
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Automation and Control Systems Journal, 2015, 7, 1405-1414 1405

 1874-4443/15 2015 Bentham Open

Open Access
Research on FPGA Prototype Simulation in MP3 Audio Decoder Design

Geng Wen-bo1,2,* and Zhou Zi-ang1

1School of Physics and Electromechanical Engineering, Zhoukou Normal University, Zhoukou 466001, PR China
2Key Laboratory of Cloud Computing and Internet of Things Applications, Zhoukou Normal University, Zhoukou
466001, PR China

Abstract: By further study of MP3 audio decoding algorithms, this paper analyzed the system structure of MP3 decoder
and discusses the mapping of each module from algorithm to logic structure. Aiming at hardware implementation, it pro-
poses the improved searching method for MP3 audio encoder, based on the features of Huffman decoding. It also adopts
the intellectual property core of MP3 comprehensive filter groups and fast IMDCT algorithms. In inverse quantization
module the compensated factor is used to make magnitude upgrade of SNR, without multiplications. We use coprocessor
to design special instruction set and arithmetic unit by the analysis of fast IMDCT algorithm. It rewrites original C lan-
guage and adopts unified DCT-based transforming core algorithm to compute the IMDCT of MP3. It can provide parallel
work of IMDCT and LEON3 processor to make accelerated effects.

Keywords: MP3, decoding, IMDCT, Huffman decoder, FPGA.

1. INTRODUCTION

As the important part in the process of information stor-
age and transmission, audio and video encoding and decod-
ing technique is developing towards the direction of multi-
standard, low power and low cost. The modules design is the
key factor influencing the whole performance. Thus, it has
realistic significance to study audio and video codec design
and its implementation. At present, some of the solutions of
audio decoder like DSP-based decoding scheme, of RISC-
based processor decoding scheme and ASIC-based decoding
scheme are widely used [1-3]. Although DSP-based or RISC
processor decoding scheme have advantages of perfect com-
patibility and short development cycle, the whole power of
decoder is very high. It cannot satisfy the demand for termi-
nal on power. However, ASIC-based decoding scheme has
low power advantage, its flexibility is bad and its develop-
ment cycle is very long. But software and hardware co-
design considers such problems.

At present, the mainstream schemes can be divided into
two types, according to its algorithm circuit design. One is
traditionally based on general-purpose processor or software
scheme of DSP (Digital Signal Processor) [4,5]. Although
such methods have been broadly applied, the general instruc-
tion set is not specially set for audio or video coding. The
length of processor word and instruction set are usually not
effectively adapted to practical requirement of audio disposal.
Meanwhile, it is difficult to complete high execution effi-
ciency and audio and video coding/decoding of low power
under further requirement. With further improvement of

diversity and users’ demand for various mobile terminal pro-
duction functions, it can be predicted that inherent defect is
increasing prominently; The second type aims to specified
audio and video codec algorithm to design special decoder or
ASIC (Application Specific Integrated Circuit) [6]. The exe-
cution efficiency of this scheme is relatively high for and it
has minimal work consumption. Meanwhile, it can fully take
advantage of parallel execution of hardware encoding and
decoding. But the defect of this method is also very obvious:
fixed hardware structure is hard for practical product re-
quirement, to be adjusted and changed flexibly. With con-
stant development of audio-video coding and decoding
standard, the scheme may possibly encounter bottleneck [7].

For above problems, this paper designs a hardware and
software co-design MP3 audio decoder prototype chip. In
multi-standard Huffman-decoding design, the hybrid look-up
table is introduced. We determine the stage rule according to
codeword laws. Then the hardware structure and code table
structure corresponding to index tables are also proposed. In
multi-standard inverse quantization module, the compensa-
tion factor design is introduced by system error analysis. So
the SNR gets magnitude upgrade without multiplication cal-
culation. Then the improved discrete cosine inverse trans-
formation is accelerated in this paper. Due to the difference
between IMDCT36 and DCT64, the state machine control is
not suited to IMDCT36 design. Therefore, we adopt copro-
cessor acceleration method and design the coprocessor which
is specially used for IMDCT36. It can make parallel work
with LEON3 processor to improve decoding efficiency.

2. FPGA-BASED MP3 DECODER

FPGA-based MP3 decoder scheme is depicted in Fig. (1).
Due to maturity of MP3 software decoder, the decoding

1406 The Open Automation and Control Systems Journal, 2015, Volume 7 Wen-bo and Zi-ang

library of open source is very abundant. For instance,
MPG123 and Libmad can be directly used in common em-
bedded system. Therefore, an IP core (Intellectual Property
Core) is mapped to the processor of FPGA and MP3 decoder
becomes the simplest implementation inside IP core. The
design prototype in this paper is adopting LEON3 and MP3
decoder MPG123 of open source to perform MP3 decoder
function on Spartan-6 platform. Since all decoding processed
are performed by software, the decoding efficiency is not
high. Thus, decoding with long time consumption is con-
versed to be implemented by hardware such as Huffman
decoder, Inverse Modified Discrete Cosine Transform
(IMDCT), and sub-band synthesis filter [8]. After these
modules are implemented by hardware, they become a pe-
ripheral component of main processor, to connect LEON3
via AMBA (Advanced Microcontroller Bus Architecture).
Other decoding functions and management functions are still
implemented by software, which can largely improve the
decoding efficiency and accelerate the development process.

FPGA contains a lot of logic gates which can be connect-
ed by programs. FPGA offers flexible, variable word length
and potential framework of parallel processing ability. Some
FPGA also contain DSP units to perform common DSP algo-
rithm such as DSP48A1 of Xilinx Spartan-6 series and
DSP48E1 of Virtex-6/7 series. FPGA is used to perform dig-
ital signal processing, which can meet the demand for specif-
ic processing speed and performance. In the latest Xilinx
device Zynq-7000EPP, it integrates industrial grade ARM
binuclear Cortex-A9MPCore, so the design is divided into
different parts to be easily implemented. FPGA developers
can directly share existing software resources in ARM sys-
tem. As long as the IP core matches the bus rules, it can be
used on this platform. FPGA has better flexibility during
signal processing. For instance, when 10 multiplication and
accumulation (MAC) are performed on FPGA and DSP,

if serial mode performs 10 MAC one by one on DSP, this
operation needs 10 clock cycles; if FPGA is used for com-
plete parallel operation, it only needs one clock cycle. FPGA
and DSP are realized 10 Multiplication and Accumulation,
MAC computations. If serial mode performs 10 MAC one by
one on DSP, this operation needs 10 clock cycles. If FPGA
is used for complete parallel operation, it only needs one
clock cycle. We execute 10 MAC within 5 clock cycles and
2 MAC are implemented in parallel each time. However, if
DSP processor is adopted, it is impossible to modify execu-
tion cycle according to the demands in such a flexible way.
Such flexibility is determined by inverse relation between
circuit area and speed. If 10 MAC is operated rapidly, FPGA
can operate them in parallel within one clock cycle. However,
it needs to integrate 10 arithmetic units to parallel calculate
and consumes lots of hardware resources. If 10 MAC is al-
lowed to be operated in slow speed, FPGA can be operated
in serial with only 1 arithmetic unit. Therefore, the used
amount of logic resources reduces to its 1/10 in FPGA chip
but it needs 10 clock cycles for operation. Since parallel pro-
cessing is adopted, FPGA is far superior to DSP processor in
data/arithmetic throughput and flexibility. FPGA flexibility
can implement algorithms on FPGA to satisfy specific appli-
cation by different methods usage in design.

FPGA has advantages of short development cycle and
perfect real-time performance with good expansibility, so it
can satisfy the requirement of constant changing and updat-
ing. Thus, it has higher research value. So this paper adopts
the idea of software and hardware co-design to develop a
platform with FPGA. On one hand, it uses existing open
source software to perform hardware acceleration which
shortens the design cycle; on the other hand, with appearance
of lots of soft-cores, it is more convenient to perform the
secondary development.

SD card Extensible storage interface SDRAM

Keyborad

I/O
CPU soft core

Hardware decoding

FPGA

LCD display

Headphone DAC/AC97

Fig. (1). FPGA-based MP3 decoder.

FPGA Prototype Design and Simulation for MP3 Audio Decoder The Open Automation and Control Systems Journal, 2015, Volume 7 1407

3. SCHEME FOR PROTOTYPE CHİP DESİGN

Wang in literature [9] offers the percent of operation time
for modules in MP3 decoder by study, as show in Table 1.
We can see that the main computation of MP3 lies in Huff-
man decoding, inverse quantization, IMDCT and integrated
filter. Therefore, these modules are taken as the candidate
modules for hardware implementation. In the next parts we
will provide the improvement analysis for them.

3.1. Huffman Decoding Module

We adopt Huffman tree to save the code tables, to reduce
the storage space. The code table can be loaded to a binary

tree to create a Huffman tree [10]. The binary searching al-
gorithms have better utilization of storage space and simpler
control. But its processing speed is relatively slow which
needs bit determination one by one. Since the object of this
paper is saving the circuit resource and Huffman decoding is
not the bottleneck of MP3 decoder, we choose binary tree
searching algorithms for hardware implementation.

It starts from the root nodes and traverses the tree accord-
ing to the input of code streams. When input is 0, it goes to
the next node based on left offset; when input bit is 1, it first
saves the number of right node at the bifurcation of tree, as is
depicted in Fig. (2). This tree has 17 nodes totally from root
node to leaf node, so it needs 17 storage space. That is, high

Table 1. Computation analysis of MP3 encoder modules.

Decoding Modules Computation Percent (%)

Head and side information decoding 2.52

Data extraction 2.73

Huffman decoding 17.32

Inverse quantization 5.21

Stereo 1.34

Reordering 0.39

Antialiasing 0.51

IMDCT 22

Integrated filter 47.98

0

12

36

4

8 7 5

9

10
11

12

14 13

1516

(2,1)

(4,1)

(2,1)

(4,1)

(2,1)

(2,1)

(0,22) (0,02)

(0,12) (0,21)
(0,20)

(0,11) (0,01)

(0,10)

0 1

0

0

0

0

0

1

1

(2,1) (0,00)

0
1

1

1
01

1

Fig. (2). Huffman tree corresponding to the Huffman code table.

1408 The Open Automation and Control Systems Journal, 2015, Volume 7 Wen-bo and Zi-ang

8 bits denote left offset and low 8 bits denote right offset.
The large-value area needs to save 15 code tables and small-
value area needs to save 2 Huffman tables. The Huffman tree
corresponding to these code tables are saved in ROM unit for
query in decoding.

The state control for hardware Implementation is depict-
ed as Fig. (3). At the state of S_offset, it makes decision from
Huffman ROM which provides the node number: if the left
offset of its high 8 bits Rdata [15:8] is 0, this node is leaf
node and the decoding is over. Rdata [7:0] of low 8 bits will
be taken as the final decoding result x_y_result. Otherwise, it
generates control signal get_1bit to read a codeword from
RAM. The state S_getbit acquires input data Din. If its value
is 1, it makes offset backwards according to the right offset
Rdata [7:0], and the address will be added to val to point to
the new storage space. S_address reads the number of new
node from Huffman ROM according to the address and re-
turns the state of S_offset to determine whether this node is
leaf node. Otherwise, it continuing read the codeword to
determine the next address of node.

Then the Huffman decoding runs by default procedures.
After each decoding it will generate two or four frequency
line value that is saved in public RAM units. When the de-
coding of great-value and small-value area is over and ar-
rives at the zero-value border, we can directly write 0 to pub-
lic RAM unit until 576 frequency value can be acquired.
This module needs to record the border value of zero-area,
which is used for sequent computing module as output sig-
nals, to reduce the data computation.

3.2. Inverse Quantization Module

The top encapsulated port of inverse quantization with
compensated factor is designed as the following Fig. (4):

Compared to Huffman module, the state machine of in-
verse quantization module with compensated factors is rela-
tively simple. The whole module is designed under the total
framework of control logic and data path. The state transition
of control logic is depicted as Fig. (5):

The meanings of each state in above figure are:
SAMPLE is state of lookup table. It has two processes of

lookup table. The first is the lookup table for value is. We
can acquire the value of 4/3 power corresponding to the
lookup table directly, for the value not more than 1026. For
the other is value we can get corresponding 4/3 power by
look-up table, after it is divided by 8, and finish the opera-
tion of multiplication by offset. Second is the look-up table
of compensated factors. For value larger than 1026, we can
determine the compensated factors multiplex group by its
size and the remainder divided by 8. The two states of look-
up run parallel, to exert the advantage of parallel processing.

SCALE index computation and processing state: this
state is charge of the computation of index A during the in-
verse process of MP3, and the index process for is acquired
by lookup table. We adopt 32-bits wide in the preparation of
code table. It is multiplied by corresponding 2x according to
the size of is4/3. The fractional part is transformed to integral
part for storage. The shift anti-operation is performed after
the index computation.

S_offset

Rdata[15:8]=0

Get_1bit=1'b1

S_getbit

Din=1

Val==Rdata[15:8] Val==Rdata[7:0]

S_address

Load_x_y=1'b1

X_y_result<=Rdata[7:0]

1

1

Address<=address+val

Fig. (3). State control graph of Huffman module.

FPGA Prototype Design and Simulation for MP3 Audio Decoder The Open Automation and Control Systems Journal, 2015, Volume 7 1409

WRITE state: this state will write is back to the address
of public Ram. It determines whether all the processes of is
is finished. If so, it goes to the completion state; otherwise, it
returns to lookup table state and runs the inverse quantiza-
tion transition of next is.

Completion state READY: this state finishes the remain-
ing procedures. When all the inverse quantization is finished,
it goes to the idle state.

Code table preparation and design of compensated fac-
tors: as mentioned above, in the program for decoding, we
adopt float number to denote and compute the data with frac-
tional part. Since the float number constitutes the order num-
ber and mantissa, the representation and computing process
are hard to be implemented in hardware. So the decimal is
multiplied by Nth power of 2 and represented by integer data.
When the bit wide is above 30 we can still obtain better SNR.

3.3. Fast Algorithm of IMDCT

IMDCT transforms a sub-band signal in particle from
frequency domain to time domain, and the equation is:

x
i
= X

k
cos[

!

2n
(2i +1+

!

2
)(2k +1)],0 " i " n#1

k=0

n

2
#1

$

(1)

X

k
 is input frequency signal; ix is output time domain

signal; n is the number of band lines. For short blocks,
 n = 12 ; for long blocks n = 36 .

Marovich in literature [11] demonstrated that the method
of Konstantinides [12] can be used to speed up IMDCT with
12 points and 36 points. It only needs to compute the result
of IMDCT with 6 points and 18 points, as

DCT

32!64
.

Info(13:0) Ram_D(31:0)

Ram_A(23:0)

Rom_A(10:0)

RamQ(31:0)

RomQ(31:0)

Channel Rom_CEN

CLK

Enable

Rst

Ram_WEN

Ram_CEN

DONE

Fig. (4). Top encapsulation with compensated factors of inverse quantization module.

IDLE

READY

Write

SCALESFBSEL

SAMPLE

Fig. (5). State transition graph of inverse quantization module.

1410 The Open Automation and Control Systems Journal, 2015, Volume 7 Wen-bo and Zi-ang

Then we get the result of IMDCT with 12-point and 36
points based on the relation described in Fig. (6). After de-
composition, we can get the results of IMDCT with 12
points and 36 points by computation of 3, 4, and 5 points.

For 6-point short blocks, they are divided into odd part
and even part by serial number. Then IMDCT transformation
with 3 points is performed first. Then the result is performed
corresponding multiply-add operations to get the result of 6-
point IMDCT. The process is shown as Fig. (7).

The equation of 3–point IMDCT is:

0 0 1 2

1 0 2

2 0 1 2

(3 / 2) (1/ 2)

(3 / 2) (1/ 2)

x X X X
x X X

x X X X

⎧ = + +
⎪

= −⎨
⎪ = − +⎩

 (2)

We add intermediate variables

T

0
 and

T

1
 to reduce the

computation. The final computation contains two multiplica-
tions and four additions:

0 0 2

1 1

0 0 1

1 0 2

2 0 1

(1/ 2)

(3 / 2)

T X X

T X
x T T
x X X
x T T

= +⎧
⎪

=⎪
⎪ = +⎨
⎪ = −⎪
⎪ = −⎩

(3)

After this simplification, one 6-point IMDCT needs 13
multiplications and 27 additions. Similarly, 36-point IMDCT
transformation can be acquired by 4-point and 5-point
IMDCT transformation.

N/2 sub-band signals

N/2 IDCT

A B

B

-B -A -A

N/2 IMDCT result

N IMDCT result

Fig. (6). Operation process of IMDCT36.

3-point IMDCT

0

2

4

0

1

2

X(n) x(k)

3-point IMDCT

1

3

5

5

4

3

0

1

2

0

1

2

-5

-4

-3
k =1(2cos(kπ/12))

Fig. (7). IMDCT decomposition with 4 and 6 points.

FPGA Prototype Design and Simulation for MP3 Audio Decoder The Open Automation and Control Systems Journal, 2015, Volume 7 1411

The original IMDCT algorithm has larger computation.
For the direct implementation of N-point IMDCT transfor-
mation, we need 2 / 2N multiplications and 2 / 2N N− addi-
tions. When 12N = , it needs 72 multiplications and 60 addi-
tions. When 36N = , the number is 648 and 612 correspond-
ingly. The comparison of fast algorithm and original algo-
rithm is shown in Table 2.

4. EXPERİMENTAL ANALYSİS

4.1. Verification Results of Audio Decoding Module

In order to test various audio modules, this paper ran-
domly selects five candidate MP3 fragments for hardware
and software decoding, as shown in Table 1. Software de-
coding adopts MP3 and AAC official standard based on C
language decoding program, and they extract key module by
output functions of C language file.

Since most operations of Huffman decoding are looking
up tables without calculation, it is not necessary to perform
fixed point transformation of data to verify the correction of
look-up results. For decoding speed, the test method in this
paper is: when one data decoding with fixed length is com-
pleted, the stop count flag bit of one FSM counter is set by
Parkinson decoding count register and reading value of
counter [18] via ModelSim or Chipscope after decoding.
Then the speed of different modules can be compared. For
chip resource occupation, this paper adopts comprehensive
toolkit in Xilinx ISE Design Suit 13.2, and chooses
xc5vlxll0t in target device, based on which it generates com-
prehensive report as occupied data in module resource. With
above methods, the verification results of Huffman decoding
module using hybrid look-up tables are shown in Table 4.

The average values between counting results and the test
results of other audio fragments are obtained. Based on these
results we find that Huffman-decoding module using hybrid
look-up table improves 2.38 times and 2.65 times of speed in
AAC and MP3, than that of using hybrid look-up table. The
decoding speed is raised obviously.

4.2. Performance Test of Fast IMDCT

IMDCT36 module test has two aspects: One is the func-
tion test which is used to compare the output results between
IMDCT36 and original C language function. The other is
performance test which compares the computation time be-
tween IMDCT36 and original C language function.
IMDCT36 module test adopts similar methods. The function
test and performance test are respectively completed by
IMDCT36_Comparison and IMDCT36_Performance. After
the tests, the average values of consumed time of original C
language function and hardware accelerating in 5000 times
are respectively acquired, as is shown in Table 5.

From Table 5. we can see, the operation time of
IMDCT36 is 30.9% lower than original C language program,
so IMDCT36 module can satisfy the design requirement and
it helps to accelerate the decoding speed. Based on these
results, we find two hardware structures contribute to accel-
erating speed of MP3 decoder in different degrees. The ac-
celerator can accelerate MP3 decoding more effectively.

The difference between accelerator and coprocessor can
be analyzed by the test data: Although the accelerator and
coprocessor are signal processing modules which are inde-
pendent of main processor, accelerator itself can operate and
calculate while operating pattern of coprocessor is still serial
one. DCT64 module controls the computing process by state

Table 2. Comparison of rapid algorithm and original algorithm.

N
Original Algorithm Fast Algorithm

Multiplications Additions Multiplications Additions

12 72 60 13 27

36 648 612 81 149

Table 3. Audio clips for audio module verification.

Code Sampling Rate (kHz) Code Rate (kbps) Number of Channels

001.mp3 44.1 128 2

002.mp3 48 320 2

003.mp3 44.1 96 2

004.aac 44.1 128 2

005.aac 48 192 2

1412 The Open Automation and Control Systems Journal, 2015, Volume 7 Wen-bo and Zi-ang

Table 4. Results of Huffman decoding module tests.

Clips Source
Times of Consumed Periods in Decoding

Accuracy of Lookup-Table
Step by Step Binary Tree

001.mp3 117690 254167 100%

002.mp3 104546 229345 100%

003.mp3 92298 236980 100%

004.aac 98834 203977 100%

005.aac 78251 195654 100%

Table 5. Performance test of IMDCT36.

Object Execution Time

Original C code 1440

IMDCT36 module 994

Table 6. SNR of MP3 hardware decoder

Sampling Rate (kHz) Bit Rate (kbps) SNR (dB)

44.1 128 90.01

44.1 192 90.38

44.1 256 91.34

machine. Parallel computing of different quantities will af-
fect the needed time of circuit area and the computation in
producing balance between area and time. However, there is
only one calculation unit in IMDCT36 module design pro-
cess.IMDCT36 operation is still based on execution se-
quence of original function with serial form, after original C
language function is rewrited according to new design idea.
The specified coprocessor can save decoding step so that the
performance can be improved to some extent. In order to
further improve the performance of coprocessor, a series of
multimedia specified expanded instruction set can be de-
signed. Some common specified instructions in operation
design will promote the complicated operations to be com-
pleted in one instruction, so it can more effectively improve
the effects of hardware acceleration.

4.3. Implementation and Verification of FPGA Prototype
Chip

The PCM data from computation and software decoding
results of MP3 decoder are directly compared. It is found
that most of 16bits PCM values of hardware decoder have
difference only on the lowest two bits position. When audio
playing software CoolEdit plays the audio values, the soft-
ware and hardware decoding results can be visually

compared by output waveform, as described in Fig. (8) and
(9). The time-domain waveform of PCM value by hardware
decoding has better tally with that by software decoding,
indicating that the quality of hardware decoding is very high.

We test the hardware decoding results of common MP3
code streams with 44.1kHz sampling rate, and the bit rate is
128kbps, 192bps and 256bps. Their SNR related to software
decoding are computed and the results are shown in Table 6.

Since the audio devices are different, the demands for
SNR are also different. From the data in Table 3 we can con-
clude that the MP3 decoder designed in this paper has higher
decoding quality and achieves the desired effect.

CONCLUSION

This paper focuses on the MP3 hardware decoder design.
It tries to improve and optimizes the decoder based on algo-
rithms analysis, according to the characteristics of hardware
implementation. We discuss the mapping of various modules
from algorithm to logic structure of hardware, and introduce
the control logic and digital path of its sub-modules, to pro-
pose corresponding hardware structure of the algorithm. For
Huffman module, it demonstrates the improvement of binary
tree look-up table method in speed; for inverse quantization

FPGA Prototype Design and Simulation for MP3 Audio Decoder The Open Automation and Control Systems Journal, 2015, Volume 7 1413

module, it mainly discusses its advantages compared to cur-
rent methods, during the computation of is value with 4/3
power. It does not need multiplier or multiplication and
solves some key problems in design of compensated word
code table. For IMDCT module, it explains the unified struc-
ture of decoding operation for MP3 and AAC, and the cali-
bration in computation. When introducing the modules de-
sign, we verify the characteristics and advantages from func-
tional simulation perspective and provide practical effect
based on the prototype chip.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flicts of interest.

ACKNOWLEDGEMENTS

The research work was supported by the Natural Science
Foundation of Education Department of Henan Province
(Grant No. 2011B510020; 2011B510022) and the Key
Technologies R & D Program of Henan Province (Grant No.
132102210101, 142102210580).

REFERENCES
[1] H. Hedberg, “A complete MP3 decoder on a chip”, Proceedings of

IEEE International Conference on Microelectronic Systems
Education, Anaheim, CA, United states, pp. 103-114, 2005.

[2] B. Wang, M. Rong, and W. Liu, “Implementation of MP3 decoder
in Openrisc developing system”, Computer Engineering, vol. 31,
no. 11, pp. 205-207, 2005.

[3] K. H. Bang, N. H. Jeong, J. S. Kim, and Y. C. Park, “Design and
VLSI implementation of a digital audio specific DSP core for
MP3/AAC”, IEEE Transactions on Consumer Electronics, vol. 1,
no. 48, pp. 790-795, 2002.

[4] W. Lı, X. Chen, and X. He, “Design and Implementation of
Extracurricular Experiment Board in Digital Electronic
Technology”, Modern Computer, vol. 12, no. 1, pp. 54-59, 2010.

[5] C. L. Chang, and K.S. Hsu, “Design and implementation of MP3-
music on demand system using streaming technology”, Journal of
Network and Computer Applications, vol. 26, no. 4, pp. 291-321,
2003.

[6] P. MalK, “Highly scalable IP core to accelerate the
forward/backward modified discrete cosine transform in MP3
implemented to FPGA and low-power ASIC”, IET Circuits,
Devices and Systems, vol.5, no.5, pp.351-359, 2011.

[7] H.S. Kim, S.H. Kim, and K. S. Chung, “FPGA implementation of
unified kernel structure for MDCT/IMDCT in audio coding
schemes”, Proceedings of International SoC Design Conference,,
Jeju, Korea, pp.100-103, 2011.

Software decoding Hardware decoding

Comparison

PCM code
stream

PCM code
stream CODEC playing

Subjective
evaluation

Fig. (8). Test method of decoding results.

Fig. (9). Time-domain waveform of encoded PCM signals by software and hardware

1414 The Open Automation and Control Systems Journal, 2015, Volume 7 Wen-bo and Zi-ang

[8] V. Nikolajevic, “Fettweis gerhard, computation of forward and
inverse MDCT using Clenshaw's recurrence formula”, IEEE
Transactions on Signal Processing, vol. 51, no. 5, pp. 1439-1444,
2003.

[9] B. Wang, M. Rong, and W. Liu, “Implementation of MP3 decoder
in Openrisc developing system”, Computer Engineering, vol. 31,
no. 11, pp. 205-207, 2005.

[10] H. Lıu, W. Lıu, and W. Xıng, “Huffman decoding module based on
the hardware and software co-design”, Electronic Design
Engineering, vol. 19, no. 16, pp. 174-177, 2011.

[11] H. Li, P. Li, and Y. Wang, “A new decomposition algorithm of
DCT-IV/DST-IV for realizing fast IMDCT computation”, IEEE
Signal Processing Letters, vol. 16, no. 9, pp. 735-738, 2009.

[12] S.V. Narasimhan, and M. Harish, “Spectral estimation based on
discrete cosine transform and modified group delay”, Signal
Processing, vol. 86, no. 7, pp. 1586-1596, 2006.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Wen-bo and Zi-ang; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

