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Abstract: Aiming at autonomous biological learning problems, applying the winner-takes-all (WTA) learning mecha-
nism, using the principle of cortical-striatal synaptic modification principle in basal ganglia, based on the operant condi-
tioning reflex theory, a basal ganglia behavior cognitive model is established. The proposed cognitive model is suitable 
for the cognitive learning of limited actions. The applications of the bionic learning model for Skinner's pigeons experi-
ment were simulated. The experimental results show that through the cognitive behavioral model to simulate the gradual 
process of adaptive learning for Skinner pigeons, the animals showed a gradual process of adaptive learning. This research 
provides a reference for bionic cognitive model of agent. 
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1. INTRODUCTION 

Skinner’s Operant Conditioning Reflex (OCR) principle 
has been extensively used in the animal training, teaching 
and medical science. In recent years, OCR method has been 
used with respect to machine learning and control of robot, 
and a variety of experiments have been performed.  

In 1988, from University of California, Bruce and others 
established an OCR-based learning model based on recursive 
learning in reinforcement learning algorithm from Klopf’s 
assumption [1], and applied it in an upright and balancing 
robot. In 1995, Zalama et al. researched on the obstacle 
avoidance for robot using the OCR model [2]. Robots have 
learnt the behavior of obstacle avoidance at any position 
after a period of conditioning reflex learning and training, 
although in the beginning the robot was in an environment 
characterized by disorder. In 1997, Gaudiano et al. per-
formed a physical experiment on a robot named Pioneer 1 
using operant conditioning learning method through off-line 
learning, and then transplanted the well-trained weights into 
the control program, to get a better obstacle avoidance effect 
[3]. Björn Brembs [4, 5], from Germany, conducted a re-
search on OCR in drosophila, and designed a simulation de-
vice for a bionic aircraft, and he pointed out that prediction is 
very important for the agent cognition, which directs to the 
next decision. In 2002, Zalama [6] et al. designed a neural 
network model for the reactive behavioral navigation of a 
mobile robot based on OCR theory. In 2005, Itoh [7] made a 
robot, named WE-4RII, that learnt the handshake behavior 
using the Hull theory based on OCR theory. In 2007, Ta-
dahiro, from University of Tokyo, designed an OCR  
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model using incremental acquisition of behaviors and signs 
based on a reinforcement learning schemata model and a 
spike timing-dependent plasticity network [8], implemented 
the speech control for robot, and carried out a physical ex-
periment on the robot named Khepera. The results proved 
OCR model’s effectiveness in speech control. Ruan, from 
Beijing University of Technology, built a computational 
model based on OCR theory using probabilistic automaton 
[9], and performed simulation of  the Skinner’s pigeon ex-
periment, and the proposed model has better bionic learning 
ability. Then, his research team built an OCR algorithm us-
ing BP neural networks, and did the some simulation exper-
iment on a two-wheeled self-balancing robot [10]. In the 
aspect of neurophysiology, O'Doherty et al. [11] designed a 
kind of OCR model, and through the fMRI technology, they 
found that ventral striatum in the basal ganglia affects re-
ward and motivation, and dorsal striatum affects behavior 
and cognitive control. 

Considering the basal ganglia neurophysiological basis of 
the OCR learning process, a kind of basal ganglia cognitive 
behavioral model based on OCR (OCR-based BCM) was 
established. In this model, the simulated annealing method 
was introduced to the winner-to-all mechanism of basal gan-
glia, and using the skinner’s pigeon experiment, we success-
fully simulated the animal's gradual learning and adaptive 
performance. 

2. OPERANT CONDITIONING REFLEX 

2.1. Principle of Operant Conditioning Reflex (OCR) 

Skinner’s OCR theory (also called as instrumental learn-
ing or operant learning) is a kind of behavior changing 
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process caused by stimulus. OCR is different from classics 
conditioning reflex (CCR). The object of OCR is originally 
the behavior of one’s own accord, while CCR will make 
some individuals generate behavior from nonspontaneous 
reaction. OCR theory indicates that when an action makes 
the system develop in a better direction, or the action is right; 
then in the following process, the action’s probability in the 
next same state will be increased, i.e. 

   
p(a | s) = p(a | s)+!p . Otherwise, when an action makes 

the system develop in a worse direction, or the action is bad; 
then in the following process, the action’s probability in the 
next same state will be decreased, i.e. p(a | s)= p(a | s)!"p.  
After a period of operant condition training, the agent will 
get adapted to the operation environment. As per Björn 
Bremb’s opinion on OCR learning, the prediction is very 
important in the whole instrumental learning process. 

For a system that has not yet been fully understood, we 
can learn the past experience to predict its future behavior. 
An important advantage of prediction learning is that its 
training samples directly come from the time series of the 
real-time input signal without the need for special teachers. 
Based on this idea, we first established the following OCR 
learning model. 

2.2. OCR Learning Model 

Definition 1: A OCR learning model (OCRLM) can be 
expressed as a 8-tuple computational model OCRLM

    
= S , A, f ,!,r,V (S , A), P, L , and the meaning of each ele-
ments are as follows. 

(1)  S : OCRLM internal states sets, with 

    
S ={s

i
i = 0,1,2,!,n} ,  S  is a finite nonempty set including 

all possible states, 
 
s

i
 denotes the i-th state, and n is the num-

ber of states; 

(2)  A : OCRLM selectable action sets, with

    
A ={a

i
i = 0,1,2,!,m} , 

 
a

i
denotes the i-th operant action, 

m is the number of selectable actions; 

(3) 
 
f : OCRLM states transition function

   
f : S(t)!a(t)" S(t +1) , i.e. state at t+1: 

   
S(t +1)! S  is 

decided by 
   
S(t)! S  and action 

   
a(t)! A , generally decided 

by environment or system model; 

(4) 
 
! : OCRLM tropism mechanism 

    
!(t) =!(S(t))  de-

notes the system’s orientation property at time t. As the defi-
nition of system states, the tropism is defined from biological 
significance. Environment determines the direction of bio-
logical evolution. The greater the tropism value is, the better 
it is. Different tropism functions can be defined according to 
the different situations; 

(5) r :
   
r(t) = r[S(t),U (t)]  is the reward after action A(t). 

Based on the definition of tropism function, if 

    
!(t +1) >!(t) , indicates that the system is developing in the 

better direction, then 1r = ; and if ( 1) ( )t tj j+ < , indicates 
that is developing in the worse direction, then 0r = ; 

(6) ( , )V S A : OCRLM predication function, on one state

S , 
    
V (S , A) ={v

i
(S ,a

i
) i = 0,1,2,!,m} , can be seen as the 

action estimation to future reward discount sum; 

(7) P : OCRLM probability vector from condition state 
to selective action, 
P= [ p(a1), p(a2 ),!, p(am ) S]= [ pa1,S , pa2 ,S ,!, pam ,S ], and the 

action selection obeys the probability distribution of G 

    

p
a

j
,S

= p(a = a
j
| S ) =

e
!V (S ,a

j
)

e
!V (S ,a)

a!A"
, the meaning is that in 

the condition of S, OCRM operate behavior ja AŒ  as prob-

ability 
   
p(a

j
)!" , and 

   
0 < p(a

m
s) <1 ,

   

p(a
i

s)
i=1

m

! =1 ; 

(8) L : OCRLM learning mechanism, 
   
L : P(t)! P(t +1)

. The updating is mainly completed by the updating of eval-
uation mechanism, and here it is implemented through up-
dating the weights in the prediction function 

  
V (S , A)  by TD 

learning algorithm. 
As we know, entropy in information theory is a physical 

quantity representing the degree of system uncertainties. And 
the bigger the information entropy, the greater the uncertain-
ty of the system is. On one state, the entropy Ek is defined as 
follows: 

    

E
k

=! !
k
(i) log!

k
(i)

i"U (k )

#  (1) 

Where, 
   
!

k
(i)  denotes the probability of selecting action i 

at the state k. Based on the entropy definition, we can define 
the condition entropy as follows: 

Definition 2: Condition entropy 
  
H (s

i
)  denotes the oper-

ation entropy of OCRLM on state 
  
s

i
! S : 

   

H (s
i
) =! p(a

k
s

i
) log

2
( p(a

k
s

i
))

k=1

m

"  (2) 

The basic principles of the entire OCR learning process 
can be briefly as follows: at time t , suppose the system state 
is 

   
S(t) = s

i
! S . According to the initial predication function 

and probability P  vector to determine the selection proba-
bility of each operation behavior, and according to the com-
petition mechanism on the basis of probability to choose 
operation behavior 

  
a

k
! A , carry out the action, and then the 

state is transformed into 
   
S(t +1)! S . According to the tro-

pism information, obtain the real-time evaluation infor-
mation of this operation; and according to TD learning to 
update the predication network 

  
V (S , A) , find new prediction 

estimates and get a new probability vector. Continue the be-
havioral choice in the next round, until the updated network 
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can learn the most optimal operation. So, using OCR forms, 
the study process is over. The whole process can be repre-
sented in Fig. (1). 

3. BASAL GANGLIA COGNITIVE BEHAVIORAL 
MODEL BASED ON OPEARNT CONDITIONING RE-
FLEX THEORY(OCR-BASED BCM) 

3.1. Basal Ganglia Cognitive Behavioral Model Design 

Basal ganglia (BG) are composed of a series of nerve nu-
clei in deep brain. It is connected to the cerebral cortex, thal-
amus and brainstem. According to the anatomy and physiol-
ogy, the BG's main function is to control voluntary move-
ment, and it can perform behavior choice and reflex learning. 
Basal ganglia includes caudate and putamen (striatum), glo-
bus pallidus, substantia nigra and thalamic nuclei. The stria-
tum can be divided into two complementary and phenotypi-
cally distinct compartments: the striosome and the 
matrisome according to different cholinesterase. Striatum is 
the structure for Basal ganglia receiving excitability input 
from the cerebral cortex (CC), while striosome only receives 
prefrontal excitatory afferent fibers project. Matrisome sends 
inhibitory efferent fibers to pallidum medial segment and the 
substantia nigra pars reticulate (SNR) forms the structure of 
the output of the basal ganglia. Striosome output to the Sub-
stantia Nigra Compacta, control and adjust the Substantia 
Nigra and Striatum pathways. Eventually CC-BG-thalamus-
CC loop is formed. Among them, the action evaluation is 
done in striosome, action selection is done in matrisome. 
Dopamine signal from Substantia Nigra Compacta is used as 
the guidance of motion evaluation to improve the prediction 
to future reward. The aim is to get the better action. 

Based on the OCR principle and BG neurophysiology, 
this paper established a cognitive behavioral model of the 
basal ganglia, which mainly includes: sensory cortex (SC), 
motor cortex (MC), Striatum(striosome, matrix)(STR), Sub-
stantia Nigra (SN), which can be expressed by formula (3). 

 
 

   

BG ! (SC, MC,STR
striosome

(CC,CC-STR
synapsis

),

STR
matrix

,SN
DA

)
 (3) 

Each abbreviated element has the following meaning:  
SC — System state information 

sensed by sensory cortex 

MC — Action information sensed by 
motor cortex 

CC — State and action information 
sensed by cerebral cortex 

  
CC-STR

synapsis

 

— Cortico-striatal synaptic con-
nections between the cerebral 
cortex and striatum 

 
STR

striosome
 — Striosome output of the pre-

diction of future reward discount 
sum 

 
SN

DA
 — Dopamine from SN 

Basal ganglia cooperate with cerebral cortex and thala-
mus and form the OCR learning mechanism. The whole 
learning flow is shown in Fig. (2). The solid line denotes the 
signal flow, while the dashed line denotes synaptic modifica-
tion. In the scheme, thalamus implements two functions: one 
is generating the reward information and the other is trans-
ferring information. 

3.2. STR Implementation Based on Recurrent Neural 
Network 

3.2.1. Elman Network 

Elman network is a kind of regression neural network, as 
shown in Fig. (3). From the view point of system, it not only 
contains the input layer, hidden layer and output layer nodes, 
but also contains the feedback node with the same number of 
hidden layer nodes, earlier used to record hidden layer unit 
output value of the moment, which can be considered  
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Fig. (1). The learning control mechanism based on OCR scheme. 
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as a delay operator. The signal can be passed back and forth 
between neurons, when the entire network is in a constantly 
changing dynamic condition, which can more directly and 
vividly reflect the system’s dynamic characteristic in the 
process of calculation. This network has better dynamic be-
havior and computing power than the forward neural net-
work. Regression network is used, which can enhance the 
ability of dealing with dynamic information, to make it more 
suitable for the stability control of complex systems. This 
kind of learning pattern is similar to human brain, in which 
the memory of the new information will not affect the infor-
mation already contained; thus it can reflect the stability of 
the human brain memory. 

Network input vector     IN !R
r"1  denotes the state-action 

pair at time  t , output is     Y !R
m"1 , the node number of hid-

den layer is  h , input vector of hidden layer is 

     
O(t) = o

1
(t),o

2
(t),!,o

h
(t)!

"#
$
%&

T

'R
h(1 , output vector of hidden 

layer is 
     
H(t) = h

1
(t),h

2
(t),!,h

h
(t)!

"#
$
%&

T

'R
h(1 , the network 

connection weights are     W
(1)
!R

h"r ,W (2)
!R

h"h ,W (3)
!R

m"h

 
respectively, output layer activation function is the linear 
weighted function, then we can get the following formula: 

    
Y (t) =W

(3)
H(t)  (4) 

     

h
j
(t) = !(o

j
(t)) =

1

1+ exp(!o
j
(t))

( j =1,2,!,h)  (5) 

    
O(t) = (W (2) )T

H(t!1)+ (W (1) )T
IN (t)  (6) 

   
!(!)  is the nonlinear activation function of hidden layer, 

here 
    

d!(x)

dx
= !(x)[1!!(x)]  is Sigmoid function.  Through 

the formulas (4-6), we can get that the output of hidden layer 
can be seen as the state of nonlinear dynamic model. This 
kind of regression neural network can acquire the dynamic 
characteristic of nonlinear system.  

3.2.2. STR Implementation 

The cortex information includes sensory cortex infor-
mation and motor cortex information, so 

   
CC = [SC; MC]   (7) 

   
STR

striosome
= STR(CC,CC-STR

synapsis
)  (8) 

Where 
 
STR

striosome
 outputs the prediction information of 

future reward discount sum. 

     
STR

striosome
(t) = r(t +1)+!r(t + 2)+!

2
r(t + 3)+!  (9) 

So, the future reward discount sum at time    t!1  is: 

     
STR

striosome
(t +1) = r(t + 2)+!r(t + 3)+!

2
r(t + 4)+!  (10) 

 

Striatum output is implemented by Elman network 
above, where the hidden layer represents the granulosa cells 
in the cerebral cortex and the neural network weight repre-
sents the cortico-striatal synaptic connection. By formulas 
(9) and (10), we can get 

    
STR

striosome
(t) = r(t +1)+!STR

striosome
(t +1)

, which shows that the action evaluation value 
  
STR

striosome
(t)  

at time  t  can be denoted by 
   
STR

striosome
(t +1) . But in the 

beginning of prediction some error must exist, and the esti-
mated evaluation value 

  
STR

striosome
(t)  expressed by 

   
STR

striosome
(t +1)  is not equal to the actual 

  
STR

striosome
(t) , and 

thus the substantia nigra generates the dopamine response, 
denoted by DASN  as follows: 

    
SN

DA
= r(t +1)+!STR

striosome
(t +1)!STR

striosome
(t)   (11) 

3.3. Cortico-Striatal Synaptic Modification 

The dopamine is produced by substantia nigra. Its feed-
back to striatum is used to modify the cortico-striatal synap-
tic and Nigra-Strio loop form. The modification mechanism 
is shown through the formulas (12) and (13). 

   
CC-STR

synapsis
(t)!CC-STR

synapsis
(t)+"CC-STR

synapsis
(t)  (12) 

    

!CC-STR
synapsis

(t) =! "SN
DA
"

#STR

#CC-STR
synapsis

  (13) 

3.4. Action Selection Mechanism in Matrix 

In the operant learning process of basal ganglia cognitive 
behavior model, the matrix in striatum stimulates mechanism 
of action selection. During the operant learning, selecting 
action in probability is very important. Here, we use the 
Boltzmann Gibbs probability distribution to define the be-
havior choice probability. The expression is given through 
formula (14). 

   

P(a = a
i
| SC(t)) =

e
STR

striosome
(SC (t ),a

k
)/T

e
STR

striosome
(SC (t ),a)/T

a!A"
  (14) 

Where, T>0 is the temperature constant. The larger the T 
is, the greater the degree of random behavior choice. When T 
is near to zero, the probability of choosing the action with 
the most value 

  
STR

striosome
(SC(t),a

k
)  is near to one. T is de-

creased with time, which denotes that during the learning 
process, the system accumulates more and more knowledge. 
The system gradually evolves into a deterministic system 
from an uncertainty system. In the beginning, in order to 
express the activity of biological systems, the T should not 
be set too small. 

    

T
0

= T
max

,

T
t+1

= T
min

+!(T
t
!T

min
)

"

#

$
$

%
$
$

  (15) 
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Where 
   
0!!!1  is the annealing factor. 

3.5. OCR Learning Process in Basal Ganglia 

Step 1: Initialization 0t = , 
   
CC-STR

synapsis
(0) = 0 , so 

    
!s" S , p(a

k
| s) =

1

m
(k =1,2,!,m) , where m  is the action 

number. This means that in the early state, the basal ganglia 
do not have any predetermined decisions. Input the begin-
ning 

  
SC(0) , actions set  A  and the learning coefficient of 

OCR learning mechanism. 

Step 2: Get the output of Striatum and the selected 
action. Compute each 

  
STR

striosome
(SC(t),a

k
)  for all the ac-

tions, and get the probability for selecting each action based 
on formula (14). Output action 

  
a(t)  through the action se-

lection mechanism in the matrix of striatum and store 

  
STR

striosome
(SC(t),a(t)) . 

Step 3: Carry out the selected action 
  
a(t) , the state is 

transferred to 
   
SC(t +1) , get the immediate reward 1tr+ . 

Then, select 
   
a(t +1)  as Step 2, and get striatum predication 

value 
   
STR

striosome
(SC(t +1),a(t +1))  at time    t +1 . 

Step 4: Form OCR. Based on formulas (12) and (13), the 
cortico-striatal synapsis is modified. By decreasing the tem-
perature based on formula (15), and changing the action se-
lection probability, the OCR is formed. 

Step 5: Time is updated. 

4. APPLIACTION OF OCR-BASED BASAL GANGLIA 
COGNITIVE BEHAVIORAL MODEL IN PIGEON 
EXPERIMENT 

In order to verify the OCR behavior property of the pro-
posed cognitive model, we applied the model in the Skinner 
pigeon experiment. 

 

cerebral cortex
sensory cortex                              motor cortex                            

state: s(t) action: A

Select actionEnvironment 
interaction action: aNew state: s(t+1)

Reward: r(t)

d:DA

Basal Ganglia
t

Thala-
mus

SN

Striatum STR

Robot

V(st,A)

t+1

V(st+1,A) + +
－

- synapsisCC STR

Strio-
some

Thala-
mus

matrix

 

Fig. (2). The learning control mechanism based on OCR scheme. 

 

(1)W

(2)W

(3)W

IN Y

r

h





 
Fig. (3). Elman network topology. 
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4.1. Skinner Pigeon Experiment Model Establishment 

Skinner pigeon experiment is a classic experiment about 
OCR, which was proposed by Skinner. The experiment de-
tails are as follows. A pigeon is put in a box with three but-
tons. Initially, the pigeon can peck the buttons randomly, but 
when it peck red button, it will get some food (a kind of 
positive reinforcement stimulus). When it peck yellow but-
ton, there is no any stimulus, and when it peck blue button, 
the pigeon will get electric shock (a kind of negative rein-
forcement stimulus). After a period of time, the frequency of 
pecking red button is apparently higher than other two but-
tons. The pigeon get some knowledge through active action, 
and it can autonomously get food when it is hungry and 
avoid electrical shock. 

In order to build Skinner pigeon experiment mathemati-
cal model, we firstly code the state and action. 

4.1.1. State and Action Coding 

 Supposing the pigeon have three states: hungry (
   
s

0
=1 ), 

half-hungry(
   
s

1
= 2 ) and zero-hungry(

   
s

2
= 3 ). The pigeon is 

in a good state when the state value is big. Pigeon have three 
actions: pecking the red button, yellow button and blue but-
ton, separately coded as 

   
a

0
=1,a

1
= 2,a

2
= 3  respectively. 

4.1.2. State Transition 

The pigeon experiment’s state transition equation 
 
f :

   
S(t)!A(t)" S(t +1)  can be defined as follows: 

   

f (s
0
,a

0
) = s

1

f (s
0
,a

1
) = s

0

f (s
0
,a

2
) = s

0

 
f (s1,a0 )= s2
f (s1,a1)= s0
f (s1,a2 )= s0

 

   

f (s
2
,a

0
) = s

2

f (s
2
,a

1
) = s

1

f (s
2
,a

2
) = s

0

  (16) 

 

 

4.1.3. Tropism Function and Reward Mechanism 

We defined the tropism function as formula (17) for 
Skinner pigeon. 

    
!(t) = s(t)  (17) 

The tropism function shows that when the pigeon is in 
zero-hungry state, 

    
s(t) = 3,!(t) = 3 , it has a better tropism 

state. When the pigeon is in hungry state, 
    
s(t) =1,!(t) =1 , 

the tropism is worst. 

Based on tropism function, we can define the reward 
mechanism. If 

    
!(t +1)!!(t) , it denotes that the system is 

changing to a better state,    r =1 , and if 
    
!(t +1) <!(t) , it 

denotes that the system is changing to a bad state, 0r = , i.e. 

    

r
t+1

=
1( penalty) if (!(t +1)!!(t)),

0(reward ) else.

"
#
$$

%
$$

 (18) 

4.2. Simulation Experiment and Analysis 

Set the parameter during simulation: 2, 5, 1r h m= = = , 
Maxstep=2000, sample time 1cT s= . Simulation experiment 
is done in MATLAB environment. During the process, we 
record the state and selected action of pigeon at each mo-
ment, as shown in Fig. (4). 

A statistical analysis of behavior of selecting three but-
tons is done based on six statistical results, respectively, at 
the time of: 200s / 400s / 600s / 800s / 1200s / 2000s. The six 
statistical results are shown in Fig. (5). Fig. (6) shows the 
probability changes of pigeon pecking of different colored 
buttons. 

In Figs. (4-6), it is shown that in the beginning of the 
training phase, the initial probability of selecting different 
operating behavior is the same, so the number of pigeons 
pecking three buttons is basically the same, which is equal to 
0.3333. But along with the random environment interactions, 

 
Fig. (4). Pigeon state and action results. 
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the cortico-striatal synaptic weights were changed unceas-
ingly, causing the change of behavior selection probability. 
The number of red button selection probability for pigeon is 
gradually increased, and the probability number of pecking 
yellow and blue button is gradually reduced. When in the 
2000s, probability of pecking red button is far greater than 
other two buttons, thus the OCR is formed in the basal gan-
glia. 

By formula (2), system entropy can be calculated at each 
moment, and the entropy change with time is shown in Fig. 
(7). Through the changing trend of entropy, it can be seen 
that at the initial stage, randomness of pigeon behavior 
choice is bigger. Over a period of operating conditions train-

ing of basal ganglia, neural structures (mainly referring to 
the cortico-striatal synaptic weights) change, and the entropy 
is gradually reduced. It also illustrates that learning is a pro-
cess marked by decreased entropy, which is an orderly self-
organization process. 

CONCLUSION 

Based on the OCR principle, a basal ganglia cognitive 
behavioral model has been proposed. Firstly, by applying 
prediction mechanism, an OCR learning model is estab-
lished, which corresponds with the behavior selection mech-
anism of basal ganglia. And then, the basal ganglia model 
based on OCR is proposed. In the proposed model, a cortico-

 
Fig. (5). Number of selected three action. 

 

 

Fig. (6). The change of probability. 

 

 
Fig. (7). The change of entropy. 
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striatal synapsis model is implemented using Elman neural 
network weights. Input information from cortex and sensory  
which is a state-action pair. Striosome in striatum outputs the 
prediction of actions, and matrix in striatum selects action. 
The action is delivered to motor cortex and puts into the en-
vironment, then the cortico-striatal-thalamic-cortical (CSTC) 
circuit is formed. Cortico-striatal synapsis model is modified 
by the dopamine from substantia nigra, and hence the sub-
stantia nigra-striatal circuit is formed. 

The proposed basal ganglia cognitive behavioral model 
based on OCR is suitable for the limited cognitive behavior 
learning, and there is no limit to the number of system status. 
By applying the bionic learning model, Skinner pigeon ex-
periment is simulated in MATLAB. Through simulation, it 
can be seen that the constructed model of basal ganglia ef-
fectively simulates the biological phenomenon of OCR, and 
shows better self-organizing, adaptive and self-learning abil-
ity, which provides reference for the further research on cog-
nitive model. In the following research, this proposed model 
will be used in robot to further verify the effectiveness of the 
model. 
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