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Abstract: Manufacturing enterprises must face increasingly difficult production environments. External factors such as 
varying product variants and varying quantities as well as internal factors such as reworking and resource breakdowns 
pose a high challenge for task allocation and control. Inspired by the similarity between ant foraging behavior model and 
task allocation in manufacturing system, a pheromone-based coordination mechanism for manufacturing system is pro-
posed. The pheromone-based static and dynamic coordination algorithms for task allocation are given. Experimental re-
sults demonstrate that not only the relatively optimal processing costs but also balanced use of machines can be achieved 
by using the proposed algorithm, and that it has high adaptability to the disturbance from inside or outside of manufactur-
ing system. Therefore, it provides a feasible new idea for dealing with an actual allocation problem of production tasks for 
manufacturing system. 
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1. INTRODUCTION 

The environment within which manufacturing systems 
operate is characterized by rapid change than ever before. 
The unforeseen disturbances include: the arrival of new or-
ders, order cancellations, changes in order priority, pro-
cessing delays, changes in release dates, machine break-
downs, etc. [1, 2]. Hence, such dynamic manufacturing sys-
tems require dynamic coordination and control to make full 
use of system resources, and then improve the system per-
formance. The traditional manufacturing control architec-
tures are not designed to exhibit good agility and adaptation. 
In fact, their centralized and hierarchical control approaches 
present good production optimization, but the rigidity and 
centralization of the control structure implies a weak re-
sponse to disturbances, therefore, the substitutional heterar-
chical control architecture has been proposed and investigat-
ed [3, 4]. On the other hand, heterarchical manufacturing 
control architecture presents a good response to change and 
unpredictable disturbances, but as autonomous manufactur-
ing cells have different information, knowledge, goals and 
understanding of current situations, and decisions are based 
on partial knowledge of the system, their action plan may be 
disparate or even conflictive. Therefore the global produc-
tion optimization is not guaranteed [5, 6]. Thus an appropri-
ate approach is necessary to coordinate and integrate the 
behavior of manufacturing system. 

Considering the already developed ant colony optimiza-
tion (ACO) methodology [7], ACO has a powerful capacity 
to find out good solutions to combinatorial optimization  
 
 

problems, Therefore, ACO has been widely applied to solv-
ing various combinatorial optimization problems such as 
traveling salesman problem (TSP) [8], job-shop scheduling 
problem (JSP) [9], task allocation problem [10], etc. This 
paper uses an indirect coordination approach based on pher-
omone to optimize global performance for manufacturing 
system. 

The remainder of this paper is organized as follows. The 
pheromone-based coordination mechanism is given in sec-
tion 2. The pheromone-based static and dynamic coordina-
tion algorithms are proposed in section 3. An example is 
presented to demonstrate the validity of this approach to con-
trol task allocation in section 4. Finally, some concluding 
remarks are given in section 5. 

2. PHEROMONE-BASED COORDINATION MECH- 
ANISM 

Pheromone-based coordination mechanism is inspired by 
the foraging behavior of real ants. Real ants are capable of 
finding the shortest path from a food source to their nest 
without using any direction communication. Instead, they 
communicate information about the food source via deposit-
ing a chemical substance, called pheromone, on the paths. 
The following ants are attracted by the pheromone. Since the 
shorter paths have higher traffic densities, these paths can 
accumulate higher proportion of pheromone. Hence, the 
probability of ants following these shorter paths would be 
higher than that of those following the longer ones. 

Much to our surprise, just using this simple strategy, an 
ant colony can find the optimal route from nest to food 
source quickly in a very complex environment (in contrast 
with their intelligence) [11]. 

 
 



Pheromone-based Dynamic Coordination for Manufacturing System The Open Automation and Control Systems Journal, 2014, Volume 6    1005 

Fig. (1) can explain why an ant colony can achieve such 
good performance [9]. When an ant is searching for the near-
est food source and comes across with several possible paths 
(path 1 and path 2), it tends to choose the path with the larg-
est concentration of pheromone, with a certain probability. 
After choosing the path, it deposits a certain quantity of 
pheromone, increasing the concentration of pheromones in 
this path. The ants return to the nest using always the same 
path, depositing other portion of pheromone on the way 
back. Imagine then, that two ants at the same location choose 
two different paths at the same time. The pheromone concen-
tration on the shortest way (path 2) will increase faster than 
the other (path 1): the ant that chooses this way, will deposit 
more pheromones in a smaller period, because it returns ear-
lier. If a whole colony of thousands of ants follows this be-
havior, soon the concentration of pheromone in the shortest 
path will be much higher than the concentration in other 
paths. Then the probability of choosing any other way will 
be very small and only very few ants among the colony will 
fail to follow the shortest path. There is another phenomenon 
related with the pheromone concentration. Since it is a chem-
ical substance, it tends to evaporate in the air, so the concen-
tration of pheromones vanishes along the time. In this way, 
the concentration of the less used paths will be much lower 
than that on the most used ones, not only because the con-
centration increases in the other paths, but also because their 
own concentration decreases with time [9]. 

A further research indicates [12] that the behavior model 
for ant colony to choose path for food can be presented in 
(1). 
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food; 
 
c

i
and 

 
c

j
are the quantity of pheromone on path i and j, 

respectively; k is attractive degree for no pheromone paths; n 
is a nonlinear coefficient, and we set n to 1 in this paper. 

3. PHEROMONE-BASED DYNAMIC COORDINA-
TION  

3.1. Pheromone-based Static Coordination Algorithms 

In an ants’ food foraging process, pheromone is the basic 
information element and resides in the route it associates. 
The function of pheromone is to indicate the attraction of its 
resident route. The prominent characteristic of pheromone is 
simplicity [12]. Therefore, the task allocation can be looked 
as ants’ food foraging process. Generally speaking, a task 
can be finished by several routes; in order to make each route 
have a chance to be selected, so at the beginning, we set an 
initial value for each route that has the ability to finish the 
given task, as shown in (2). 
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(a) (b)

(c) (d)

path 1

path 2

(a) Ants arrive at a decision point. (b) Some ants choose the upper 
path and some the lower path. The choice is random. (c) Since ants 
move at approximately constant speed, the ants which choose the 
lower, shorter, path reach the opposite decision point faster than 
those which choose the upper, longer, path. ( d ) Pheromone 
accumulates at a higher rate on the shorter path. The number of 
dashed lines is approximately proportional to the amount of 
pheromone deposited by ants.  

Fig. (1). The process for real ants to find a shortest path [9]. 



1006    The Open Automation and Control Systems Journal, 2014, Volume 6 Wang et al. 

When a task needs to select a route to process their work 
pieces, the work piece firstly perceives the pheromone quan-
tum of each feasible route and selects a process route by 
route’s selecting probability, which can be obtained from (1), 
as shown in (3). 
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Where, i represents one process route and j represents the 
work piece of the task; p(i) is the selecting probability of 
process route i and ρ [i][j] is route i’s pheromone to work 
piece j.  

After that the selecting algorithm generates a random 
number and chooses a process route for processing the work 
piece j according to calculated selecting probability. Then 
the selected route will get the award, and the “effective pher-
omone” would be increased. Meanwhile, the involving ma-
chine’s available processing time on the selected process 
route will gradually be reduced. Therefore, a pheromone 
penalty function 

  
P(t)  (

  
0 < P(t) < A(c)  are used to reduce 

the strength of the pheromone in order to reduce the proba-
bility of its being selected again, as shown in (4). 

  
![i][ j] = ![i][ j]+ A(c)" P(t)  (4) 

Where, c is the total processing cost of the selected route;

  
A(c)  is the increased pheromone quantum, and the incre-

ment is inversely proportional to the processing cost. 
  
P(t) is 

a decreasing function on the least available time machine of 
the process route. 

When the available time of a certain machine of the pro-
cess route is less than the corresponding process time pro-
cessed by this machine for the next work piece, then the 
pheromone value of the process route automatically becomes 
zero. Particularly, when a machine's available time is zero, 
the pheromone value is set to zero for all process routes as-
sociated with the machine. The flow chart of pheromone-
based coordination algorithm for task allocation is shown in 
Fig. (2). 

3.2. Pheromone-based Dynamic Coordination 

There are many sources of uncertainty in a real-world 
manufacturing system, which trigger disturbance events in 
dynamic adaptation manufacturing system control. Generally 
speaking, there are two types of disturbances, which are re-
source-related disturbance and source-related disturbance  
[1, 6]. 

1) Resource-related disturbance refers to the disturbance 
caused by unreliability coming from resources (ma-
chines) in the shop floor, including machine recovery 
and machine breakdown. 

 

 

2) Source-related disturbance refers to the disturbance 
caused by the changes in orders, including existing 
order/job cancellation and new order/job arrival. 

The resource-related disturbance is considered in this pa-
per. 

Fig. (3) shows the progress of dynamic coordination by 
using pheromone-like technique when a machine has a mal-
function at time t0. And the specific dynamic coordination 
mechanism works as follows: 

(1) Set the pheromone value to zero for the malfunction 
machine. 

(2) Find all machines which have the ability to replace 
the malfunction machine, and calculate pheromone values Si 
and the remaining available time Ti for these alternative ma-
chines at the current moment. 

(3) Calculate the operating pheromone value for each al-
ternative machine, as shown in (5). 
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(4) Transferred the unprocessed work pieces on the mal-
function machine to an alternative machine according to task 
allocation algorithm based on pheromone. The selected 
probability for each alternative machine is as follows. 
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(5) The selected machines and the old machines form a 
new dynamic manufacturing dell. 

(6) After the task is completed, the dynamic manufactur-
ing cell will automatically disappear. 

4. EXAMPLE AND RESULT 

There are three tasks that need to be processed, and there 
are 9 machines in a manufacturing plant. The production 
information for these tasks is shown in Table 1.  

Algorithmic parameters are selected as follows: c0=100, 
α(c)=10000/c, P(α( mint ),

  
A(c) )=α(

  
t
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)*

  
! (c) , where α(
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), D=1500. 

Solved by pheromone-based algorithm, the following re-
sults are obtained: n11=25; n12=28; n13=27; n21=19; n22=30; 
n23=41; n31=26; n32=22; n33=22. nij=N (i=1, 2, 3; j=1, 2, 3) 
denotes that N work pieces of Pi will be processed on the 
route of Pi-Rj (N is less than or equal to the batch size of Pi). 
For example, n11=25 denotes that eighteen work pieces of P1 
are planned to be processed on the P1-R1 route.  
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Fig. (2). Pheromone-based static coordination process. 
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Fig. (3). Pheromone-based dynamic coordination. 

 
Table 1. Production information for tasks. 

Task Quantity Routes Machine/Processing Time /Cost Per Time Unit 

P1 80 

1-1 1/12/4 3/18/3 4/15/2 6/15/8 

1-2 2/12/5 5/10/5   

1-3 8/15/6 2/12/5   

P2 90 

2-1 2/10/5 5/5/5 8/10/6 1/6/4 

2-2 4/8/2 3/15/3 9/10/2 7/15/12 

2-3 1/8/4 4/8/2 6/5/8  

P3 70 

3-1 8/6/6 9/10/2 7/25/12  

3-2 6/12/8 1/10/4 3/5/3  

3-3 5/10/5 2/8/5 8/15/6  
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The pheromone quantum on each machine is shown in 
Table 2.  

Assume that M9 is failure at time t0, and then the remain-
ing 30 work pieces can’t be processed on M9. The alterna-
tive M3 and M7 can processed them. Set the cost weight 

 
!

1
 

to 0.6 and load weight 
 
!

2
 to 0.4 for M3 and M7 respective-

ly. 

According to the dynamic coordination of the above steps, 
the obtained allocated work pieces on each alternative ma-
chine M3 and M7, as shown in Table 3. 

The tasks can be well allocated between different alterna-
tive machines by adjusting the weight factors 

 
!

1
 and

 
!

2
. It 

not only ensure that the relatively low-cost and alternative 
machines can be well selected to process the remaining work 
pieces, but also take into account the full use of the idle ma-
chines’ processing capabilities. Therefore, the manufacturing 
system can be fully utilized as soon as possible. A new virtu-
al dynamic manufacturing cell can be formed by adding the 
new machines to the original manufacturing cell. Therefore, 
some tasks can be well allocated by coordinating among 
several machines or manufacturing cells, which can learn 
from each other, in order to optimize the system’s overall 
performance. 

 
 
 

CONCLUSION 

Inspired by social insects, a new pheromone-based dy-
namic coordination for manufacturing system is presented in 
this paper. According to that, a pheromone-based task alloca-
tion algorithm is proposed. Based on pheromone technique, 
an example is given and experimental results confirm that 
the proposed approach is feasible for dynamic coordination 
problems. 

Pheromone-based dynamic coordination approach has 
following characteristics: (1) Tasks allocation and resources 
optimization can be combined effectively, and (2) The ap-
proach is not only simple, but also feasible. 

The application of pheromone-based coordination ap-
proach in manufacturing system is focused on basic task 
allocation problems and is only tested by using computer, 
therefore, it is still preliminary and further research work is 
needed. Future work will consider the following issues: (1) 
applying the proposed coordination approach to real indus-
trial cases, (2) further exploring ant agent coordination for 
dynamic re-scheduling coordination control which can pro-
vide a schedule immediately and efficiently, and (3) improv-
ing the proposed coordination algorithms so as to improve 
allocation efficiency. 

 
 
 

Table 2. Pheromone quantum on each machine. 

Machine ID Machine Type Released Pheromone 

M1 lathe 829 

M2 milling machine 936 

M3 machining center 540 

M4 grinding machine 811 

M5 lathe 695 

M6 planning machine 837 

M7 boring machine 315 

M8 grinding machine 758 

M9 drilling machine 141 

 

Table 3. Task allocation results for remaining 30 work pieces. 

Machine ID Machine Type Allocated Number  

M3 machining center 19 

M7 boring machine 11 
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