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Abstract: A surface electromyographic (sEMG) signal includes important information on muscular activity and was re-

cently widely used as an input signal in a myoelectric control system. In this manuscript, eight hand motions were classi-

fied using different extracted features from sEMG signals. The results of the experiment show that the combination of 

sample entropy (SampEnt), root mean square (RMS), myopulse percentage rate (MYOP), and difference absolute stan-

dard deviation value (DASDV) achieved the highest classification rate of 98.56% using the linear discriminant analysis 

(LDA) classifier. Moreover, this study investigated the best value of K that should be used as an input parameter in the  

K-nearest neighbor (K-NN) algorithm. The result demonstrates that k = 5 is the optimal choice in most cases. 
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1. INTRODUCTION 

A prosthetic hand becomes a valuable artificial replace-
ment to amputees because it can help to restore some of the 
capabilities of their lost hand. The classification accuracy of 
a myoelectric control system depends on many factors: the 
position and number of electrodes, which are responsible for 
the collection of the sEMG signals; the choice of an effective 
classifier that can differentiate the recorded sEMG signals; 
and feature weighting. In a myoelectric control system, fea-
ture weighting is a method used to extract useful information 
from sEMG signals and to use this information, which repre-
sents the recorded signal, to classify different motion pat-
terns. In the following section, we present some of the sig-
nificant works related to classification of sEMG signals us-
ing different recognition algorithms. 

Khushaba and his colleagues [1] suggested a muscle in-
terface system to help reduce driver distraction. Different 
extracted features were extracted to classify 14 different fin-
ger postures by implementing four different classifiers, 
LIBSVM, LDA, REGTREE and NaiveBayes. In addition, 
they proposed the fuzzy neighborhood discriminant (FNDA), 
a method for discriminant feature extraction and to solve the 
channel selection problem. 

Three wavelet families (Haar, db, and sym) at different 
decomposition levels were tested by Kumar et al. [2], who 
found that the use of sym4 and sym5 at the decomposition 
rates 8 and 9 can obviously distinguish between sEMG sig-
nals related to fatigued and non-fatigued muscles.  

Hong-Bo et al. [3] proposed a swarm intelligence-based 
sEMG feature selection algorithm to classify eight different  
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hand movements. Ant colony optimization (ACO) and the 
minimum redundancy maximum relevance criterion 
(mRMR) were used. They extracted two sets of features 
from the sEMG signals in the time domain and the time-
frequency domain and used a back propagation neural net-
work as a classification method. They found that the average 
number of features selected in the optimum set was 9.9 for 
the six selected time domain features and autoregressive co-
efficients combination, and 9.3 for wavelet coefficients. 
They achieved a 96.08% average classification rate using the 
extracted wavelet coefficient. 

Kilby and Gholam [4] collected sEMG signals from a 
muscle under sustained contractions for a period of four sec-
onds using different loads and then analyzed the signal using 
fast Fourier transform (FFT), discrete wavelet transform 
(DWT), and wavelet packet transform (WPT). Based on their 
study, it is recommend the use of Daubechies, Symmlet, and 
Coiflet families for sEMG analysis. 

Another research group [5] compared the performance of 
different wavelet families. Two types of radial neural net-
works, GRNN and probability neural network (PNN) were 
implemented. To classify five types of hand motions, they 
tested four wavelet families (bior, coif, db and sym) at dif-
ferent decomposition levels. Based on their study, the Bior-
thogonal and Coiflets wavelet families performed better than 
other wavelet families. They also found that the GRNN clas-
sifier achieved the highest average classification accuracy 
based on the coif wavelet family. 

In this manuscript, different features were extracted from 
a sEMG signal and analyzed using three classification algo-
rithms LDA, quadratic discriminant analysis (QDA), and  
k-NN. The selected features were SampEnt, RMS, MYOP, 
DASDV, Wilson amplitude (WAMP), and wavelet coeffi-
cients (WAVELET). We also combined some features to 
obtain the optimal result with the highest classification accu-
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racy. The tested feature combinations were SampEnt-RMS, 
SampEnt-RMS-MYOP, and SampEnt-RMS-MYOP-DA-
SDV.  

The remainder of this manuscript is divided into five sec-
tions. The first gives the reader information on the experi-
mental protocol. The second section provides a brief intro-
duction to features extraction and presents wavelet analysis 
technique. The third section introduces the classification 
algorithms that were used in this research study. The last two 
sections present and discuss the results obtained from the 
experiment and present the conclusions drawn from the re-
sults and suggestions for future work, respectively.  

2. EXPERIMENT AND DATA ACQUISITION 

2.1. Experimental Design 

Ten right hand-dominant healthy subjects (males aged 
from 20 to 37 years) without any neuromuscular disorders 
participated in this experiment. The subjects were well 
trained on all of the movements before performing the hand 
motions and were given a demonstration of the process of 
this research work. At the end of the demonstration, the sub-
jects were not afraid of the equipment, cables, and attached 
electrodes connected to them. 

Before starting the experiment, all of the subjects were 
asked to rest before participating in the experiment to ensure 
a lack of stress and physical pressure during the experiment 
that may affect the results. In addition, a good and proper 
environment was provided to ensure the collection of accu-
rate and less-noisy sEMG signals. The data were recorded 
over a period of ten days to affirm different realistic condi-
tions. To collect four sEMG signals from the forearm mus-
cles, two pieces sEMG signal recording equipment (AD In-
strument’s Power Lab 4/25 T) were used. Each data acquisi-
tion system (DAS) has two channels, in total, four sEMG 
signals were acquired from four different forearm muscles, 
as clarified in Table 1.  

The surface electromyographic signal (EMG) is influ-
enced by several physiological and anatomical factors [6]. 
Electromagnetic fields caused by a power line represent a 
common noise source in the EMG signal recorded from the 
body surface. Such noise is characterized by 50 Hz sinusoi-
dal interference, possibly accompanied by a number of har-
monics [7]. However, a bandpass filter with a 10- to 500-Hz 
bandwidth, a 50-notch filter and a mains filter were used.  
 

The data were sampled at 1 KHz. All of the data were 
normalized and segmented into consecutive 256-ms epochs, 
as clarified in Fig. (1). 

Disposable moisture silver-silver chloride (Ag/AgCl) 
electrodes were used to obtain the sEMG signals from the 
surface of the skin. The unipolar electrodes were placed 
along the midline of the muscle and parallel to the longitudi-
nal axis of the muscle to prevent signal crosstalk between 
adjacent muscles, and to ensure that the detection will inter-
sect common muscle fibers. In this paper, we attempted to 
recognize the eight hand movements clarified in Fig. (2). 

2.2. Experimental Protocol 

All of the subjects were asked to perform eight move-
ments. Each movement/action was repeated five times, and 
each action was held for five seconds. In addition there was a 
rest period of approximately three seconds between each set 
of two hand motions.  

After finishing one movement, the subject rested for al-
most three minutes to avoid muscle fatigue. During this time, 
the collected data were saved, and the subject prepared him-
self for the next movement. The four sEMG signals were 
collected and arranged together to form a matrix denoted raw 
Matrix (RM) as clarified in Fig. (3). In addition, it is clear 
that the amplitude and shape of each EMG signal are differ-
ent because the muscles exerted different forces during the 
performance of the different hand motions. 

3. FEATURE EXTRACTION 

In a myoelectric control system, some extracted features 
represent the sEMG signal better than the other features [8]. 
There are many potential benefits of feature weighting, the 
first one is to reduce the dimensionality of the row dataset 
which help reducing the storage requirements, in addition to 
reduce training time of classifier which lead to practical 
prosthetic hand that mimicking the real hand [9]. Every ex-
tracted feature will be introduced to the classifier will give 
different classification rate some lead to better result in com-
parison to other features.  

It is meaningful to look for the feature that gives the op-
timal representation of the sEMG. Some features extracted 
from sEMG signal based on frequency domain are not good 
in EMG signal classification. Some frequency domain fea-
tures have the same classification accuracy as features in 
time domain [8]. Features in time domain are the most popular  

Table 1. Data acquisition system and related channels responsible for the collection of sEMG signals. 

DAS Channel Number Muscle 

1 extensor digitorum 
1st 

2 extensor carpi radialis 

3 palmaris longus 
2nd 

4 flexor carpi ulnaris 
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Fig. (1). Segmented sEMG signal in 256 points window for one subject performing four hand motions (Open hand, close hand, wrist flexion 
and wrist extension) and rest state. 

 

 

Fig. (2). Eight classified hand motions: 1- grip (GP), 2- open hand (OP), 3- wrist flexion (WF), 4- wrist extension (WE), 5- ulnar deviation 

(UD), 6-radial deviation (RD), 7- pinch (PIN), 8- catch cylindrical subject (CC), and 9- rest position (REST). 

 

in the field of myoelectric pattern recognition [9]. They are 

easy to implement, because these features do not need any 

transformation [8]. Many research works explored and ex-

amined appropriate qualitative and quantitative EMG signal 

features  

In this manuscript, different features were extracted from 
a sEMG signal and analyzed using three classification algo-
rithms. We also combined some features to obtain the opti-
mal result with the highest classification accuracy. The 
tested feature combinations were SampEnt-RMS, SampEnt-

RMS-MYOP, and SampEnt-RMS-MYOP-DASDV. Firstly, 
a short explanation was given about the extracted features:  

3.1. Sample Entropy (SampEnt) 

Sample entropy is a useful tool for investigating time se-
ries signal. It is used for assessing the complexity of a 
physiological time-series signal such as EMG signal.  

SampEnt is the negative natural logarithm of the prob-
ability that two sequences similar for (m) points remain simi-
lar at the next point, where self matches are not included in  
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calculating of the probability. SampEnt shows success as a 
robust feature [10, 11]. This feature consider as a non linear 
signal processing method. The SampEnt can be calculated by 
[11]: 

SampEn(m,r,N) = ln
A

m
r( )

B
m

r( )
 (1) 

B is the total number of template matches of length m.  

A is the total number of forward matches of length m+1. 

A
m

r( ) and 
 
B

m
r( ) are the probabilities that two series 

will match for m and m+1 points.  

The SampEnt also can defined as the negative natural 
logarithm of an estimate of the conditional probability that 
the patterns of the time series that are similar to each other 
within a predefined tolerance (r) will remain similar for the 
next comparison point [11, 12].  

 

3.2. Root Mean Square (RMS) 

It is one of the most popular features used in representa-
tion EMG signal. RMS has a robust performance in a noisy 
environment than other feature [13]. Where 

i
X  is the i th 

sample in segment i. N  is the number of samples in each 
segment. 

  

RMS =
1

N i

2

x
i=1

N

 (2) 

3.3. Myopulse Percentage Rate (MYOP) 

The output of this feature is defined as one when the ab-
solute value of the signal is above predefined threshold; oth-
erwise it will be zero [8]. It is defined as:  

  

MYOP = f x
i( )

i=1

N

 (3) 

 

 

Fig. (3). Four channel sEMG signals were recorded using two EMG data acquisition systems. The subject performs one movement and re-
peats it five times. The acquired sEMG signal was sampled at 1 KHz. The amplitude of the sEMG signal is represented on the Y axis.  



112    The Open Automation and Control Systems Journal, 2014, Volume 6 AlOmari and Liu 

  
f x( ) =

0 if x< threshold

1 if x> threshold  {  

3.4. Difference Absolute Standard Deviation Value 

(DASDV) 

It is the standard deviation absolute value of the distance 
between the adjacent samples [14]. Mathematically, it is cal-
culated by: 

  

DASDV =
i+1X iX( )

2

i=1

N

N 1

 (4) 

Where Xi is the i th sample in segment i. N is the number of 
samples in each segment. 

3.5. Wilson Amplitude (WAMP) 

This feature is an indicator of firing motor unit action po-
tential (MUAP) that is an indicator of the contraction level. 
As definition, Wilson amplitude is the number of times that 
the difference between the signal amplitude among to adja-
cent segments that exceeds predefined threshold. The benefit 
of this feature is to reduce the noise effect [8].  

  

WAMP = f (
ix i+1x )

i=1

N

 (5) 

3.6. Wavelet Coefficients (WAVELET) 

In last years wavelet analysis becomes a promising tool 

for many researchers in the field of myoelectric control  

 

system and has many applications [15-17]. Wavelet 

analysis employs a prototype function or a set of basic func-

tions called the mother wavelet. Wavelet transform repre-

sents more flexible approach with variable sized window 

[18]. In this study, Daubechies wavelet family (db10) was 

employed to extract the wavelet coefficient from the re-

corded sEMG data. 

Choosing the appropriate wavelet family plays a major 

role in determining the classification rate of a myoelectric 

control pattern recognition system for a prosthetic hand. 

However, the ability of DWT to extract features from the 

signal is dependent on the appropriate choice of the mother 

wavelet function [19]. In this study, we found that wavelet 

family db-10 with K-NN classifier gave a high classification 

rate (preserved most information from EMG signal). The 

acquired signal is decomposed using Daubechies wavelet 

family at four different levels: third, fourth, fifth and sixth. 

Based on the data shown in the Table 2, we also find that 

increases in the decomposition level of the wavelet family 

increase the classification rate value. 

In total, we analyzed ten subjects, eight classified move-
ments, four channels, and five repetitions of each movement, 
which results in total of 1600 subsets (10 x 8 x 4 x 5 = 1600 
subsets).  

The MATLAB (2012a) computational software was used 
to extract the features from the sEMG signal and for the 
classification procedure. The data were divided into three 
sets, 20% for training, 20% validation and 60% for test. For 
the classification step, three classifiers were implemented: 
LDA, QDA and k-NN. The coming section provides a brief 
introduction to the tested classifiers. 

 

Table 2. Average classification rates using LDA, QDA and K-NN classifiers based on db10 wavelet family at different decomposition 

levels (DL). The bold numbers represent the highest classification accuracies among the classifiers. 

Movements Wavelet 

Family 
Classifier DL 

GR OP WF WE UD RD PIN CC Average 

3rd 80 81 72 73 71 73 69 82 75 

4th 81 82 70 74 74 71 72 82 76 

5
th

 88 85 73 76 82 77 67 85 79 

LDA 

6
th

 88 83 76 76 80 75 70 86 79 

3rd 70 77 70 75 70 70 65 73 71 

4th 73 76 72 70 76 70 68 73 72 

5th 81 77 88 92 73 79 82 60 79 

QDA 

6
th

 81 79 90 94 74 80 60 85 80 

3rd 86 92 85 89 88 95 70 89 87 

4th 98 96 93 94 92 74 75 80 88 

5th 96 94 86 92 89 80 73 93 88 

db10 

K-NN 

6
th

 95 96 88 92 90 90 76 91 90 
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4. CLASSIFICATION ALGORITHMS  

Classifications and groupings of patterns play a key role 
in solving many problems in a variety of engineering and 
scientific disciplines such as biology, psychology, medicine, 
civil engineering, mechanical engineering, data mining, 
computer vision and artificial intelligence [20-24]. 

4.1. Linear Discriminate Analysis (LDA) 

LDA is also recommended as a robust classifier and has 

been employed in several recent studies [11, 25, 26]. This 

classifier was chosen because it does not require any parame-

ter adjustment and offers computationally efficient real time 

operation [11, 27, 28]. The main concept of LDA is to clas-

sify the dependence by separating an m-dimensional descrip-

tor space into two areas that are separated by a hyper plane 

defined by a linear discriminant function. LDA minimizes 

the distances among the vectors belonging to the same class 

and maximizes the distances among the class centers [5]. 

LDA is recommended as the robust classifier and it has been 

employed in several recent literatures [9]. The classifier was 

chosen because it does not require any parameter adjustment 

and computationally efficient real time operation.  

4.2. Quadratic Discriminate Analysis (QDA) 

QDA is also a robust classification technique. It is a non-

linear technique for pattern classification. QDA models the 

likelihood of each class as a Gaussian distribution, then uses 

the posterior distributions to estimate the class for a given 

test point. The Gaussian parameters for each class can be 

estimated from training points using maximum likelihood 

(ML) estimation [29]. QDA is mathematically intractable, as 

the estimates of the covariance matrices for each class be-

come either poorly posed [30]. More information regarding 

LDA and QDA can be found in the work of Kim and Grou-

ven [14, 31].  

4.3. K-Nearest Neighbor (k-NN) 

The k-nearest neighbor (k-NN) classification method is a 

classical method that is widely used in the field of EMG pat-

tern recognition [14, 32, 33]. The performance of this classi-

fier can be degraded in noisy environments [14]. The 

mechanism of this classifier is based on three steps: 1- calcu-

late the distances between a query sample and all training 

samples, 2- choose the K-nearest training samples to the 

query sample, and 3- assign a class label by applying the 

majority rule to the k nearest samples [34]. In other words, 

this classifier predicts the test sample’s category according to 

k training samples and classifies it to the class with the high-

est class probability [14]. 

5. RESULTS AND DISCUSSION  

The following results were deduced from the data shown 
in Table 3: 

1. SampEnt is a robust feature that gives a high classifi-

cation rate (higher than 90%) for all of the studied 

classification methods. The highest classification rate 

of 93.23% was achieved using the LDA classifier. 

Other researchers have used this feature to classify 

different myoelectric patterns and have also reported 

that it shows robust performance compared with other 

features [11, 35].  

 

Table 3. Comparison of the LDA, QDA, and K-NN classifica-

tion algorithms. The bold numbers represent the 

highest classification accuracies. 

Features Classifier Classification Rate% 

LDA 93.23 

QDA 90.22 SampEnt 

K-NN 91.43 

LDA 92.34 

QDA 89.44 RMS 

K-NN 88.81 

LDA 90.62 

QDA 88.27 MYOP 

K-NN 89.54 

LDA 92.22 

QDA 90.56 DASDV 

K-NN 90.23 

LDA 73.44 

QDA 70.85 WAMP 

K-NN 77.44 

LDA 78.43 

QDA 80.23 WAVELET 

K-NN 90.92 

LDA 94.82 

QDA 90.73 SampEnt-RMS 

K-NN 90.15 

LDA 95.43 

QDA 92.48 SampEnt-RMS-MYOP 

K-NN 91.63 

LDA 98.56 

QDA 93.42 
SampEnt-RMS-MYOP-

DASDV 

K-NN 94.25  
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2. Other interesting result was that the classification ac-

curacy increased with the addition of extracted fea-

tures. In other words, the performance of a classifier 

was improved through the implementation of more 

than one feature.  

3. In this paper, we tested three feature combinations: 

SampEnt-RMS, SampEnt-RMS-MYOP, and 

SampEnt-RMS-MYOP-DASDV. The highest classifi-

cation accuracy was achieved using the LDA classi-

fier, and the classification rates obtained using this 

classifier and the three abovementioned combinations 

were found to be 94.82%, 95.43%, and 98.56 %,  

respectively.  

4. For all of the features except the WAVELET, the per-
formance of LDA was better than that of QDA. The 
WAVELET feature gave accuracies of 78.43% and 
80.23% for LDA and QDA, respectively. 

5. For the K-NN classifier, the best average classifica-
tion accuracy was 94.25%, and this rate was obtained  

using the SampEnt-RMS-MYOP-DASDV set. The 
next higher accuracies were obtained using SampEnt-
RMS-MYOP and SampEnt, which gave a classifica-
tion rate of 91%.  

The choice of the optimal k-value for the k-NN classifier 
plays a role in the determination of the performance of the 
K-NN recognition algorithm. The result of this investigation, 
which is clarified in Fig. (4), demonstrates that k = 5 gave 
the best performance of K-NN in most cases.  

6. CONCLUSION  

In this study, we succeeded to achieve 98.56% classifica-

tion rate by using the LDA classifier based on SampEnt-

RMS-MYOP-DASDV feature set. This result is considered 

to be a high classification rate in case eight hand motions are 

recognized based on four sEMG signals. 

More classification methods should be implemented to 

classify more different patterns of hand motions and to  

 

 

Fig. (4). Classification rates obtained using the K-NN recognition method based on different extracted features. The tested k values were  
k = 1, 2…10. The value k = 5 was the optimal value for the k-NN classifier because it gives highest classification rate. 
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achieve higher classification rates. General regression neural 

network (GRNN), support vector machine (SVM) classifiers 

are recommended for future work. One more important fac-

tor should be considered when designing a myoelectric con-

trol system: computational time. Increasing the number of 

sEMG channels will improve the accuracy rate but will in-

crease the calculation time of feature extraction and, of 

course, the classification time. A feature combination with a 

long computation time should be avoided when selecting the 

feature combination. Other time domain and frequency do-

main features should be extracted from the recorded EMG. 
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