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Abstract: In practical applications of ranging technology commonly used in wireless sensor positioning algorithm, rang-

ing between nodes will inevitably produce errors due to environmental factors and measurement hardware effects. The 

wireless sensor network localization algorithm DGC-TWCL proposed in this paper takes advantage of the Cayley-Menger 

determinant used to provide distance geometry constraints(DGC) in two-dimensional real space to optimize and correct 

the ranging error, combined with the twice-weighted centroid localization(TWCL) calculation, the final position of the 

unknown node can be obtained. The experiment results show that the algorithm can get the positioning results with higher 

accuracy and better robustness. 
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1. INTRODUCTION 

As an international hot research field attracting a great 

deal of attention nowadays, wireless sensor network (WSN) 

is a new pattern of information acquisition and processing. 
The networked computing devices with low price and low 

power provide a novel design mode to the connectivity be-

tween the physical world and human society in ubiquitous 
era. The node localization is one of the most important issues 

after many WSN system layouts have been complete. The 

monitoring data for many applications with unknown loca-
tion have no meaning. In usual case, WSN positioning algo-

rithm obtains the unknown node position estimation through 

measurement or connection between the unknown node and 
anchor nodes with priori position information. According to 

the current status, WSN positioning technology can be di-

vided into ranging-based and non-ranging-based in view of 
whether the metrics between two nodes is necessary during 

localization process. The former positioning mode has rela-

tively higher accuracy and cost, while the latter based on the 
connectivity of network has less accuracy and hardware re-

quirement. In accordance with hops between the unknown 

node and anchor nodes in connection, the localization algo-
rithm is divided into single-hop and multi-hops. From the 

viewpoint of processing manner to the measurement data 

among nodes, WSN positioning can be divided into the cen-
tralized and distributed method. The centralized algorithm 

uses the central processor to get all ranging information re-

sulting in the entire network location mapping and the dis-
tributed algorithm achieves self-positioning by node acquisi-

tion of local information to the neighbor nodes. The typical  
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location algorithms and systems include centroid method [1], 
least squares estimation method [2], the MIT Criket [3], the 
convex programming location algorithm of the University of 
California, Berkeley [4], DV-Hop [5] and DV-Distance [6] 
distributed localization algorithm of the Rutgers University. 

The common ranging technology of WSN localization 

algorithm includes RSS, AoA [7], ToA and TDoA[8]. In 

practical application environments, ranging has the errors 

inevitably because of the impact of multi-path, reflection, 

diffraction, scattering and other environment or measure-

ment hardware factors. Since the distance between nodes is 

independent from each other, the ranging error may under-

mine geometric topology relationship e.g. the trilateration 

measurements make the length of both sides less than the 

third one, which causes failure of the localization algorithm. 

This paper proposes a wireless sensor network localization 

algorithm DGC-TWCL which utilizes Cayley-Menger de-

terminant in two-dimension real space to provide distance 

geometry constraints(DGC), makes optimization and correc-

tion to the ranging errors and obtains the final position of the 

unknown node combined with the twice-weighted centroid 
localization(TWCL) calculation. 

2. CAYLEY-MENGER DETERMINANT AND OPTI-
MIZATION OF DISTANCE GEOMETRY CON-

STRAINTS 

2.1. Cayley-Menger Determinant 

In the theory of distance geometry, Cayley-Menger de-
terminant can be used to handle the geometry problem of 
Euler distance in invariant space [9]. Two n-points se-
quences {p1, p2, ... , pn} and {q1, q2, ... , qn}  in m-dimension 
real space form the Cayley-Menger matrix which is defined 
as: 
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where 
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), i, j {1,.., n}  is the Euclidean distance 

between the point 
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i
 and 
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j
. The bi-determinant of Cayley-

Menger composed by the two n-point sequences is defined 
as: 
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When the two sequences of points are the same, 
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simply as M ( p
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) . D( p

1
,..., p
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)  is called 

Cayley-Menger determinant which has the following classic 

conclusion:  

(Theorem 1[10]) considering n-tuple constituted by 

  
p

1
,..., p

n
 in m-dimension space, the rank of Cayley-Menger 

matrix M ( p
1
,..., p

n
) is at most   m+1 . 

According to the above theorem, it's easy to know that in 

two-dimension real space, 
  
D( p

0
, p

1
, p

2
, p

r
) = 0 . 

  
p

0
 can be 

regarded as the unknown node during the positioning process 

and it makes the distance measurements with the three 

known anchor nodes 
  
p

1
, p

2
, p

r
 , which is shown in (Fig. 1). 

 

 

Fig. (1). Four-tuple geometric relationship in two-dimension space. 
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Due to noise influence of the environment and equipment, 
error  inevitably occurs during the actual measurement. It's 
assumed that the accurate distance 

  
d

0i
 and measured dis-

tance 
   
d

0i
 between the unknown node and the anchor node 

have the following relationship: 

d
0i

2
= d

0i

2
+

i
, i =1,2, r.             (4) 

When Eq.(4) is taken into Eq.(3), the following relation-
ship can be obtained: 
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12
,d
1r
,d

2r
 among the known 

anchor nodes and measured distances 
   
d

01
, d

02
, d

0r
. 

2.2. Ranging Optimization of Distance Geometry Con-
straints 

If the unknown node p
0

 receives the noise distance 

measurement information from anchor nodes p
1
,..., p

r
, in 

accordance with the collections of nodes 

{p
0
, p

1
, p

2
, p

3
},{p

0
, p

1
, p

2
, p

4
},...{p

0
, p

1
, p

2
, p

r
} , r-2 independent 

quadratic distance constraint equations can be obtained com-

bined with Eq.(3), Eq.(4) and Eq.(5). Each equation can be 

expressed as f
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are the errors occurred among the unknown node and anchor 

nodes during the measurement process. By getting the mini-

mized sum of squared errors under the distance constraints 

limits, the optimization problem can be expressed as: 
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Using numerical analysis methods, the optimization solu-

tion 
  1

*
,

2

*
,...,

r

*
 can be get. Combined with the Eq.(4), the 

position estimated between the unknown node and anchor 

node can be obtained: 
   
d̂

0i
= d

0i

2

i

*
, i =1,2,..., r . 

3. TWICE-WEIGHTED CENTROID LOCALIZATION 
COMPUTATION 

Through distance information with the three known an-
chor nodes, the definite position coordinates of the unknown 
node in two-dimension space theoretically can be obtained 
by trilateration measurement method, i.e., three anchor nodes 
as the centers, the relevant distance information as radiuses 
of the circles that intersect at one point, as shown in (Fig. 2).  

 

 

Fig. (2). Ideal model of trilateration measurement. 
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However, in the actual application environments, the 
random variables caused by the presence of noise during the 
distance measurement process make the unknown node lo-
cated in a region (see Fig. 3), the centroid of which can be 
viewed as the unknown node position.  
 

 

Fig. (3). The centroid of trilateration measurement in the actual 

application environments. 

 
The weighted centroid localization idea is to introduce 

the distance between the unknown node and anchor node as 
a weighted factor, and the distance is inversely proportional 
to the factor, which reflects influence degree of the anchor 
node to the position of the centroid. When the unknown node 
receives the k(k>=3) anchor node signals, they can constitute 
up to c

3
k triangles and approximate c

3
k coordinates of the 

unknown node can be calculated by using the weighted cen-
troid calculation. The final position of the unknown node can 
be obtained through the second weighted centroid computa-
tion. 

3.1. The Weighted Centroid Computation in Trilatera-
tion Measurement Method 

It’s assumed that the unknown node 
  
p

0
 carries out trilat-

eration measurement by receiving the information from the 

anchor nodes 
  
p

1
, p

2
, p

i
, as shown in (Fig. 4). 

 

 

Fig. (4). The Weighted Centroid Computation in Trilateration 

Measurement. 
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the approximate position of the unknown node. Similarly, by 

ranging from 
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 as well as proximity judg-

ment principle, the second estimated location c
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Using the weighted centroid calculation through the an-

chor nodes p
1
, p

2
, p

i
, the final estimated position of the 

unknown node 
  
p

0
 can be obtained: 
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in DGC-TWCL algorithm, the estimated value 
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 is 

adopted after optimization and correction. 

3.2. Twice-weighted Centroid Computation 

As described in Section 2.2, when the unknown node p
0

 

has received ranging information from 
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, the dis-

tances of the estimated position 
  
d̂

01
, d̂

02
,..., d̂

0r
 between the 
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geometry constraints optimization of Cayley-Menger deter-
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4. DGC-TWCL ALGORITHM DESCRIPTION AND 
EXPERIMENT ANALYSIS 

4.1. Algorithm Description 

The DGC-TWCL algorithm includes two parts, one is 
solving the ranging optimization value provided by distance 
geometry constraints(DGC) of Cayley-Menger determinant, 
and the other is twice weighted centroid (TWC) computation. 

The DGC portion is described as follows: 

Step 1: After the unknown node 
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0
 has received ranging 

information from the known anchor nodes p
1
,..., p

r
, the se-
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< d

02
< < d

0r
 with descending order is set. Let 

the ranging errors be 
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as objective function,   r 2  equations from Step 2 as con-

straints conditions, nonlinear optimization solutions 
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Step 4: According to 
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, i =1,2,..., r , the estimated 

position of the unknown node to the anchor node can be ob-
tained; 

The TWC part is described as follows: 

Step 5: by using 
  
{p

1
, p

2
, p

i
}, i = 3,..., r  to constitute a col-

lection of r 2  triangles, in accordance with the method in 
Section 3, three position coordinates can be calculated by 
trilateration measurement and proximity principle in each 
triangle, and then the weighted centroid position coordinates 
can be obtained by making use of the factors w

1
,w

2
,w

i
 in-

versely proportional to the estimated distance value 
  
d̂

0i
 

within each triangle; 

Step 6: By adopting the method in Section 3.2 and intro-
ducing the second centroid weighted factors, the final esti-
mated position coordinate 

  
p

0
( x̂, ŷ)  of the unknown node 

  
p

0
 

can be obtained. 

4.2. Experiment Analysis 

Against the DGC-TWCL positioning method proposed in 

this paper, the positioning error, positioning error sample 

variance, the scalability and robustness of the algorithm have 

been evaluated. Experiment simulation scene has been set in 

a rectangular area of 8m * 8m. Consider positioning of the 

unknown node 
 
p

i
 located at the grid point under the con-

figuration cases of three, four and five anchor nodes respec-

tively. Suppose the ranging error is within 10% random 

value of the true distance. When three anchor nodes 
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}  are placed in the points of (4, 8), (0, 0), (8, 0) (see 
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five anchor nodes configuration is shown in (Fig. 7), and the 
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} . 

 

 

Fig. (5). Experiment simulation scene with three anchor nodes in 

DGC-TWC. 

 

 

Fig. (6). Experiment simulation scene with four anchor nodes in 

DGC-TWC. 

 

 

Fig. (7). Experiment simulation scene with five anchor nodes in 

DGC-TWC. 

 

Besides, the positioning states of the linear least 

squares(LLS) estimation, mean centroid and weighted cen-

troid location are calculated under the same ranging condi-

tion. The calculated indicators include the biggest error(BE), 

the smallest error(SE), the mean error(ME) and the error 

sample variance(SV), where 
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y)2 , i =1,2,..., n  is 
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measurement error of the testing nodes set. Ranging error 

optimization process takes advantage of fsolve in Matlab 

optimization toolbox. The experiment results with three, four 

and five anchor nodes are shown in (Table 1, Table 2 and 

Table 3) respectively. The corresponding graphic plotting 

according to the data from (Table 1 to Table 3) is shown in 

(Fig. 8). 

As it can be seen from Table 1 to Table 3 and Fig. (8), 

under the three anchor nodes configuration, the smaller 

smallest error(SE) can be obtained in DGC-TWCL with re-
spect to the other positioning methods. On the aspect of the 

mean error (ME), except to obtain a value slightly larger than 

the mean centroid under five anchor nodes configuration, the 
other values are lower than the other three positioning algo-

rithm. Compared with the indicators of the biggest error(BE) 

and sample variance(SV), the values in DGC-TWCL are 
medium, which shows that distance fluctuation degree be-

tween the positioning result and true position of the algo-

rithm is moderate. In addition, under the three anchor node 

configuration program, the performance of the above four 

statistical indicators is stable in DGC-TWCL, which indi-

cates the scalability and robustness of the algorithm. On the 
other hand, DGC-TWCL algorithm increases the calculation 

amount and time because of the ranging calibration and the 

twice weighted factors computation process, which is more 
suitable for the positioning occasions of centralized single-

hop and medium anchor nodes density. Table 4 shows the 

comparison of the several positioning algorithms in compu-
tation overhead, positioning accuracy, stability and scalabil-

ity. Wherein r is the number of anchor nodes, Tinv is the 

time-consuming for calculating the generalized inverse ma-
trix in LLS algorithm, Tcl is the time overhead for seeking 

the centroid of one trilateration measurement, Tw is the time 

consumption for computing the weighted factors and Tg is 
the time spent on the measurement correction. By increasing 

a certain amount of calculation seen from Table 4, the posi-

tioning accuracy and stability in DGC-TWCL can be  
improved. 

Table 1. Indicators Statistics of Experiment Results Under 3 Anchor Nodes 

3 Anchor Nodes 
Localization Algorithm 

BE SE ME SV 

LLS 2.2139 1.2086 1.5443 0.0622 

Mean Centroid 3.5577 0.4706 1.5313 0.9767 

Weighted Centroid 3.4981 0.5147 1.5081 0.9900 

DGC- 
TWCL 

3.6956 0.3355 1.4203 0.7920 

 
Table 2. Indicators Statistics of Experiment Results Under 4 Anchor Nodes 

4 Anchor Nodes 
Localization Algorithm 

BE SE ME SV 

LLS 0.0563 0.0028 0.0288 0.2211*10
-3

 

Mean Centroid 0.1214 0.0026 0.0341 0.9341*10
-3

 

Weighted Centroid 0.0508 0.0025 0.0334 0.9511*10
-3

 

DGC- 
TWCL 

0.0560 0.0018 0.0240 0.3469*10
-3

 

 
Table 3. Indicators Statistics of Experiment Results Under 5 Anchor Nodes 

4 Anchor Nodes 

Localization Algorithm 

BE SE ME SV 

LLS 0.0563 0.0028 0.0288 0.8936 

Mean Centroid 0.1214 0.0026 0.0341 0.1124 

Weighted Centroid 0.0508 0.0025 0.0334 0.0531 

DGC- 

TWCL 
0.0560 0.0018 0.0240 0.2397 
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Fig. (8). The corresponding graphic plotting to experiment indicators stati tics. 
 

Table 4. Performance Comparison of Several Positioning Algorithm 

LLS Mean Centroid Weighted Centroid DGC-TWCL 
Computation Overhead 

Tinv (r-2)*Tcl (r-2)*Tcl+Tw (r-2)*Tcl+Tw+Tg 

Positioning Accuracy Lower Lower Lower Better 

Positioning Stability Lower Lower Lower Better 

Positioning Scalability Better Better Better Better 

 
5. CONCLUSIONS 

For node localization in wireless sensor network, because 

of its low-cost feature, it is impossible for each node to have 
the ability to directly access to the location information such 

as GPS global positioning system. Most nodes localization 

firstly makes distance measurements with anchor nodes, and 
due to the presence of measurement noise and estimation 

error, the ranging value is non-precise. In this paper, the 

DGC-TWCL algorithm proposed uses geometrical relation-
ship among the nodes in wireless sensor network formed by 

Cayley-Menger determinant, takes the minimum of ranging 

squared error sum as the optimization target and corrects the 
non-exact distance measurement values. Combined with the 

twice weighted centroid calculation, the high accuracy and 

robustness positioning results can be achieved. 
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