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Abstract: In this paper, conditions of the chaos in auto gauge control system are suggested and proved on the basis of the 
roll eccentricity model. It is proposed that the eccentricity disturbance of roll may cause chaotic phenomena in the rolling 
process. By analyzing four kinds of expandable and shrinkable factors of variable universe fuzzy controller, it is suggested 
that the contradiction between fuzzy control rules and control accuracy can be solved effectively by HACO-VUFC meth-
od. Simulation shows that the product quality can be improved by chaos inhibition. 
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1. INTRODUCTION 

During rolling of strip, eccentricity compensation has 
been the most important factor influencing the quality of 
strip steel in the auto gauge control system (AGC) [1]. It is 
proved that AGC is one of the nonlinear complex system [2]. 
Because there are several signals cannot be measured direct-
ly and be used as the feedback control signal. So the AGC 
system has become a delay system. This system itself may 
generate chaos probably [3]. The trajectory of roll eccentrici-
ty motion is in compliance with the law of sine. The duffing 
equation is stated as roll motion equation generally [4]. Now 
chaos related to nonlinear systems has become a hot topic in 
engineering applications. Since the existence of interferences 
that chaos may be produced in thickness system of AGC 
if certain conditions are met. So the strip quality will be af-
fected because of chaos.  

Therefore, a new roll eccentric model of AGC system is 
established and many kinds of conditions causing the chaos 
are analyzed detailed in the paper. Finally methods to inhibit 
chaos are proposed and simulation results are shown the ef-
fectiveness about different control methods. 

2. MILL ECCENTRIC MODEL  

In the rolling process, the periodic changes between rolls 
caused by the irregular shape of roll and other components 
are named eccentricity [5], as can be seen from Fig. (1). Fig. 
(1a) shows that there will be no roll eccentricity when the 
roller circumference is homogeneous. Due to the existence of 
interference, the thickness difference is shown in Fig. (1c) as 
line 1.  

 
 

However, in actual production process either the asym-
metry of roller or the inadequate combination of bearings 
leads to the roll eccentricity, marked in Fig. (1b). From an-
other point, this eccentricity will cause the periodic changes 
between the gap and the rolling thickness, the error of thick-
ness is shown in Fig. (1c) as line 2. But generally the rolling 
thickness deviation may be about 10

 
µm . So for high-fidelity 

rolling the eccentricity cannot be ignored. In order to im-
prove the quality of strip the eccentricity compensation must 
be taken.  

Because of the friction and deformation the damping 
force exists between the contact arc of roller and rolled 
piece. Normally 
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The roll motion equation may be labeled as 
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eccentricity displacement of roll,  F  and !  indicate ampli-
tude and angular frequency of the eccentricity force separate-
ly. The equation can be transformed to the form as follow-
ing. 
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This equation shows that the chaotic may be appeared. In 
the following part, the Smale-horseshoe theory and subhar-
monic orbits theory is used to give the relationship between 
the chaotic phenomena and system parameters [6]. 

3. CONDITIONS CAUSING CHAOS IN AGC  

In this part the Melnikov method is used to argument the 
condition of the chaos in gauge control system 

Equation (6) is equivalent to  
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Where, in the gauge control system,  ! > 0 ,
 
! < 0  [5, 6]. 

This system has 3 singular points, the saddle point 
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Theorem 1 System (7) has sub-harmonic orbit when 
 ! > 0  and 

 
! < 0 , and the parameter equation of the sub-

harmonic orbit is  
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Where,   C > 0  is a constant and is determined by the ini-
tial conditions  

Proof From qualitative analysis, 
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ter and 
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 is the saddle point, if  ! > 0  and 

 
! < 0 , there is 

sub-harmonic trajectory passing by (0,0). Taking   H = 0 , 
from (8) gives  
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Fig. (1). Diagram of roll eccentricity. 
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The sub-harmonic orbit in the form of equation (9) is ob-
tained. Proof is finished. 

Lemma [7] Smale-Birkhoff sub-harmonic point theorem. 
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Let, 
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According to the Smale-Birkhoff subharmonic point the-
orem, if there is a simple zero of 

  
M (t

0
)  that does nothing to 

do with ! , there are some hyperbolic invariant sets of the 
iteration according to the poincare map and this map is cha-
otic in the meaning of Smale-horseshoe. 

Theorem 2 The AGC system is chaotic in the sense of 
Smale-horseshoe if the parameters of the system satisfy the 
condition  
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Proof According to the Melnikov function of the sub-
harmonic orbit  
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the integration path shown in Fig. (2). From the residue theo-
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Fig. (2). Integaral path. 
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Comparing the real part by the residue theorem 
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The Melnikov function is expressed as following 
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By the lemma, the condition that the system is chaotic in 

the sense of Smale-horseshoe is (10). Proof is finished. 

Now in certain range of thickness spectrum widely used 
in code rolling mills of plate production, the simulation re-
sults with related parameters are shown as follows. The fun-
damental eccentricity frequency labels!  , and  1!" ! 3  , 
As same time, 0.2 ! " ! 2 ,

 
0.05 ! µ ! 0.1 . When the condi-

tion satisfied with equation (10) and there are some simula-
tions as shown in Fig. (3). From Fig. (3) it can be seen that x  
is non-periodic although it is bounded, irregularly oscillat-
ing. When the system converts to one of the three motion  
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Fig. (3). Chaotic phase and time-domain graph with different parameters. 
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singularities surrounding a fixed point the periodic number 
shows stochastic behavior. The system will become chaotic 
when different periodic orbits are dense and any unstable 
periodic orbits meet. 

4. CHAOS CONTROL METHODS  

At the moment, in order to make up for the influence 
of roll eccentricity on thickness many methods have been 
used. These methods fall into three broad categories [8]. The 
first is passive and the main aim is to make roll gap system 
insensitive with the disturbance induced by the roll eccen-
tricity. One of the classic techniques is dead-zone method by 
filtering the interference signal to prevent the adjustment 
misused. The second is active and in order to compensate the 
roll eccentricity it is used to determine the roll eccentricity 
and the roll gap controller. The spectrum analysis and identi-
fication method are popular. The third called prevent control 
method. It reduces the influence of roller eccentricity 
on thickness in rolling process usually. Three ways may be 
optimized when there isn’t chaos caused by the eccentric 
disturbance in the gauge control system. 

Considering the actual condition of AGC system, there is 
deviation about thickness caused by rough material bias and 
the eccentricity disturbance as shown in the diagram Fig. (4). 
As shown, in Fig. (4a) when the eccentricity is not controlled 
the deviation is smaller than 50µm. Using the first method 
deviation of thickness is obviously reduced when there is not 
chaotic in the gauge control system. Knowing from Fig. (4b) 
The deviation can keep to less than 30µm. However, when 
the chaos caused by eccentricity exists in gauge control  
 

 

system, the thickness deviation will be more than 55µm, and 
it does not reduce but increases as can be seen from  
Fig. (4c). 

In the high precision rolling this is prohibited. So when 
the eccentricity disturbance brings the auto gauge control 
system into chaotic the rolling accuracy of the thickness will 
be under great perturbation. Without considering the impact 
of chaos the accuracy of thickness control cannot be 
achieved through the general methods. Through changing 
the rolling conditions chaos may be avoided. Changing the 
lubricating situation in the deformation zone to alter the 
damping coefficient, adjusting rhythm and speed of rolling 
to alter the eccentricity frequency, optimizing the parameters 
of the original controller and designing a new controller are 
all useful. 

In order to test the effectiveness control methods, the 
parallel distributed compensation method (PDC) based on 
TS fuzzy model, the variable general universe fuzzy control-
ler, and feedback linearization method (FL) are applied to 
restrain the chaotic in the AGC system. Using the parameters 
of the PDC as literature [9] and following the contraction-
expansion factors of the VUFC[10,11] the results of 4 kinds 
control methods are shown in Fig. (5). Other values of 
VUFC are equal to HACO-VUFC [12]. 
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In chaos control, literature [13, 14] proposed that besides 

the chaos stabilization and chaos synchronization, we should 
also consider the chaotic model following control (CMFC). 
The proposed method in this paper can also realize the 
CMFC and the simulation result is shown in Fig. (6). In 
Fig. (6), dotted lines are the given signal and solid line is the 
output of the chaotic system using HACO-VUFC method 
[15]. The step response of the system is shown in Figure 6a. 
It takes 0.4s to make the system stable and in the local en-

larged figure there is steady-state error within the allowable 
range of error. The result of the system tracking the sine 
curve is shown in Fig. (6b). From the local enlarged figure 
we can see that the system can track sinusoidal signal accu-
rately in a very short period of time. 

CONCLUSION 

In this paper, it is proposed that the chaos phenomenon 
is possible because the disturbance of roll eccentrici-
ty has a stronger effect on thickness. As same time, chaotic 
conditions are proved based on the Melnikov function and 

 
Fig. (5). System output of 3control methods. 

 

 

a 

 

b 

Fig. (6). Output of chaotic following control. 
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Smale-horseshoe mapping in AGC system. Then several 
methods have been analyzed comparatively. By analyzing 
four kinds’ contraction-expansion factors of variable fuzzy 
controller [16], it is suggested that HACO-VUFC method 
can overcome the contradiction between control accuracy 
and fuzzy control rules. Simulation shows that the product 
quality can be improved by chaos inhibition. 
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