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Abstract: The development of an innovative discrete-time EMPC (Explicit Model Predictive Control) strategy based on 
multi-parametric quadratic program is traced for the gauge-looper integrated control in HSFM (Hot Strip Finishing Mill). 
Controller design is based on the linearized model of the integration of downstream AGC (Automatic Gauge Control) sys-
tem and upstream looper-tension system. The proposed EMPC strategy gives an explicit piecewise affine control law 
which greatly reduces the on-line computational burden. Discrete-time EMPC achieves better performance by coordina-
tion control and is more suitable for implementation on PLC (Programmable Logic Controller) compared with conven-
tional controllers. Experiment results verify the effectiveness of the proposed strategy. 
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1. INTRODUCTION 

In the hot strip mill process of the iron and steel industry, 
heated slabs (about 250mm thick and 10m long) are rolled to 
steel pieces (about 30-35mm thick and 70m long) on the 
reversing roughing mills before entering the downstream 
HSFM. The HSFM process, which usually consists of six or 
seven close coupled finishing mills, makes further reduction 
of thickness by consecutive rolling and produces steel strips 
of required thickness and width (about 0.8-20mm thick and 
200-2000m long) [1]. As for the steel strip product, specifi-
cations such as surface and dimensional quality, mechanical 
properties and stable mill operation should be satisfied. 
Since HSFM is the final sizing process, expensive mechani-
cal equipments and modern control strategies are necessary 
to guarantee the quality of the product. 

The thickness property of the steel strip is guaranteed by 
AGC of the hydraulic screw down system. ASR (Automatic 
Speed Regulator) is used to control the rolling speed of each 
mill to smooth the threading of the strip. During strip thread-
ing, mass flow unbalance (which affects the strip tension and 
stable mill operation) is frequently encountered due to dis-
turbances. Therefore, between each pair of rolling stands, a 
looper system is equipped to maintain upward pressure on 
the strip and keep the strip tension at a desired value during 
operation [2]. The physical structure of conventional gauge-
looper control strategy is shown in Fig. (1). It was experi-
enced that, looper and tension control is the key to the strip 
dimensional quality and successful mill operation. For the 
last three decades, many control schemes have been pro-
posed in the gauge-looper system: conventional PID  
 
 

(Proportional Integral Derivative), H∞, decoupling, ILQ (In-
verse Linear Quadratic) for looper and tension control [3,4] 
and conventional PI (Proportional Integral), adaptive, H∞, 
robust multivariable for AGC [5, 6]. Conventionally, looper–
tension system and AGC system are controlled independent-
ly which ignores the mutual interactions among them. For 
example, the roll gap adjustment of AGC system causes 
mass flow and strip tension deviations, and the strip tension 
deviations also affect the rolling force and strip exit thick-
ness inversely. Therefore, improvement would be possible 
by better coordination control based on an integrated system 
model. 

Alone the line of this research trend, some multivariable 
control strategies have been proposed to include the gauge 
model in the looper–tension controller design [7]. However, 
the systematic coordination among gauge, strip tension and 
looper angle is still a remaining problem. To deal with this 
problem, MPC strategy, which has been proposed for the 
looper-tension control alone [8-10], is regarded as the one 
with significant potential. On one hand, MPC strategy is 
attractive to both practitioners and academics thanks to its 
ability to perform on-line optimization and constraint han-
dling. On the other hand, traditional MPC suffers from the 
problem associated with computational burden due to the 
receding horizon policy and on-line optimization, which lim-
its its application in slow and/or small problems. Since 
HSFM is a typical quick process, traditional MPC is not 
quite adequate. Therefore, a newly developed strategy 
known as EMPC (Explicit MPC), which moves all the com-
putations of MPC off-line to reduce the on-line computation-
al burden, is adopted for the control problem of HSFM. 

Closely related downstream stand AGC system and up-
stream looper-tension system are unioned to form the gauge-
looper integrated control system. Linear state space model of  
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the integrated system are derived from nonlinear physical 
model by linear approximation about the operating point. 
The linear state space model is then discretized with real-
time sampling interval [11]. Based on the discrete-time state 
space model, discrete-time EMPC is proposed to control the 
integrated system coordinately concerning the constraints. 
Instead of on-line optimization, EMPC strategy uses MPQP 
(Multi-Parametric Quadratic Program) to solve the optimiza-
tion problem off-line. To be specific, MPQP divides the state 
space into critical polyhedral regions, and for each region, 
determines the linear gain and offset which produces the 
optimal control action. As a result, the solution of the EMPC 
optimization problem is an explicit piecewise affine function 
of the state which can be computed off-line [12]. The on-line 
computation of the EMPC optimization problem is simpli-
fied as a function evaluation, which reduces the on-line 
computational burden significantly and is more suitable for 
implementation on PLC. 

The rest of the paper is organized as follows: A brief in-
troduction of process model is given in Section 2. Proposed 
EMPC strategy using MPQP is discussed in Section 3. The 
effectiveness of the proposed EMPC strategy is verified by 
means of experiment in Section 4. Conclusions are given in 
Section 5. 

2. PROCESS MODEL 

An overview of the gauge-looper integrated system is 
given in this section to illustrate the background of the con-
trol problem. Plant nonlinear models of the deformation zone 
(shown in Fig. 2) and the interstand geometry (shown in Fig. 
3) are introduced according to the physical dynamics. Linear 
models are derived from plant nonlinear models by approxi-
mate linearization, which will be used for controller design. 
The nomenclature is given in Table 1. 

 

2.1. Stand Model 

For the plastic deformation in the roll gap as shown in 
Fig. (2), the rolling force is expressed as: 

( )
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where ih  is the strip entry thickness, iH  is the strip exit 
thickness, i

bσ  is the strip backward tension, i
fσ  is the strip 

forward tension and the rest are constant values as shown in 
Table 1. 

The strip exit thickness is the sum of roll gap and mill 
stretch: 
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iM  is the mill modulus and wPΔ  is the unmodelled rolling 
force disturbance. 
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Fig. (1). Structure of conventional control strategy. 
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2.2. Strip speed 

The strip exit speed i
sv  leaving the stand i  is expressed 

by: 
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  (3) 

where ( )i
RV t  is work roll speed of stand i . i

fS  is the forward 
slip between the work roll surface and the strip which is de-
termined by: 
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where iγ  is the sliding neutral angle of the deformation zone 
which can be calculated as: 
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 It’s obvious that, iγ  is determined by strip exit thickness 

ih  and strip tensions ( i
bσ  and i

fσ ). The strip entry speed i
sV  

can be evaluated from the mass flow balance equation 
i i
s i s iv h V H= , that is 
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Fig. (2). Deformation zone. 

 

Table 1. Nomenclature. 

Symbol Quantity 

W  strip width 

K  constrained yield stress 

Q  correcting coefficient taking into account the geometrical aspects 

LM  looper mass 

ρ  steel density 

g  gravitational constant 
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where i
bS  is the backward slip which is also influenced by 

strip tensions and exit thickness.  

2.3. Tension Dynamics 

During strip threading, interstand strip tension ( )tσ  (be-

tween stands  i  and   i +1 ) works as the forward tension 
 
!

f

i  

of stand  i  and the backward tension 
  
!

b

i+1  of stand   i +1  
simultaneously. It’s evaluated by the amount of strip stretch 
between the stands: 
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where E  is the Young’s modulus of the strip, θ  is the looper 
angle, L  is the interstand length. ' ( )L θ  is the geometric loop-
er length between stands which can be calculated by (see  
Fig. 3): 
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( )L tξ+  is the accumulated material length which is caused 
by the speed difference between the coupling stands and 
whose derivative is given by: 
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strip speed entering stand   i +1  which are given by (3) and 
(5) respectively,
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caused by the fast action of AGC system in the case of dis-
turbances. 
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in the denominator of (6). As a result, the derivative of ( )tσ  
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where upstream strip angle α  and downstream strip angle !  
are evaluated as 
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Therefore, interstand strip tension deviation for linear 
model can be expressed as: 
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Fig. (3). Looper and interstand geometry. 
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2.4. Looper Dynamics 

Looper dynamics can be derived by applying Newton’s 
law of motion to the looper system, that is: 
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where  J  is the total inertia of the looper with respect to the 
pivoting point, 
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(t)  is the actuator torque on the looper. 
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2.5. Actuator Dynamics 

 As for the actuators, they are actually based on pre-
existing basic controllers: the gap of the stand S  is regulated 
by HGC (Hydraulic Gap Control), the stand work roll speed 
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i (t)  is controlled by ASR and the looper actuator torque 
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(t)  is controlled by ATR (Automatic Torque Regulator). 

They are subject to dynamics which are not negligible and 
can be modeled as first-order dynamics with time constants 
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The variables to be summarized in the control input vec-
tor  u  are represented by the variations with respect to their 
nominal values of the reference variables for HGC, ASR and 
ATR, that is, 
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And the actuator dynamics can be rewritten as 
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2.6. Linearized Process Model 

As we can see from the process model introduced in Sec-
tions 2.1-2.5, the AGC system of stand   i +1  is closely relat-
ed with the looper-tension system between stand i  and stand 
of   i +1 . A linearized mathematical model of the gauge-
looper integrated system can be derived by the union of line-
ar equations (2), (8), (10) and (11). The state variables of the 
linearized model are chosen as the variations of the states 
with respect to their nominal values: 
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As a result, the linear state space model of the gauge-

looper integrated system is expressed as: 
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Looper angle, strip tension and strip exit thickness are 
chosen as the outputs of the integrated system, that is 
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The control problem is defined as a set point regulator 
problem, that is, the outputs (strip exit thickness

  
h

i
(t) , looper 

angle ( )tθ  and strip tension
  
! (t) ) should be regulated at the 

desired reference values. 

3. INTEGRATED CONTROL BASED ON EMPC 

3.1. EMPC Based on MPQP: A Brief Review 

For the sake of the readers’ convenience, a brief review 
of EMPC based on multi-parametric quadratic program, 
which has been applied to typical linear quadratic control for 
constrained systems [13], is given in this section. 

Consider a discrete-time MIMO time-invariant linear 
system of the regular form: 
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s.t. 

   

y
min

! y
k+ j

! y
max

,   j = 1,!, N
p
;

u
min

! u
k+ j

! u
max

,   j = 0,1,!, N
u
"1;

x
k+ j+1

= Ax
k+ j

+ Bu
k+ j

,   j # 0;

y
k+ j

= Cx
k+ j

,   j # 0;

u
k+ j

= 0,   N
u
! j ! N

p
"1.  

(17) 

at each time  k , where 
 
N

u
 is length of the control input se-

quence, 
 
N

p
! N

u
 is the pre-defined length of the optimal 

window, and 
 
x

k+ j
 denotes the predicted state vector at time 

 
k + j  as the response of the control input sequence U  ap-
plied to system (14) starting from the initial state kx . 

The spirit of MPC is the construction of an optimal con-

trol input sequence 
   
U

*
= u

k

*
,u

k+1

*
,!,u

k+N
u
!1

*{ } which mini-

mizes the cost function J  in (16) with constraints (17). And 
it’s necessary to point out that, according to the receding 
horizon control principle, only the first step of the control 
input *U  (i.e., *( )u k ) is taken into the system at the time in-
stant k . As for 1k + , the optimal problem (16) will be solved 
once again and only the first step of the solution is taken into 
the system. In other words, this optimal programming will be 
taken over and over again along the time sequence to guaran-
tee the stability of the closed-loop system under unmodelled 
dynamics, disturbances, and so on. Such a control strategy is 
known as receding horizon control. 

The above stated MPC problem has been investigated by 
numerous researchers over the last few decades and a solid 
theoretical foundation for MPC has emerged. However, it 
usually has the drawback of heavy on-line computational 
burden. In this paper, we adopt a recently proposed EMPC 
strategy based on multi-parametric quadratic program which 
is able to move all the computations of MPC off-line [12]. 
And the resulting controller is a explicit piecewise affine 
function of the states which is suitable for the discrete-time 
linear model of the gauge-looper integrated system derived 
in Section 2.6. 

By substituting 
  
x

k+ j
= A jx(k)+ A j!m!1Bu

k+mm=0

j!1

" , the 
optimal problem (16) can be rewritten in compact form as 
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V
*(x

k
) =

1

2
x

k

'
Yx

k
+ min

U

1

2
U

'
HU + x

k

'
FU ,  s.t. GU !W + Ex

k

"
#
$

%
&
'  

(18) 

where 
   
U = u

k

'
,u

k+1

'
,!,u

k+N
u
!1

'"
#

$
%

'

 is the optimization vector, 

and  H ,  F ,  Y ,  G ,  W ,  E  are easily obtained from Q  and 
 R  in (16). As proposed in [12], the quadratic program (18) 
can be solved by multi-parametric quadratic program. 

For the sake of convenience, (18) is transferred into the 
following form by setting 

   
z !U + H

!1
F

'
x

k
: 

  
V

z

*(x
k
) = min

z

1

2
z

'
Hz

 
(19) 

 s.t. 
 
Gz !W + Sx

k
  (20) 

where    S ! E +GH
!1

F
'  and  

  
V

z

*(x
k
) =V

*(x
k
)!

1

2
x

k

' (Y ! FH
!1

F
' )x

k
. 

For the multi-parametric quadratic programming problem 
(19)-(20), we introduce the following result which is the key 
to construct a piecewise affine state-feedback control law for 
EMPC. 

Lemma 1. [12]. For a quadratic programming problem 
stated in (19)-(20), let 

  
z = z

0

*  be the optimal solution for a 

given state 
  
x

k

0  and 
   
!G, !W , !S{ }  is the uniquely determined set 

of active constraints 
   
!Gz

0

*
= !W + !Sx

k

0  out of the constraints in 

(20). Assume that the rows of   !G  are linearly independent, 
and let 

  
CR

0
 be the set of all vectors 

 
x

k
 for which the com-

bination of constraints 
   
!G, !W , !S{ }  is active at the optimum  

(
  
CR

0
 is referred to as critical region). Then, the optimal so-

lution   z
*  of (19)-(20) is a uniquely defined affine function of 

 
x

k
. 

   
z

*
= H

!1 !G
' !GH

!1 !G
'( )
!1

!W + !Sx
k( )  

(21) 

over the polyhedral region 0CR  defined by 

   
GH

!1 !G
' !GH

!1 !G
'( )
!1

!W + !Sx
k( ) "W + Sx

k

0

 
(22) 

   

!GH
!1 !G

'( )
!1

!W + !Sx
k( ) " 0

 
(23) 

To summarize, multi-parametric quadratic programming 
systematically subdivides the space X  of parameters 

 
x

k
 into 

critical regions (CRs ). For each  CR , the optimal solution   z
*  

is an affine function of 
 
x

k
. Once the critical region 

  
CR

0
 has 

been defined, the rest of the space 
   
CR

rest
! X \ CR

0
 can be 

explored and new critical regions will be generated by an 
iterative algorithm which partition  CR

rest  recursively. 

 

In order to introduce the iterative algorithm, a few meth-
ods should be demonstrated at first. 

(i) For a polyhedral set 
  
X = x

k
:Tx

k
! v{ } , a good choice 

for 
  
x

k

0
!X  to start solving the multi-parametric quadratic 

program problem (19)-(20) will be the center of the largest 
ball contained in X  for which feasible z  exists, which is 
determined by solving the linear program (LP). 

  

max
x

k
,z ,!

  !

s.t.  T jx
k
+ ! T j

" v j

       Gz # Sx
k
"W  

(24) 

(ii) Let 
   
X

1
! R

n  be a polyhedron, and 

   
CR

0
! x !X

1
:T

0
x " v

0
{ }  a polyhedron subset of 

  
X

1
, 

  
CR

0
! " , let 

   

R
i
= x !X

1
:

T
0

i
x > v

0

i

T
0

j
x " v

0

j
,  #j < i

$

%
&

'&

(

)
&

*&
,   i = 1,!,m,

 
(25) 

where 
  
m = dim(v

0
) . Then, 

   
CR

0
, R

1
,!, R

m
{ }  is a partition of 

1X . 

(iii) For a polyhedral set X and the multi-parametric 
quadratic program problem (19)-(20), define an operator 

( )Part X  

1) Determine 
  
x

k

0
!X  by solving the LP (24), if corre-

sponding 0ε ≤  then exit (there is no critical region in X ); 

2) For 0
kx X∈ , calculate the optimal solution 

  
z

0

*  of the QP 
(19)-(20); 

3) Determine the set of active constraints 
   
!G, !W , !S{ }  for 

  
x

k

0
,z

0

* , if the rows of   !G  is not linearly independent, take the 
largest subset of linear independent rows and redefine 

   
!G, !W , !S{ } ; 

4) Determine 
  
z*

= f (x
k
)  from (21) for critical region 

0CR  (22)-(23); 

5) Define and partition 0\restCR X CR=  as in (25); 

6) For each new sub-region iR , execute 
  
Part(R

i
) ; 

7) End procedure. 
Based on the above discussions, the off-line mp-QP solv-

er are outlined briefly as follows 
Algorithm 1: 
a) Let X  be the set of parameters/states; 
b) Execute 

  
part( X ) ; 
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c) Unite all the regions where 
  
z

*(x
k
)  is the same and 

whose union is a convex set to reduces the total number of 
regions; 

d) End. 

 As a result, X  are divided into critical regions, and in 
each region, the optimal solution 

  
z

*(x
k
)  is an affine function 

of kx  (i.e. 
  
z

*(x
k
)  is piecewise affine). And the application of 

Algorithm 1 to the DMPC problem (16)-(17) is straight for-
ward, as a result, the optimal control sequence   U

*  is a 
piecewise affine function of 

 
x

k
, so does 

  
u

k

*  with the form 

  
u

k

*
= F jx

k
+ g j , if 

 
T jx

k
! v j   (26) 

where 
   
j = 1,!, N

mpc
 and 

 
N

mpc
 is the number of regions. 

3.2. EMPC Controller Design 

For the sake of clarity and simplicity, we calculate the 
approximately linearized model of the gauge-looper integrat-
ed system. Thus we have: 

   

!x(t) = Ax(t)+ Bu(t)+ Dw(t)

y(t) = Cx(t)

!
"
#$  

(27) 

where corresponding vectors and matrices are defined in 
Section 2.6. 

In order to apply the proposed EMPC strategy, (27) is 
discretized with 0.025T = s (sampling interval of the real-time 
control system) which yields: 

  

x(k +1) = Ax(k)+ Bu(k)+ Dw(k)

y(k) = Cx(k)

!
"
#$  

(28) 

Based on the discrete-time linear model (28), piecewise 
affine EMPC controllers can be designed according to the 
standard procedure discussed in Section 3.1 [14]. 

 
 

The overall control structure is shown in Fig. (4) and the 
control parameters will be given in Section 4. 

4. EXPERIMENT RESULTS 

The proposed EMPC strategy is evaluated by experiment 
taken in a HSFM process. ASR of Stand 3, ATR of Looper 4 
and AGC of Stand 5 are taken from a seven-stand finishing 
mill process to form an integrated gauge-looper system. The 
looper angle reference 

 
!

r
 is set as 20° and the strip tension 

reference rσ  is set as 8MPa. 

As far as the characteristics of the integrated system are 
concerned, we set predictive horizon as 

  
N

p
= 16 , control 

horizon as 
  
N

u
= 10 . Weight matrices are selected by analysis 

of step response and frequency-singular value plots: 

  

Q =

1 0 0

0 0.5 0

0 0 1.5

!

"

#
#
#

$

%

&
&
&

 and 

  

R =

1 0 0

0 40 0

0 0 25

!

"

#
#
#

$

%

&
&
&

. 

And the constraints are taken as: 
  
u
!T

" 4 , 
  
u
!V

" 2 , 

  
u
!S

"10 , 
 
!" # 2 , 

 
!" # 4  and 

  
!h

i+1
" 30 . 

Experiment results of the proposed EMPC strategy as 
well as the conventional PID controllers are given in Figs. 
(5-7). In the case of EMPC, the looper is more stable, strip 
tension tracks the reference more exactly and the thickness 
deviation is reduced. For example, EMPC reduces the peak-
to-peak tension fluctuation by 30% compared with conven-
tional PID. To sum up, EMPC achieves better disturbance 
rejection by systematical coordination among gauge, strip 
tension and looper angle, which can easily be tuned by ad-
justing the weight matrices. 
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Fig. (4). Discrete-time EMPC control structure. 
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Fig. (5). Plant data of the looper angle deviation. 
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Fig. (6). Plant data of the strip tension deviation. 
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Fig. (7). Plant data of the strip thickness deviation. 
 

5. CONCLUSION 

An innovative EMPC strategy is proposed for gauge-
looper integrated control in HSFM. The interactions between 
the AGC system and the looper-tension system are reduced 
by systematical coordination control of the integrated system 

based on EMPC. EMPC strategy gives an explicit piecewise 
affine control law based on MPQP which greatly reduces the 
on-line computational burden compared with conventional 
MPC strategy. Experiment results verify the effectiveness of 
the proposed strategy. 



1304    The Open Automation and Control Systems Journal, 2014, Volume 6 Zhong et al. 

Future research effort could be the development of good 
prediction models and the formulation of a robust EMPC 
algorithm which satisfies state and input constraints under 
parameters uncertainties and disturbances. 
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