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Abstract: This paper discusses how to construct a B-spline surface from its boundary information and inner points. First, 
an algorithm is presented which can construct a B-spline surface that interpolates four given boundary curves and simul-
taneously approximates given inner points. Then, the approach is extended to interpolate the cross-boundary derivatives as 
well. The main idea of this method is that an initial surface interpolating four given boundary curves and the cross-
boundary derivatives is constructed at first. Then, the inner control vertices of the surface are repositioned through energy 
optimization while the boundary control vertices of the initial surface remain unchanged. Examples are given which prove 
that the algorithm is practicable and effective. 
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1. INTRODUCTION 

B-spline surface reconstruction is a critical issue in the 
field of computer aided design. It also plays a key role in 
reverse engineering of CAD models. In general, there are 
two ways of constructing a B-spline surface. One way is to 
construct a B-spline surface from some discrete geometric 
data such as points, derivatives, normal vectors and even 
curvatures. This method is usually called fitting. It can be 
further classified into two categories: interpolation and ap-
proximation. In interpolation, a surface is constructed to pre-
cisely satisfy the given data. For approximation, the con-
structed surface does not need to satisfy the given data pre-
cisely and it only needs to approximately pass through 
them[1]. There have been a huge number of papers on sur-
face fitting and many surface fitting methods have been pre-
sented. The most commonly used surface fitting methods can 
be found in [1-3]. Another way is to construct a B-spline 
surface from given curves. Many well-known surface con-
struction methods fall into this category, such as skinning, 
swung, swept, Coons and Gordon surfaces. In skinning, we 
construct a surface which either interpolates or approximates 
the specified section curves. Swung surface is constructed 
via profile curve and trajectory curve, and swept surface is 
constructed via section curve and trajectory curve [1]. Coons 
developed a technique for construction of a surface that in-
terpolates its four boundary curves by the Boolean Sum. 
Gordon called this type of interpolation transfinite interpola-
tion, and extended it to construct surfaces by interpolating 
bidirectional curve networks [4]. Gregory proposed a method 
to fill the holes bounded with bi-cubic Bezier patches [5]. 
Recently, construction of an N-sided surface or an N-sided  
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region has received a lot of attention in the field of CAD. 
Lazhu Wang et al. [6] proposed the Coons Type Blended B-
spline Surface and gave the algorithm to convert it to a 
NURBS surface. Ling Ma et al. [7] suggested a method for 
constructing an N-sided surface with PDE. Dejun Song et al. 
[8] propounded to construct an N-sided surface with the en-
ergy minimization method. Guiqing Li et al. [9] recom-
mended an approach to blend parametric patches with subdi-
vision surfaces. Some of the latest results can also be found 
in [10-14]. 

In surface reconstruction related to reverse engineering, 
the problem of smooth connection, i.e., how to guarantee 
that there is no gap or that some degree of continuity is satis-
fied between neighboring B-spline surfaces, is very impor-
tant. One solution is as follows: the boundary curves of each 
B-spline surface are first constructed from boundary points. 
If the C1 continuity is required, the cross-boundary deriva-
tives are also estimated from the measured data. Then, a B-
spline surface is constructed to interpolate the boundary 
curves (or even to the cross-boundary derivatives if C1 conti-
nuity is required). If all the surfaces are constructed with this 
method, it is obvious that C0 or C1 continuity condition can 
be satisfied between adjacent surfaces. Because usually a 
large number of inner points are also measured from each 
surface, we also need each surface to approximate the inner 
points simultaneously.  

Although many methods for filling holes or constructing 
a surface to interpolate boundary curves have been presented, 
as far as we know, how to construct a B-spline surface to 
interpolate the four boundary curves and simultaneously 
approximate the inner points has not been discussed in litera-
tures. 

In this paper, we consider the construction of B-spline 
surfaces by interpolating its boundary curves, or even the 
cross-boundary derivatives, and approximating the inner 
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points simultaneously. The remainder of this paper is orga-
nized as follows: the method for the construction of a B-
spline surface by interpolating four boundary curves and 
approximating the inner scattered data points is described in 
section 2, and the method is extended to interpolate the four 
boundary curves and the cross-derivatives and approximate 
the inner scattered data points in section 3. Some examples 
are given to validate the algorithm in section 4, and finally 
the paper is summarized in section 5. 

2. INTERPOLATING FOUR BOUNDARY CURVES 
AND APPROXIMATING INNER POINTS 

The problem can be described as follows:  
Given four B-spline curves Cu,0(u), Cu,1(u), C0,v(v) and 

C1,v(v), u∈[0,1], v∈[0,1], and some points Qk (k=0,1,2,…,N), 
assuming that the curves satisfy the C0 compatibility condi-
tions, i.e., 
Cu,0(u=0)= C0,v(v=0)=S0,0 
Cu,0(u=1)= C1,v(v=0)=S1,0 
Cu,1(u=0)= C0,v(v=1)=S0,1 
Cu,1(u=1)= C1,v(v=1)=S1,1 

Construct a surface S(u,v) such that it satisfies: 
1) S(u,v) has the four curves as its boundaries, i.e., 
S(u,0)=Cu,0(u), S(u,1)=Cu,1(u) 
S(0,v)=C0,v(v), S(1,v)=C1,v(v) 
2) S(u,v) approximates Qk (k=0,1,2,…,N) within a given 

tolerance τ. 
The basic idea of our method is: first, we construct an 

initial B-spline surface S(u,v) which has the four curves 
Cu,0(u), Cu,1(u), C0,v(v) and C1,v(v) as its boundaries; then, we 
reposition the inner control vertices of S(u,v) while the 
boundary control vertices remain unchanged such that the 
surface S(u,v) can both interpolate the four boundary curves 
and approximate the inner points Qk (k=0,1,2,…,N). 

2.1. Construction of the Initial Surface 

For simplicity, we assume that Cu,0(u) and Cu,1(u) are 
endpoint-interpolating cubic B-spline curves defined on a 
common knot vector U=[0=u0= L = up, up+1 L um, 
um+1= L = um+p+1=1], C0,v(v) and C1,v(v) are endpoint-
interpolating cubic B-spline curves defined on a common 
knot vector V=[0=v0=L= vq, vq+1 L vn, vn+1=L= vn+q+1=1], 
here, p=q=3. Therefore, Cu,0(u) and Cu,1(u) can be formulated 
as 
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where, {Pr,i} are the control vertices of boundary curve 
Cu,r(u); Ni,p(u), i=0,1,…,m are the B-spline basis functions 
defined on the knot vector U. Similarly, C0,v(v) and C1,v(v) 
can be formulated as 
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where, {Qs,j} are the control vertices of boundary curve 
Cs,v(v); Nj,q(v), j=0,1,…,n are the B-spline basis functions 
defined on the knot vector V. We construct the initial B-
spline surface S(u,v) with the knot vector U and V (i.e, the 
same as Cu,r(u) and Cs,v(v) respectively), and we formulate 
S(u,v) as 
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where, {Vi,j} are control vertices of the surface. In order to 
interpolate the four boundary curves, we set 

Vi,0 =P0,i, Vi,n =P1,i, i=0,1,…,m 

V0,j =Q0,j, Vm,j =Q1,j, j=0,1,…,n (4) 

Due to the form of the knot vectors and the properties of 
B-spline curves and surfaces [1, 2], if the boundary control 
vertices are set as above, then, S(u,0)=Cu,0(u), S(u,1)=Cu,1(u), 
S(0,v)=C0,v(v) and S(1,v)=C1,v(v) are always true, no matter 
how the other control vertices (inner control vertices) are 
positioned. It also shows that the bicubic B-spline surface 
interpolating its four cubic B-spline curves is not unique.  

To determine the inner control vertices Vi,j (i=1,…, m-1; 
j=1,…,n-1) uniquely, we adopt the minimum energy method, 
that is, we seek Vi,j (i=1,…,m-1; j= 1,…,n-1) such that the 
strain energy of the resulted surface S(u,v) is minimized sub-
ject to Eq.(4). In this paper, we adopt 
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as the energy function of the surface S(u,v), where Suu, Suv, 
and Svv are the second order derivatives of S(u,v) [15]. 
Substituting Eq.(3) into Eq.(5), we obtain 
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Eq.(6) can be rewritten into the matrix form 

E=VTMV (7) 

where，V=[v0,v1,…,vmn+m+n] is the vector of the control ver-
tices, M=[mr,c]N,N is an N×N symmetric matrix, N 
=(m+1)(n+1). According to Eq.(6), the elements of vector V 
and matrix M can be determined as follows: 

for i=0,…, m; j=0,…,n; k=0,…, m; l=0,…,n  

let r=i(n+1)+j, c=k(n+1)+l, vr=Vi,j, vc=Vk,l 
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Finally, the control vertices of the initial surface S(u,v) 
can be solved through the following optimization procedure:  

s.t. Vi,0 =P0,i, Vi,n =P1,i, i=0,1,…,m  
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V0,j =Q0,j, Vm,j =Q1,j, j=0,1,…,n (9) 

2.2. Parameterization of the Data Points 

We used the method proposed by Weiyin Ma [16] to de-
termine the parameters of the given points Qk(k=0,1,…,N), 
i.e., we project the point Qk onto the initial surface S(u,v), 
and then set the parameter (uk,vk) of the projection point as 
the parameter of Qk. This also can be expressed by an opti-
mization problem: 
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where, dist(Qk, S(u,v)) denotes the distance from Qk to S(u,v). 

2.3. Reposition of the Inner Control Vertices 

Now, we have obtained the initial surface which interpo-
lates the four boundary curves. Next, we reposition the inner 
control vertices Vi,j (i=1,…, m-1; j=1,…,n-1) to approximate 
the inner points Qk (k=0,1,2,…,N). Again, we convert it into 
an optimization problem: seek Vi,j(i=1,…,m-1; j=1,…, n-1), 

such that 
  

d
k

2

k=0

N

!  is minimized, where, dk=dist(Qk, S(u,v)) is 

the distance from Qk to the surface by repositioning the inner 
control vertices. For simplicity, we use dk= dist(Qk, S(uk,vk)) 
to substitute for dk= dist(Qk, S(u,v)), where (uk,vk) is calcu-
lated by the method described in section 2.2.  

However, the above optimization problem can be nu-
merically unstable. Considering the stability of solution and 
the smoothness of the surface, we can add a smooth term (or 
regularization term) in the objective function. So, we adjust 
the inner vertices Vi,j (i=1,…, m-1; j=1,…,n-1) with follow-
ing optimization problem:  
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 s.t. Vi,0 =P0,i, Vi,n =P1,i, i=0,1,…,m; 

 V0,j =Q0,j, Vm,j =Q1,j, j=0,1,…,n (11) 

where, wk (k=0,1,2,…, N) are the weights of the given points, 
λ is a smooth parameter. When wk (k=0,1,2,…, N) are fixed, 
λ controls the proportion of the smooth term in the objective. 
If λ is larger, the resulted surface is smoother, but the dis-
tances from the resulted surface to the given points are 
larger; however, if λ is too small or zero, the solution is ei-
ther not stable or the surface is not fair. Usually, we set wk=1 
(k=0,1,2,…, N) and choose a λ in the range of [0.0001,0.1] 
initially, and then adjust wk (k=0,1,2,…, N) according to the 
distances from the resulted surface to the given points. 

2.4. Description of the Algorithm 

Our algorithm for interpolating the four boundary curves 
and simultaneously approximating the inner points can be 
described as follows: 

Algorithm:  
Step 1: Assign a value to the smooth parameter λ, and let 

wk=1 (k=0,1,2,…, N), iter=1. 

Step 2: (Construct the Initial Surface): Construct the ini-
tial B-spline surface S(u,v) which has the four curves Cu,0(u), 
Cu,1(u), C0,v(v), and C1,v(v) as its boundaries using the method 
described in section 2.1. 

 Step 3: (Parameterizing the Points): Compute the pa-
rameters of the given points Qk (k=0,1,2,…,N) using the 
method described in section 2.2.  

Step 4: (Repositioning the Inner Control Vertices): Repo-
sition the inner control vertices of S(u,v) while keeping the 
boundary control vertices unchanged by solving the optimi-
zation problem in Eq.(11). 

Step 5: (Adjusting the Weights) Let t=0; For each inner 
point Qk, calculate the distance dk= dist(Qk, S(u,v)); if 
dist(Qk, S(u,v))>τ, let t=t+1, wk=2wk.  

Step6: If t= =0 or iter= =MAX_ITER_NUM, go to 
Step7; Else let iter=iter+1, and increase the number of con-
trol vertices of the surface by inserting middle knots in each 
u span and v span, go to step 4. 

Step 7: end 

3. EXTENSION OF THE ALGORITHM 

In this section, we extend our method to construct B-
spline surfaces by interpolating the boundary curves and 
cross-boundary derivatives meanwhile approximating the 
inner points. The problem can be stated as follows: 

Given the four B-spline curves Cu,0(u), Cu,1(u), 
C0,v(v),C1,v(v), the cross derivatives Du,0(u), Du,1(u), D0,v(v) 
and D1,v(v), ]1,0[!u , ]1,0[!v , suppose that compatibility 
conditions 
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are satisfied, also, given N inner points ),2,1,0( NkQk L= , 
we want to construct a B-spline surface S(u,v) such that it 
satisfies:  

1) S(u,v) has the four curves Cu,0(u), Cu,1(u), C0,v(v) and 
C1,v(v) as its boundaries; 

2) S(u,v) has cross-boundary derivatives Du,0(u), Du,1(u), 
D0,v(v) and D1,v(v) along the four boundary curves, i.e., 
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3) S(u,v) approximates Qk (k=0,1,2,…,N) within a given 
tolerance ! .  

 We adopt a similar method used in section 2: first, we 
construct an initial B-spline surface S(u,v) which interpolates 
the four boundary curves and the cross-boundary derivatives; 
then, we reposition the inner control vertices of S(u,v) while 
the boundary control vertices remains unchanged such that 
the surface S(u,v) interpolates the four boundary curves and 
the cross-boundary derivatives meanwhile approximates the 
inner points Qk (k=0,1,2,…,N) .  

3.1. Generation of the Initial Surface 

Suppose that the four boundary curves Cu,0(u), Cu,1(u), 
C0,v(v) and C1,v(v) are all the same as in the section 2, Du,0(u) 
and Du,1(u) are endpoint-interpolating cubic B-spline curves 
defined over the knot vector U, which is same as the knot 
vector of Cu,0(u) and Cu,1(u). D0,v(v) and D1,v(v) are endpoint-
interpolating cubic B-spline curves defined on the same knot 
vector V, which is same as the knot vector of C0,v(v) and 
C1,v(v), p=q=3. Therefore, Du,0(u) and Du,1(u) can be formu-
lated as 
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where, }{ ,irP!  are the control vertices of derivative curve 
Du,r(u). Similarly, D0,v(v) and D1,v(v) can be formulated as  
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where, }{ , jsQ!  are the control vertices of derivative curve 
Ds,v(v). We construct the initial B-spline surface S(u,v) with 
the knot vector U and V respectively, also, we formulate 
S(u,v) as in Eq.(3). 

 In order to make S(u,v) interpolate the four boundary 
curves, we set the outermost control vertices as in Eq.(4).  

 To make S(u,v) interpolate the given cross-boundary de-
rivatives on the four boundary curves, we further set 
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 To determine the inner control vertices Vi,j (i=2,…, m-2; 
j=2,…,n-2), we adopt the energy method similar as in section 
2.1 to seek Vi,j (i=2,…, m-2; j=2,…,n-2) such that the strain 
energy of the resulted surface S(u,v) is minimized subject to 
Eq.(4) and Eq.(15). The form of the energy function is same 
as that in section 2.1. 

3.2. Adjust the Inner Control Vertices 

Now, we have obtained an initial surface which interpo-
lates the four boundary curves and the cross-boundary de-

rivatives on the boundaries. Next, we reposition the inner 
control vertices Vi,j (i=2,…, m-2; j=2,…,n-2) to approximate 
the inner points Qk (k=0,1,2,…,N). Similarly as in section 2, 
we seek Vi,j (i=2,…, m-2; j=2,…,n-2) with an optimization 
problem  
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where, ),2,1,0( Nkw
k

L=  , ! are same as in section 2, (uk,vk) 
are the parameter of points Qk (k=0,1,2,…,N), they are de-
termined using the same method as in section 2.  

4. EXAMPLES 

 In this section, we give two examples of B-spline surface 
reconstruction with our method. The first is to generate a B-
spline surface by interpolating four given boundary curves 
and approximating the inner scattered points, the second is to 
generate a B-spline surface by interpolating given boundary 
curves and cross-boundary derivatives on the boundaries and 
approximating the inner points. 

Example 1: Four boundary curves and some inner points 
are shown in Fig. (1), and the B-spline surface interpolating 
the four boundary curves and approximating the inner points 
is reconstructed with the algorithm described in section 2.4, 
and the final surface and the original data are depicted in Fig. 
(2). In our experiment, we set smooth parameter λ=0.0001. 

Example 2: Fig. (3) through Fig. (5) show an example of 
B-spline surface reconstruction in reverse engineering. Sup-
pose we have the measured data points on a surface, and we 

 
Fig. (1). The boundary curves and the inner points. 

 
Fig. (2). The surface that interpolates the boundary curves and ap-
proximates the inner points. 
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have constructed the four surrounding B-spline surfaces, 
shown in Fig. (3). We want to construct a B-spline surface 
S(u,v) to approximate the measured data, at the same time, 
we want the surface to be smoothly connected with its four 
surrounding B-spline surfaces with C1 continuity.  

First, the four boundary curves and cross-boundary de-
rivatives of the constructed surface are calculated from the 
four surrounding B-spline surfaces according to the C1 con-
tinuity. Then, the initial surface which interpolates the given 
boundary curves and cross-boundary derivatives is con-
structed as shown in Fig. (4). Finally, the inner control verti-
ces are modified with optimization problem (16) to obtain 
the final B-spline surface, shown in Fig. (5).  

5. CONCLUSIONS 

In this paper, reconstruction of a B-spline surface via in-
terpolating the boundary geometric information and ap-
proximating the inner data points is studied. First, we give an 
algorithm for reconstruction of the B-spline surface to inter-
polate the four given boundary curves and simultaneously to 
approximate some given inner points. Then, we extend our 
algorithm to reconstruct the B-spline surface which can in-
terpolate four given boundary curves and the cross-boundary 
derivatives, meanwhile approximate the given inner points. 
The main idea of our method is: first, we construct an initial 
surface which interpolates the four given boundary curves 
(or even the cross-boundary derivatives on the boundaries), 
then, while keeping the boundary control vertices of the ini-
tial surface unchanged, we reposition the inner control verti-
ces of the surface with optimization. Our algorithm is very 
useful in reverse engineering of CAD models. Examples 
show that our algorithm is practicable and effective.  
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