
Send Orders for Reprints to reprints@benthamscience.ae

1378 The Open Automation and Control Systems Journal, 2014, 6, 1378-1388

 1874-4443/14 2014 Bentham Open

Open Access
Large Scale Terrain Real-Time Rendering on GPU Using Double Layers
Tile Quad Tree and Cuboids Bounding Error Metric

Ying Yang*, Chunfang Wang, Yuyu Gao and Jingwei Xing

LiRen College of Yanshan University, Qinhuangdao, Hebei, 066004, China

Abstract: Improving terrain tile data selection efficiency, real-time loading of visible tile data and building GPU-based
continuous Level of Details (LOD) are the key technologies for large scale terrain rendering on GPU. In this article, in or-
der to reduce terrain tile data selection time, we build double layers tile quad tree for massive terrain data and organize tile
data by designing Z-order space filling curve. According to the visible region coordinates obtained by GPU offscreen ren-
der to texture, we realize real-time loading of visible tile data from CPU to GPU. Map visible tile quad tree into two-
dimensional texture on GPU making full use of the characteristics of GPU multi-channel parallel processing. In order to
execute tile error metric computation and LOD selection on GPU, we design GPU-based cuboid bounding unsaturated er-
ror metric, reduce CPU computational burden and enhance the terrain rendering performance. Experiments show that our
algorithm can improve the utilization rate of GPU in the terrain rendering and achieve a good visual effect and a high
frame rate.

Keywords: Terrain, double layers, tile quad tree, cuboid, error metric, GPU.

1. INTRODUCTION

The real-time rendering of large scale terrain is an im-
portant topic in the virtual reality and geographic infor-
mation system, and also is an important underlying support-
ing technology in emergency city planning, disaster preven-
tion and control and virtual battlefield simulation. The scale
of terrain data seriously affects the real-time and authenticity
of terrain visualization. With the improvement of GPU pro-
cessing capacity, reducing CPU computational burden and
the frequency of CPU-GPU interactions, large scale terrain
rendering on GPU is a hot area of computer graphics re-
search issues. The main work of improving terrain rendering
performance contains the following two aspects：1. Massive
terrain data organization based on out of core, reduces terrain
tile data selection time and the load bandwidth. 2. Terrain
mesh simplification on GPU, designing reasonable error
metrics make full use of the characteristics of GPU multi-
channel parallel processing in order to implement terrain
view dependent multi-resolution representation.

With GPU become faster and more powerful, fine-
grained LOD, which processes a triangle as a simplified unit,
has been replaced by coarse-grained LOD. Coarse-grained
LOD, which processes a set of triangles as simplified unit,
can greatly improve the utilization rate of GPU and reduce
CPU computational burden. Since GPU developed and ac-
celerated, coarse-grained LOD methods achieve high

performance, and are more suitable for large scale terrain
rendering on GPU. Block triangle binary tree [1], tile quad
tree [2] and GeoClipmap [3] are the three major methods
based on GPU coarse-grained LOD. Tile quad tree has be-
came the mainstream method based on GPU coarse-grained
LOD with the characteristics of grid LOD and texture LOD
corresponding each other, data index simply and selection
quickly. Ulrich used Tile Quad tree based on chunked LOD
to manage terrain data and realize terrain real-time rendering
[4]. Li Sheng constructed the incremental horizon dynami-
cally to pre-extracted potential silhouette of each chunk for
real-time walkthrough of the large scale terrain environments
[5]. Dick presented a geometry compression scheme for re-
stricted quad tree meshes [6], built the triangle strip by using
only triangle types, windings and height values. Li Baiyun
presented a GPU based implementation of quad tree for ter-
rain rendering and used texture to store quad tree data, and
pixel shaded to construct quad tree in real-time [7]. Vanek
divided terrain into tiles of different resolutions according to
the terrain’s complexity, and it stored each tile as a mip-map
texture [8]. Liu Hao presented an approach for dynamic
scheduling and terrain real-time rendering [9]. The algo-
rithms above most implemented based on single layer quad
tree. As terrain’s size increase, the quad tree become deeper,
and tile selection time will grow as factor of 4n. It will break
the limit of real-time. Nie Junlan presented Multilevel Tile
Load Map (MTLM) algorithm accelerated frame rate. But
the maximal size processed by single texture (4096×4096)
limit the MTLM algorithm scalability and tile data indexes
should be improved [10]. Michael Bader organized tile data
by designing space filling curve, as a result, improved the
speed of terrain rendering [11]. HyeongYeop Kang realized

Large Scale Terrain Real-Time Rendering on GPU The Open Automation and Control Systems Journal, 2014, Volume 6 1379

GPU tessellation based on tile quad tree using Direct3D 11
[2].

In this article, the terrain regular grid data are split into
tiles. Building double layers tile quad tree for massive terrain
data and organizing tile data by designing Z-order space fill-
ing curve, optimize the tree modeling and improve the ter-
rain rendering speed.

Reasonable error metric is one of the important criterions
for terrain simplification. With GPU shades and powerful
parallel computing capability development, it is possible to
execute tile error metric computation and LOD selection on
GPU. The research on GPU terrain simplified error metric is
another hot topic of terrain rendering. Peter Lindstrom pre-
sented saturated error metric based on nested object space
error and nested ball bounding to realize terrain rendering
[12]. Lu Yanqing used unsaturated cuboid error metric based
on triangle binary tree, decreases the amount of triangles in
terrain rendering [13]. The algorithms above most imple-
mented based on CPU. With the development of GPU pow-
erful parallel computing capability, it is possible to execute
tile error metric computation LOD selection on GPU. Li
Sheng applied a new error metric constrained normal cone to
view-independent simplification based on silhouette

preserving and shading preserving criteria [5]. Lindstrom
designed reasonable error metric to implement terrain data
compression and terrain rendering [1]. Fu Wei presented a
terrain rendering method with dynamic error metric and
made error computation and triangulation executed by GPU.
The method improved the rendering efficiency of GPU [14].
But the saturated error metric increased the amount of trian-
gles, and the radius of nested ball will be very big when
traveling several levels along the quad tree. This will be
more serious when the difference of the adjoining terrain
nodes’ height value changes rapidly.

In this article, design cuboid unsaturated error metric, us-
ing GPU multi-channel parallel processing, in order to exe-
cute tile error metric computation and LOD selection by
GPU acceleration.

2. GPU TERRAIN RENDERING ALGORITHM PRO-
DUCEDURE

The GPU terrain rendering algorithm based on double
layers tile quad tree and cuboid bounding unsaturated error
metric is presented in this article. The detailed algorithm is
shown in Fig. (1).

Terrain Data
(DEM and DOM)

External Memory

Tile Selection and
Scheduling

Visible Tile Quadtree two-
dimensional Texture Mapping

on GPU

	

Double Layers Tile Quadtree
Building

Tile.x, Tile.y Computation

Vislble Tile Quadtree in CPU Cache

Data
Scheduling
and cache

LOD Section and Triangles Construction on GPU

GPU

Cuboid Bounding
Unsaturated Error Metric

Computing on GPU

Rendering

Preprocessing

Readback

Visual Region Coordinate

…
…… …

Fig. (1). Terrain rendering algorithm based on double layers tile quad tree and cuboids bounding unsaturated error metric.

1380 The Open Automation and Control Systems Journal, 2014, Volume 6 Yang et al.

All used terrain data are stored on the external memory in
the form of tile pyramid. In the preprocessing, the terrain
regular grid data are split into tiles. Double layers tile quad
tree is built for massive terrain data and the tile data are or-
ganized by designing Z-order space filling curve. In the real-
time rendering, visible region coordinates obtain by GPU
Render to Texture and read back to CPU. CPU designs a tile
selection mechanism, and uses a fixed size of CPU cache to
store, manage and update the tile data. CPU selects the visi-
ble tile quad tree and real-time loads the visible tile data
from CPU to GPU. Visible tile quad tree is mapped into two-
dimensional texture computed on GPU. Error metric and
cuboid unsaturated error metric computation and level-of-
detail selection are executed by GPU acceleration. Accord-
ing to the error metric, tiles needed rendering are selected
and triangulated. The real-time and authentic large scale ter-
rain environment has been implemented. Two-dimensional
texture mapping and error metric computation make full use
of the characteristics of GPU multi-channel parallel pro-
cessing, can save CPU run time and enhance the terrain ren-
dering performance.

3. DOUBLE LAYERS TILE QUAD TREE BUILDING

Large scale terrain data are usually too large to load the
whole terrain data sets at one time. As a means to combat
this problem, it is necessary to design terrain data modeling
and data organization. Tile quad tree has became the main-
stream method based on GPU coarse-grained LOD with the
characteristics of grid LOD and texture LOD corresponding
each other, data index simply and selection quickly.

3.1. Tile Quad Tree

Tile quad tree is a static and precomputed level quad tree.
The root node of tile quad tree represents a low resolution of
the whole terrain. Quarter the root node into four children
nodes, northwest (NW), northeast (NE), southwest (SW) and
southeast (SE). Every one children node represents one quar-
ter of the whole terrain. The resolution of children nodes is

higher than the resolution of the root node. In the same way,
quarter the root’s children nodes into their children nodes.
Repeat the steps until generate the left nodes. Every tile node
has own code. The codes of the tile nodes are defined, in this
order: NW is 00, NE is 01, SW is 10, SE is 11. The level of
the tile nodes in tile quad tree can be obtained according to
the codes of the tile nodes.

Tile quad tree has became the mainstream method in
large scale terrain rendering and the data organization based
on tile quad tree is more situable to GPU terrain rendering.
At present, the terrain rendering algorithms most implement-
ed based on single layer tile quad tree. As terrain’s size in-
crease, the quad tree will become deeper, invalid tiles selec-
tion time will grow quickly and the speed of terrain render-
ing will improve largely. Therefore, building double layers
tile quad tree is urgently needed in order to optimize the tree
modeling and improve the rendering speed.

3.2. Double Layers Tile Quad Tree Building

Double layers tile quad tree is made of two layers, upper
layer tile quad tree and lower layer tile quad tree. An exam-
ple of double layers tile quad tree of five levels is shown in
Fig. (2). The level of upper layer tile quad tree is 3, the level
of lower layer tile quad tree is 2.

The whole single layer tile quad tree is divided into dou-
ble layers tile quad tree. It means that one single deeper layer
tile quad tree is divided into many shallower tile quad trees.
When traversal the double layers tile quad tree top-down, we
judge whether the node is in the view frustum or not. If the
node is not in the view frustum, the node and its children are
ignored. If the node is in the view frustum, there were chil-
dren need to judge, go on, top-down recursively until found
all tiles which should be visible.

In this article, double layers tile quad tree reduces the
depth of the tree, avoids selecting invalid tiles and calcula-
tion redundancy and decreases the computation time. As a
result, the speed of terrain rendering will improved largely.

upper layer
UL=3

11100100

0000 001100100001

11100100

1100 111111101101

00

0011001000010000

0

1001 11

1111111011011100⋯

⋯⋯⋯⋯

⋯⋯⋯⋯ ⋯⋯⋯⋯ ⋯⋯⋯⋯

⋯⋯
Lower layer

LL=2

Fig. (2). Double layers tile quad tree.

Large Scale Terrain Real-Time Rendering on GPU The Open Automation and Control Systems Journal, 2014, Volume 6 1381

3.3. Tile data Organization by Z-order Space Filling
Curve

To improve data access efficiency, linear memory lay-
outs should be care. We use Z-order Space filling curve at
every level in double layers tile quad tree, and linke them
end to end. Every tile data in double layers tile quad tree has
own code. An example of codes and organization of 3 levels
tile quad tree is shown in Fig. (3).

The coding regulation of tile data in double layers tile
quad tree is defined as follow. The code of the root of the
upper layer tile quad tree is 0. The codes of the four children
of the root are defined, in this order: NW is 00, NE is 01,
SW is 10, SE is 11.When the level is added 1, the codes of
the children are added two bits binary codes after their fa-
thers’ codes. The added two bits binary codes are defined in
the same order: NW is 00, NE is 01, SW is 10, SE is 11. Re-
peat the steps until generate the left nodes of the upper layer
tile quad tree. The code of the root of the lower layer tile
quad tree is 00. The codes of the four children of the root are
defined, in this order: NW is 00, NE is 01, SW is 10, SE is
11.When the level is added 1, the codes of the children are
added two bits binary codes after their fathers’ codes. The
added two bits binary codes are defined in the same order:
NW is 00, NE is 01, SW is 10, SE is 11. Repeat the steps
until generate the left nodes of the lower layer tile quad tree.
As an example, the codes of double layers tile quad tree of
five levels are shown in Fig. (2).

In this article, the scale of the whole terrain is
WIDTH×WIDTH. The levels of the upper layer tile quad
tree are numbered from 0 to UL. The levels of the lower lay-
er tile quad tree are numbered from 1 to LL. When the level
of the tile data is LEVEL, the bits number of the tile binary
codes can reach 2×LEVEL and the tile binary encoding is
defined as ZINDEX. Define lLevell = , check codes M is
0x01. The Tile.x and Tile.y are computed in the following
two cases.

In one case, if the tile data are in the upper layer tile quad
tree, l<=UL, Tile.x and Tile.y are computed as follow

MLevelULZIndex ll &)(2ZINDEX −>>= (1)

[] MLevelULZIndex ll &1)(2ZINDEX' +−>>= (2)

l=1,2，…，UL in (1) and (2). lZIndex and '
lZIndex in

(1) and (2) are the intermediate variables used to compute
Tile.x and Tile.y.

lWIDTHWidthl >>= (3)

)&(.
1

MZIndexWidthxTile l

UL

l
l∑

=
=

(4)

)&(. '

1
MZIndexWidthyTile l

UL

l
l∑

=
=

(5)

lWidth in (3) is the width value of the tile, whose level is
l. lWidth is an intermediate variable used to compute Tile.x
and Tile.y.

In another case, if the tile data is in the lower layer tile
quad tree, l>UL, lZIndex and '

lZIndex obtained by (1) and
(2), Tile.x and Tile.y are computed as follow

MLevelLLZIndex ll &)(21ZINDEX1 −>>= (6)

[] MLevelLLZIndex ll &1)(2ZINDEX11' +−>>= (7)

l=1,2，…，LL in (6) and (7). lZIndex1 and '1lZIndex
in(6) and (7) are the intermediate variables used to compute
Tile.x and Tile.y.

)&1(

)&(.

1

1

MXZIndexWidth

MXZIndexWidthxTile

l

LL

l
ULl

l

UL

l
l

∑

∑

=
+

=

+

=

(8)

)&1(

)&(.
'

1

'

1

MXZIndexWidth

MXZIndexWidthyTile

l

LL

l
ULl

l

UL

l
l

∑

∑

=
+

=

+

=

(9)

The computation of Tile.x and Tile.y has been completed
in the preprocessing. The Tile.x and Tile.y are used to CPU
selects the visible tiles, when visible region coordinates ob-
tain by GPU. The Tile.x and Tile.y are also used to tile error

0

00 01

10 11

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

L=3L=1 L=2

Fig. (3). Tile data organization using Z-order space filling curve.

1382 The Open Automation and Control Systems Journal, 2014, Volume 6 Yang et al.

metric computation. While visible tile quad tree has been
loaded from CPU to GPU, the Tile.x and Tile.y will be load-
ed at the same time. We organize the tile data by Z-order
Space-filling curve, in order to enhance data access locality
and improve tiles’ selection efficiency. The computation of
Tile.x and Tile.y contains only additive and bit operations.
There aren’t any complex calculations.

3.4. Visible Tile Quad Tree Two-Dimensional Texture
Mapping on GPU

At present, the maximal size processed by single texture
on GPU is 4096×4096. It is impossible to map the whole tile
quad tree into two-dimensional texture computed on GPU. In
this article, we make full use of the characteristics of GPU
multi-channel parallel processing, only load visible tile quad
tree from CPU to GPU, compute two-dimensional texture
mapping and error metric on GPU. The two-dimensional
texture mapping of visible tile quad tree is shown in Fig. (4).

The thick dotted region represents visible tile quad trees
in Fig. (4). Map the tiles into the two-dimensional texture
according to the order row first, column after. Every row
contains 4096 texels. All tiles in visible tile quad tree can be
seen as texels to compute on GPU, which can take advantage
of GPU multi-channel powerful parallel computing capabil-
ity and reduce CPU burden. In this article, the R channel

respectively stores the level of the whole double layers tile
quad tree, the G channels and B channels respectively store
coordinate Tile.x and Tile.y. The level, Tile.x and Tile.y
could be used to compute the tile error metric, detailed algo-
rithm in Ⅴ.

4. GPU CUBOID BOUNDING UNSATURATED ER-
ROR METRIC

With GPU computing capability become faster and more
powerful, GPU-based mesh simplification criterion is anoth-
er hot research in terrain rendering. Scholars have done a lot
of work on GPU error metric. Lindstrom presented saturated
error metric based on nested sphere bounding to realize ter-
rain rendering [12]. Lu Yanqing used unsaturated cuboid
error metric based on triangle binary tree on CPU, decreased
the amount of triangles [13]. Fu Wei presented a terrain ren-
dering method with dynamic error metric, made error and
triangulation executed by GPU [14]. But the saturated error
metric would increase the amount of triangles, and the radius
of nested ball will be very big when traveling several levels
along the quad tree. In view of more triangles caused by sat-
urated error metric and the bigger radius caused by nested
ball, we design GPU cuboid bounding unsaturated error met-
ric, execute tile error metric computation and level-of-detail
selection by GPU acceleration.

…

…… …

…

4096

4096

…

……

…

…

Lower layer
LL=2

upper layer
UL=3

Fig. (4). Visual tile Quad tree two-dimensional texture mapping.

Large Scale Terrain Real-Time Rendering on GPU The Open Automation and Control Systems Journal, 2014, Volume 6 1383

4.1. Object Space Error Metric and Cuboid Bounding
Design

Error metrics include object space error metric and
screen space error metric. Object space error metric is the
vertical height difference between the vertex’s original
height value and the vertex’s height value after simplifica-
tion. By means of longest edge bisection, node i’s object
space error metric iε is the maximum of vertical height dif-
ference of the midpoints of hypotenuses of all triangles,
which are contained in the tile node i. Node i’s object space
error metric iε is computed by using

!

i
= max

t"T
i

{#
i,t

}= (Z
l
+ Z

r
) / 2$ Z

i
 (10)

In (10), T is the set of triangles contained in the tile node
i.

Z

l
and

Z

r
is the height value of the two endpoints of the

hypotenuse of triangle t in the triangle set T.

Z

l
is the height

value of the midpoint of the hypotenuse of triangle t in the
set of triangles T.

Cuboid bounding is designed to represent the tile node.
The bottom of cuboid bounding is the projection of the tile
node on a horizontal plane. The area of the bottom of cuboid
bounding associates with the level of the tile node. The level
of the tile node can be obtained by the R channel on GPU.
The area of the bottom of cuboid bounding Oi is computed
by using

O

i
(x, y) = 4!(l!1)

"WIDTH 2

 (11)

In order to include all sample vertexes in tile node, the
height value of the cuboid bounding is the maximum of ver-
tical height value difference of all vertexes of triangles,
which will be contained in the tile node i. In order to save
space, the height of the cuboid bounding and the iε in (10) is
recorded by one data, which is the maximum of the two iε
obtained by (10) and (12).

!

i

'
= max{max{Z

C
j

" Z
C

i

},!
i
} (12)

Ci is the set of the midpoints of hypotenuses of triangles
contained in the tile node i. Cj is the set of the two endpoints
of hypotenuses of triangles contained in the tile node i.

Z

C
j

is

the height value of vertexes in Cj.

Z

C
i

is the height value of

vertexes in Ci.
The cuboid bounding of tile node i is computed by using

B

i
={(x, y,z) (x, y)!O

i
(x, y),z " #

i

'} (13)

The volume of cuboid bounding designed in this article is
much smaller than sphere bounding. The cuboid bounding
designed in this article contains less tile sample vertexes. It
means that the computation of tile vertexes in the cuboid

bounding will became less and easily. As a result, it can re-
duce the amount of triangles and improve the speed in terrain
rendering.

4.2. GPU LOD Selections
Screen space error metric is the error that projects object

space error to view-dependent screen space error of each
node. Screen space error metric is the important evaluation
criterion for tile node. ! (ε ,B,e) represents the node’s
screen space error metric, where ε is an object space error
metric , and e is the viewpoint, B is the bounding that repre-
sents the tile node. Node i’s screen space error metric ρ is
computed by using

!("

i

' , B
i
,e) = # $"

i

'
B % e (14)

! =" (2 # tan($ 2)) , where ! is the number of pixels

along the field of viewpoint ! .

B ! e is the Euclidean dis-
tance between the viewpoint e and the cuboid bounding.

The computation of tile node’s object space error metric,
cuboid bounding and screen space error metric only involves
addition and multiplication arithmetic, which correspond to
parallel computing requires. For example, the computation
of tile node’s object space error metric involves only two
additions and one multiplication. Therefore, error metric can
be computed by GPU. Compared to saturated error metric,
GPU unsaturated error metric in this paper can decrease
amount of triangles and improve the speed of terrain render-
ing greatly.

In the terrain rendering, according to viewpoint e, com-
pare ! against a user-specified screen error metric tolerance
! . We obtain

split(i) ! " > # ! ($ %&
i

' B ' e) > #

! $ # %&
i

'
> B ' e

(15)

The criterion of LOD selection and tile nodes simplifica-
tion is according to (15). The computation of the criterion
involves only three additions and seven multiplications,
which also corresponds to GPU parallel computing requires.
In the terrain rendering, Therefore, LOD selection and tile
nodes simplification can execute by GPU acceleration.

In the terrain rendering, cracks can produce between dif-
ferent resolutions. We avoid cracks according to [14].

In this article, we make full use of GPU powerful compu-
ting capability and implement the computation of error met-
ric and LOD selection on GPU, in order to save the time
spending on preprocessing and reduce CPU-GPU bandwidth
greatly. The computation of error metric is only aimed at
visible tile nodes instead of the whole tile quad tree nodes.
The amount of calculation will decrease largely. The cuboid
bounding error metric designed in this article base on view-
point and terrain feature, which can meet terrain rendering
authenticity requirement.

1384 The Open Automation and Control Systems Journal, 2014, Volume 6 Yang et al.

5. GPU VISIBILITY ESTIMATION AND CPU DATA
SCHEDULING

5.1. GPU Visibility Estimation

The visibility of tile nodes estimated the intersection be-
tween cone of viewpoint and terrain surface in traditional
methods. The computation complexity of the visibility esti-
mation will increase CPU computational burden. In this arti-
cle, we map every terrain vertex in current view field into a
float texture by way of GPU “Render To Texture” [9]. So
every vertex’s coordinates(x, y) was saved in the texture.
Then put the texture read back to CPU. The visible region is
the minimum bounding box instead of the real view field.
The minimum bounding box, which represents the visible
region, is made up four coordinates (min x, min y), (max x,
min y), (max x, max y), (min x, max y). The visible region
coordinates is shown in Fig. (5).

The visibility estimation by way of GPU “Render To
Texture” will simplify the computation of visible region and
avoid the computation of redundant data. The visibility esti-
mation makes full use of GPU and reduces the CPU compu-
tation complexity.

5.2. CPU Data Scheduling

Large scale terrain is too big to store in the memory all
the time. It is necessary to design a tile loading mechanism
to schedule terrain data tile from external memory to internal
memory dynamically. We use a fixed size of CPU buffer
pool to store, manage and update the tile data. The size of
CPU buffer pool is designed in integral multiple of the size
of terrain tile so that any one tile can be stored in any one
CPU buffer pool unit. Buffer pool is managed by CPU. With
the viewpoint shifting at any time, we adopt an effective
prefetching mechanism and asynchronous operation mode
avoiding immediate dispatch and ensuring a smooth frame
rate. According to the viewpoint position and movement, we
compute the range of the buffer’s data for next frame. The
range is concerned with the speed of view shifting and the
rendering frame.

6. RESULT AND ANALYSIS

Our prototype application is implemented for Windows
XP32 and Visual Studio C++ 6.0, OpenGL and using the
OpenGL Shading Language (GLSL) for programmable
shaders. We use a 3.0GHz Intel Pentium IV PC, with 2G
DDR2 of RAM, GeForce 9500GT graphics with 512M of
graphics RAM, and SATA 500G disk in our experiments.
We test a data set over the Puget Sound area in Washington
was used, which is made up of 16384×16384 vertexes at 10
meter horizontal and 0.1 meter vertical resolution. The effec-
tiveness of the proposed algorithm in this article can be
demonstrated through the tile data organization performance
experiment and error metric performance experiment.

6.1. Tile Data Organization Performance Experiment

The Puget Sound Area 16384×16384 terrain data is in-
terpolated to simulate the 65536×65536 terrain data. Grid-
based data set for each tile is 65×65, and thus the level of the
double layers tile quad tree is 10. The level of the upper layer
tile quad tree is 4, the level of the lower layer tile quad tree is
8 in the experiment.

We compared the data organization performance of CPU
SLTQ (CPU single layer tile quad tree), GPU SLTQ (GPU
single layer tile quad tree) and GPU DLTQ (our algorithm
based on GPU double layers tile quad tree) algorithm. The
comparison result is listed in Table 1.

As seen from Table 1, the frame rate of algorithms on
GPU, which make full use of GPU powerful computing ca-
pability, is much higher than the frame rate of the algorithms
on CPU. The preprocessing time of our algorithm based on
GPU double layers tile quad tree is more than the algorithm
based on single layer tile quad tree. But the visible tile selec-
tion time of our algorithm is less than the algorithm based on
single layer tile quad tree obviously. The reduction of the
visible tile selection time of our algorithm has proved that
the double layers tile quad tree has an advantage of selecting
tile nodes quickly by decreasing the depth of the quad tree.
Our algorithm based on double layers tile quad tree in this

Fig. (5). Visible region coordinates.

Large Scale Terrain Real-Time Rendering on GPU The Open Automation and Control Systems Journal, 2014, Volume 6 1385

article uses GPU two-dimensional texture mapping and exe-
cutes tile error metric computation and LOD selection by
GPU acceleration. Therefore, the terrain rendering time of
our algorithm is the minimum, and the average frame rate of
our algorithm is the maximum.

The size of CPU buffer pool is designed 16×16 tiles in
the experiment. The length of one side is 64×16=1024 pixels.
The same roaming path rendering performance curves of
frame rate and CPU usage are shown in Fig. (6).

When the viewpoint shifts, tile data will be needed up-
date and load between external memory and internal memory.
Tile data’s update and loading can occupy most CPU re-
sources. Therefore, the CPU usage will reach a high level.

But the CPU isn’t used and CPU usage is still a lower level
when the terrain rendering. As seen from Fig. (6), our algo-
rithm can reach over 170 fps and satisfy the real-time re-
quirement of terrain rendering.

6.2. Error Metric Performance Experiment

We compared the error metric performance of Lindstrom
(CPU nested sphere and saturated error metric) [12], Fu Wei
(GPU nested sphere and saturated error metric) [14] and This
Article (cuboid bounding unsaturated error metric on GPU).
The same roaming path rendering performance curves of the
frame rate are shown in Fig. (7).

Table 1. Comparison of different data organization algorithms.

Algorithm
Preprocessing

Time
Visible Tile Selection Time LOD Rendering Time

Average

Frame

Rate

CPU SLTQ Algorithm ~27m33s ~4ms ~16ms 42.8

GPU SLTQ Algorithm ~27m55s ~3.8ms ~4ms 124.6

GPU DLTQ Algorithm ~29m40s <1.6ms <2.5ms 219.3

0 20 40 60 80 100 120 140 160
10

15

20

25

30

35

CPU Usage (*100%)

time(s)

Frame Rate (*0.1fps)

Fig. (6). Recorded frame rate and CPU usage over time.

Fig. (7). Performance curves of frame rate.

1386 The Open Automation and Control Systems Journal, 2014, Volume 6 Yang et al.

As seen from Fig. (7), Lindstrom implemented error met-
ric computation on CPU; the average frame rate of
Lindstrom is about 66fps. Fu Wei realized error metric com-
putation on CPU and LOD selection on GPU, the average
frame rate of Fu Wei is about 155fps. Our algorithm exe-
cutes both error metric computation and LOD selection on
GPU, the average frame rate of our algorithm is about
219fps. Compared to Lindstrom and Fu Wei, our algorithm
based on cuboid bounding unsaturated error metric can reach
higher frame rate.

The same roaming path rendering performance curves of
the amount of triangles are shown in Fig. (8).

The volume of cuboid bounding designed in this article is
much smaller than sphere bounding in Lindstrom and Fu

Wei. The cuboid bounding contains less tile sample vertexes.
It means that the computation of tile vertex in the cuboid
bounding will became less and easily. As seen from Fig. (8),
triangles number of our algorithm based on cuboid bounding
unsaturated error metric is less than Lindstrom and Fu Wei
obviously.

Compare the error metric of our algorithm based on cu-
boid bounding unsaturated error metric and Fu Wei based on
GPU nested sphere and saturated error metric [14]. Terrain
meshes Screenshot of the two algorithms are shown in Fig.
(9).

As seen from Fig. (9), the amount of triangles generated
by our algorithm based on cuboid bounding unsaturated error
metric is 8.96 percent less than Fu Wei based on GPU nested

Fig. (8). Performance curves of the amount of triangles.

Unsaturated error metric (594K triangles)

saturated error metric (653K triangles)

Fig. (9). Terrain meshes screenshots of different error metric.

Large Scale Terrain Real-Time Rendering on GPU The Open Automation and Control Systems Journal, 2014, Volume 6 1387

sphere and saturated error metric. From terrain meshes
Screenshots displays, our algorithm can not miss the terrain
features, can satisfy the authentic requirement of terrain ren-
dering.

Real-time rendering screenshots of terrain meshes and
textures are shown as Fig. (10).

From Fig. (10), it can be seen that our algorithm based on
double layers tile and cuboid bounding unsaturated error
metric can load tile data quickly between external memory
and internal memory, between CPU and GPU. The terrain
rendering screenshots displays show smooth and fluent. All
experiments’ results can verify that our algorithm can greatly
improve the speed of the terrain rendering and achieve a
good visual effect.

CONCLUSION

According to data organization and LOD building, dou-
ble layers tile quad tree for massive terrain data is built to
reduce the depth of the tree, avoid selecting invalid tiles and
calculation redundancy and decrease the computing time.
Tile data in double layers tile quad tree are organized by Z-
order space filling curve, in order to enhance data access
locality and improve tiles’ selection efficiency. The visibility
estimation based on GPU render to texture reduces the CPU
computation complexity. Map visible tile quad tree into two-
dimensional texture on GPU makes full use of the character-
istics of GPU multi-channel parallel processing and im-
proves largely the speed of terrain rendering. The volume of
cuboid bounding designed in this article is much smaller,
which reduces the amount of triangles in terrain rendering.
Cuboid unsaturated error metric on GPU implement the
computation of error metric and LOD selection on GPU, in
order to save the time spending on preprocessing and reduce

CPU-GPU bandwidth greatly. The cuboid bounding error
metric designed based on viewpoint and terrain feature can
keep the 3D terrain feature. Experiments show that the algo-
rithm in this article can improve the utilization rate of GPU
in the terrain rendering and meet terrain rendering real-time
and authenticity requirements. Future work includes re-
searching eliminating cracks efficiently and grid-based com-
pression algorithm to meet the massive complexity of terrain
rendering.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flicts of interest.

ACKNOWLEDGEMENTS

This work is supported by The National Natural Science
Foundation, China (No.60970073). This work is supported
by HeBei National Natural Science Foundation, China
(No.F2012203084). This work is supported by HeBei Na-
tional Natural Science Foundation, China
(No.A2012203124).

REFERENCES
[1]. P. Lindstrom, and J.D. Cohen, “On-the-fly decompression and

rendering of multiresolution terrain,” In: Proceedings of the 2010
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, Washington: ACM. 2010, pp. 65-73.

[2]. H.Y. Kang, H. Jang, C.S. Cho, and J.H. Han, “Multi-resolution
terrain rendering with GPU tessellation,” The Visual Computer,
vol. 31, no. 4, pp. 455-469, 2014.

[3]. A. Asirvatham, and H. Hoppe, Terrain Rendering Using GPU-
based Geometry Clipmaps, GPU Gems, Addison-Wesley, Boston,
pp. 27-45, 2005.

Fig. (10). Terrain meshes and textures screenshots in roaming.

1388 The Open Automation and Control Systems Journal, 2014, Volume 6 Yang et al.

[4]. T. Ulrich, “Rendering massive terrains using chunked level of
detail control,” Course Notes of ACM SIGGRAPH. San Antonio:
SIGGRAPH, 2002.

[5]. S. Li, J. Ji, X. Liu, E.H. Wu, “High performance navigation of very
large-scale terrain environment,” Journal of Software, vol. 17, no. 3,
pp. 535-545, 2006.

[6]. C. Dick, J. Schneider, and R. Westermann, “Efficient geometry
compression for gpu-based decoding in realtime terrain rendering,”
Computer Graphics Forum, vol. 28, no. 1, pp. 67-83, 2009.

[7]. B. Li, and C.X. Zhao “A GPU based run-time quad-tree construc-
tion method for fast terrain rendering,” Journal of Computer-Aided
Design & Computer Graphics, vol. 22, no. 12, pp. 2259-2264,
2010.

[8]. J. Vanek, B. Benes, A. Herout, and O. Stava, “Large-scale phys-
ics-based terrain editing using adaptive tiles on the GPU,” Comput-
er Graphics and Applications IEEE, vol. 31, no. 6, pp. 35-44, 2013.

[9]. H. Liu, W. Cao, and W. Zhao, “Dynamic scheduling and real-time
rendering method for large-scale terrain,” Computer Science, vol.
40, no. 6, pp. 120-124, 2013.

[10]. J. Nie, D. Guo, L. Kong, and Y. Wang, “Multi-resolution terrain
rendering seamlessly by function curve fitting,” Journal of Compu-
tational Information Systems, vol. 7, no. 2, pp. 452-461, 2011.

[11]. M. Bader. “Two motivating examples: sequential orders on quad
trees and multidimensional data structures,” An Introduction with
Applications in Scientific Computing, vol. 9, pp. 1-14, 2013.

[12]. L. Peter, and V. Pascucci, “Terrain simplification simplified: a
general framework for view-dependent out-of-core visualization,”
IEEE Transaction on Visualization and Computer Graphics, vol. 8,
no. 3, pp. 239-254, 2002.

[13]. Y. Lu, “Study of the real-time rendering for large-scale terrain
dataset,” Ph.D. dissertation Zhejiang University 2003

[14]. W. Fu, Z. Ge, and W. Li, “A terrain rendering method with dynam-
ic error metric for flight simulation,” Journal of Jilin University
(Science Edition), vol. 50, no. 6, pp. 1175-1178, 2012.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Yang et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

