6) 

where K is the gain matrix that drives the compensated sys-
tem to operate at the desired system poles corresponding to 
the dynamic response requirements, e.g., settling time. 

The combined original system equation and the observer 
equation is  
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Define the error xxe ˆ!= . The error equation can be ob-
tained as 

00
ˆ)0(;)( xxeeLCAe !=!=&   (8) 

If the original system is observable, the poles of the error 
equation can be place sufficiently far from the imaginary 
axis and in the left half plane so that the error will die away 
very quickly. This observer state vector will place the system 
poles at the desired locations but the resulting step response 
may not meet the expected requirements such as settling time, 
peak time, and percent overshoot. The initial conditions (x0) of 
the observer and the poles of the observer (which are the ei-
genvalues of (A-LC)) have effects on the step response and 
can change its shape. This paper presents the results of the 
effect of the observer poles on the settling time. 

2. SIMULATION RESULTS 

Consider the double integrator system in equation (1). 
The problem is to stabilize the system and to meet the per-
formance criterion that the 2% settling time is to be 4.5. A 
simple solution is by placing the system poles at the same 
locations at j1.056,0.889- ±  as the example in Section 1. 
Assume that the actual state vector x needed in the pole 
placement was not available. An observer is used for obtain-
ing estimates of the state vector x. It is intended to investi-
gate the effect of the observer poles on the settling time. One 
hundred observers with distinct observer poles were tried. 
These one hundred distinct pairs of observer poles are  
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where m=1, 2, …, 10; and n=1, 2, …, 10. 

A diagram of these one hundred pairs of complex conju-
gate observer poles is shown in Fig. 2. Note that the variable 
m indicates the distance of the observer poles from the origin 
and the variable n indicates the phase of the observer poles. 
The amplitude of the observer poles in (9) is 0.889m and that 
ranges from 0.889 to 8.89. The phase of the observer poles is 
(

20

1)-(n!
! " ) and that ranges from ! rad to 

20

11! rad. 

For each pair of complex conjugate observer poles, the 
corresponding observer state vector was computed. The ini-

tial condition of the observer was chosen to be 
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The observer state vector was used in pole placement for 
placing the system poles at the locations of j1.0560.889- ± . 
The step response of the resulting system was obtained with 
the initial condition of the original system (1) chosen 

as
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x . The settling time of the step response was 

measured. These procedures were repeated for every pair of 
the one hundred pairs of complex conjugate observer poles. 
The settling times of these one hundred cases are shown in 
Tables 1 and 2. Note that the radial line of observer poles on 
the x-axis in Fig. (2) produces settling times as shown in 
column n=1 in Table 1. The green radial line of observer 
poles immediately above the previous one produces settling 
times as shown in the column n=2 in Table 1. The rest of the 
radial lines of observer poles in Fig. (2) produces settling 
times in the same order as shown in the rest of Table 1 and 
Table 2. In each column of Tables 1 and 2 all the corre-
sponding observer poles have the same phase but the ampli-
tude changes from 0.889 to 8.99.  

Each column of Tables 1 and 2 is plotted as shown in 
Fig. (3). A three dimensional plot for Tables 1 and 2 with 
settling time vs. m and n is shown in Fig. (4).  

In Fig. (3), the legend Ts1(1:10, i) is the plot of the col-
umn in Table 1 and Table 2 with n=i. The following observa-
tions are noted in Figs. (3 and 4). 

First, when m is large enough, i.e., when the distance  
of the observer poles from the origin is far enough from the  
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Table 1. Settling Time for m Between 1 and 10, and n Between 1 and 5 

 n=1 2 3 4 5 

m=1 3.15 3.14 3.10 3.05 4.69 

2 4.55 4.55 4.56 4.56 4.55 

3 4.38 4.38 4.37 4.35 4.32 

4 4.30 4.30 4.29 4.27 4.25 

5 4.26 4.25 4.25 4.24 4.22 

6 4.23 4.23 4.22 4.22 4.21 

7 4.21 4.21 4.21 4.20 4.20 

8 4.20 4.20 4.20 4.20 4.19 

9 4.20 4.20 4.19 4.19 4.18 

10 4.19 4.19 4.19 4.19 4.18 

Table 2. Settling Time for m Between 1 and 10, and n Between 6 and 10 

 n=6 7 8 9 10 

m=1 5.92 6.59 6.82 9.35 9.80 

2 4.51 4.41 4.25 5.45 8.96 

3 4.27 4.22 4.16 4.24 5.57 

4 4.23 4.20 4.18 4.14 3.92 

5 4.21 4.19 4.18 4.17 4.23 

6 4.20 4.18 4.17 4.16 4.12 

7 4.19 4.18 4.17 4.16 4.16 

8 4.18 4.18 4.17 4.16 4.17 

9 4.18 4.17 4.17 4.16 4.15 

10 4.18 4.17 4.17 4.16 4.16 

x

j
y

Fig. (2). All the observer poles of equation (9). 
 

desired system poles, the settling time of the step response in 
the resulting system (7) is fairly constant and depends much 
less on the phases of the observer poles. In other words when 

observer poles in the outer band of Fig. (2) are chosen, the 
corresponding settling times of the resulting systems (7) are 
about the same, regardless of the phase of the observer poles.  
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Second, it is known that by pushing the observer poles 
deeper into the left half plane, the result is that the sooner the 
observer states converge to the actual system states. But for 
certain systems such as the example in this section, having 
the observer states converging faster to the actual system 
states is not a critical factor in meeting the settling time re-
quirement. Observer poles not being deep into the left half 
plane can achieve about the same settling time as the deep 
observer poles as long as their distances from the origin are 
far enough from the desired system poles. 

Third, consider those observer poles that are at the same 
radial distance as that of the desired system poles to the ori-
gin. These observer poles correspond to smaller m’s such as 
m=1. Their corresponding settling times fluctuate much and 
depends much on the phases of the observer poles. The fluc-
tuation of the settling times decreases as the radial distance 
increases (i.e., as m increases). 

Fourth, the settling times for m = 5 or 6 are about equal 
to those of m=10. This indicates that as the observer poles 
are sufficiently far from the system poles, pushing the ob-
server poles even farther away does not change the settling 
time that much. Further, note that the settling requirement of 
4.5 units were best met by those m=2, i.e., observer poles 
that are twice as far from the origin as the system poles. 
Pushing the observer poles deeper into the left half plane will 
ensure the observer state converging faster to the system 
state but not necessarily producing a settling time closer to 
the requirement. 

To further investigate the observations above, another ex-
tensive set of simulations was performed. In this second set 
of simulations, the state space model as shown in equation 
(10) below is considered. 
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It is an unstable, controllable and observable system. The 
problem is to stabilize the system and to limit the 2% settling 
time to approximately equal to 4.5. Assume that the actual 
state vector x needed in the pole placement was not avail-
able. An observer is used for obtaining estimates of the sys-
tem state vector x.  

It is intended to investigate again the effect of the ob-
server poles on the settling time. Again one hundred observ-
ers with distinct observer poles were simulated. The same set 
of observer poles as shown in Fig. (2) and the same observer 
initial conditions were used in the simulation of (7) with (10) 
as the original system. The settling times of these one hun-
dred cases of observer poles are shown in Tables 3 and 4. 
Each column of Tables 3 and 4 is plotted as shown in Fig. (5). 

A three dimensional plot for Tables 3 and 4 with settling 
time vs. m and n is shown in Fig. (6). 

In Fig. (5), the legend Ts2(1:10, i) is the plot of the col-
umn in either Table 3 or Table 4 with n=i. The trend of the  

Table 3. Settling Time for m Between 1 and 10, and n Between 1 and 5 

 n=1 2 3 4 5 

m=1 6.18 6.18 6.16 6.13 6.08 

2 4.63 4.62 4.59 4.53 4.44 

3 4.28 4.27 4.25 4.21 4.15 

4 4.15 4.15 4.13 4.11 4.07 

5 4.10 4.09 4.08 4.07 4.05 

6 4.07 4.07 4.06 4.05 4.04 

7 4.06 4.05 4.05 4.04 4.04 

8 4.05 4.05 4.04 4.04 4.03 

9 4.04 4.04 4.04 4.04 4.03 

10 4.04 4.04 4.04 4.04 4.03 

Table 4. Settling Time for m Between 1 and 10, and n Between 6 and 10 

 n=6 7 8 9 10 

m=1 5.99 8.27 9.12 9.57 9.82 

2 5.66 5.78 5.65 5.44 8.90 

3 4.07 3.97 3.87 4.02 6.65 

4 4.04 4.01 3.99 3.96 3.76 

5 4.03 4.02 4.00 4.01 4.16 

6 4.03 4.02 4.02 4.01 3.91 

7 4.03 4.02 4.02 4.02 4.05 

8 4.03 4.03 4.03 4.03 4.02 

9 4.03 4.03 4.03 4.03 4.03 

10 4.03 4.03 4.03 4.03 4.04 
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Fig. (3).  Settling time vs. m for n from 1 to 10. 

Fig. (4). plot of the settling time vs. m and n. 

Fig. (5). Settling time vs. m for n from 1 to 10. 
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Fig. (6). Plot of the settling time vs. m and n. 
 

lines in Fig. (5) is similar to those of Fig. (3). The trend of 
the surface plot in Fig. (6) is similar to that of Fig. (4). The 
same observations as in the previous set of observations are 
noticed again in this new set of simulations. 

3. CONCLUDING REMARKS 

The examples presented in this paper indicate that the ob-
server poles can change the shape of the system step re-
sponse. The effects of the magnitudes and the phases of the 
observer poles were investigated. For dynamic response re-
quirement such as settling time, it does not depend much on 
the phase of observer poles when they are sufficiently far 
away from the system poles as indicated in the simulations in 
the previous section. When the observer poles are close to 
the system poles, the resulting settling time depends on the 
phase of the observer poles. The approach presented in this 
paper can also be applied in the future investigation of the 
effects of the observer poles on other dynamic response re-
quirements such as peak time, rise time, and percent over-
shoot.  
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