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Abstract: The finite-time stabilization problem for a class of networked control systems with state delay is considered in 
this paper. With Lyapunov theorem, a sufficient condition for the design of a state feedback controller which makes the 
closed loop system finite-time stable is provided. And, the sufficient condition is given in terms of linear matrix inequality. 
A numerical example is presented to illustrate the proposed methodology. 
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1. INTRODUCTION 

Feedback control systems wherein the control loops are 
closed through a real-time network are called networked 
control systems (NCSs). The main feature of NCSs is that 
the components (sensors, controller and actuators) of the 
system are connected by a network. Compared with tradi-
tional point-to-point design, the NCSs have many advantages 
such as low cost, wiring reduction, simple installation and 
maintenance, and high reliability [1-3]. For these reasons, 
NCSs have been widely applied to many complicated control 
systems, such as aviation and aerospace fields [4, 5]. 

However, the insertion of the communication network in 
feedback control loop makes the analysis and design of 
NCSs complicated. The change of communication architec-
ture induces different forms of time delay uncertainty be-
tween sensors, actuators and controllers. These time delays 
come from the time sharing of the communication medium 
as well as the computation time required for physical signal 
coding and communication processing [6-8]. It is well 
known that time delays can degrade a system's performance 
and even cause system instability. Therefore, the issues of 
stability analysis and designing controllers for NCSs have 
received much consideration for decades [7-12]. 

Much work has been done on the robust control of NCSs 
over the past ten years. Most of the results in this field relate 
to stability and performance criteria defined over an infinite 
time interval. However, the main concern in many practical 
applications is the behavior of the dynamical systems over a 
fixed finite time interval [13], for example, large values of 
the state are not acceptable in the presence of saturations. 
Therefore, we need to check the unacceptable values that the 
system state does not exceed a certain threshold during a 
fixed finite-time interval by giving some initial conditions. 
The concept of finite-time stability referring to these transi-
ent performances of control dynamics dates back to the  
 
 

Sixties, when it was introduced in the control literature [14]. 
Then, some attempts on finite-time stability can be found by 
using Lyapunov functional approach [15]. Recently, with the 
aid of LMIs techniques, more concepts of finite-time stabil-
ity have been proposed for linear continuous-time or dis-
crete-time control system in the literatures; see, for instance 
[16-22]. 

But the above papers consider the Lyapunov stability for 
NCSs, a few results on finite-time stability for NCSs has 
been reported. Based on this fact, some new methods and 
approaches should be developed for designing controllers for 
NCSs, which motivates this paper. Inspired by the above 
literature, in this paper, the attention is focused on the finite-
time stabilization of a class of NCSs with state delay and 
communication delays. The design is divided in two steps: 
the synthesis condition of the state feedback controller, sup-
posing that the state variables are available, and then the 
sufficient condition is given in terms of an LMI optimization 
problem. Conversely, the approach proposed in this paper 
leads to an LMI formulation, which gives the opportunity of 
fitting the finite-time control problem in the general frame-
work of the LMI approach to the multi-objective synthesis. 

 This paper is organized as follows: in Section 2 the defi-
nition of finite-time stability is recalled and the problem we 
want to solve is formally stated. In section 3, we address the 
finite-time stability problems, namely sufficient conditions 
for the existence of state feedback controllers guaranteeing 
finite-time stabilization of the closed loop systems are pro-
vided. In section4, it is shown how the proposed design con-
dition can be expressed in terms of LMIs and, therefore, can 
be efficiently dealt with, and a numerical example is provid-
ed. Some conclusions are drawn in Section 5. 

2. PRELIMINARIES 

 In this paper we consider the following typical NCSs 
with state delay as shown in Fig. (1).  

   
!x(t) = Ax(t)+ A

h
x(t ! h)+ Bu(t)+ B

1
" (t)  (1) 
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Where, 
  
A, A

h
, B, B

1
take value in 

  
R

n!n
, R

n!n
, R

n!m
, R

n!l
,  re-

spectively.
  
x(t)!R

n  is the state vector, 
  
u(t)!R

m  is the con-

trol input, and h denotes system state delay. 
  
! (t)"R

l

 is the 
exogenous disturbance and satisfies. 

  
! T (t)! (t)dt

0

T

" # d , d $ 0
 

(2) 

To simplify the analysis, based on actual engineering 
background, a full characterization of this NCS is given by 
the following assumption. 

Assumption 1. The sensor is time driven; the controller 
and actuator are event driven. We use 

 
!

sc  and 
 
!

ca  to repre-
sent the sensor-controller and controller-actuator delay, re-
spectively, then the communication delay is given by

 
! = !

sc
+!

ca
.  

Considering the effect of communication delay ! , the 
above plant model is transformed into an NCS model 

   
!x(t) = Ax(t)+ A

h
x(t ! h)+ Bu(t !" )+ B

1
# (t)  (3) 

Concerning NCSs (3), we design a state feedback con-
troller 

  
u(t) = Kx(t)  (4) 

Where,  K  is a state feedback gain matrix to be deter-
mined later. Then, the resulting closed-loop NCSs follows 
that 

   
!x(t) = Ax(t)+ A

h
x(t ! h)+ BKx(t !" )+ B

1
# (t)  (5) 

The aim of this paper is to find some sufficient condi-
tions which guarantee the existence of a state feedback con-
troller which stabilizes the system (1) over the finite interval 

  
[0,T ] . By selecting the appropriate Lyapunov–Krasovskii 
function, the main results will be given in the form of LMIs. 
The general idea of finite-time control can be formalized 
through the following definitions over a finite-time interval 
for some given initial conditions [17-22]. 

Definition 1 (Finite-time stability). Given three positive 
scalars 1 2, ,c c T , with 1 2c c<  and a positive matrix R , the 

time delay NCSs (3) (setting 
  
! (t) " 0 ) is said to be finite-

time stable (FTS) with respect to 
  
(c

1
,c

2
,T , R) , if 

  
x

T (0)Rx(0) ! c
1
" x

T (t)Rx(t) < c
2
#t $[0,T ]  (6) 

Remark 1. Different with the concept of Lyapunov as-
ymptotic stability, FTS is a practical concept used to study 
the behavior of the system within a finite interval. A system 
is said to be finite-time stable if, once we fix a finite-time 
interval, its state remains within prescribed bounds during 
this time interval. Obviously, a system which is FTS may be 
not Lyapunov asymptotically stable; conversely a Lyapunov 
asymptotically stable system could not be FTS if, during the 
transients state, its state exceeds the prescribed bounds. 

Definition 2 (Finite-time boundedness). Given three pos-
itive scalars 1 2, ,c c T  with 1 2c c< , a positive definite matrix 
R  and a class of signals ( )u t , the time delay NCSs (3) is 
said to be FTB with respect to 1 2( , , , , , )c c u T R d , if condition 
(6) holds for all ( ) mu t R∈ .  

Definition 3 (Finite-time stabilization via state feedback). 
Given three positive scalars 1 2, ,c c T  with 1 2c c< , a positive 
definite matrix R , the time delay NCSs (3) is FTB with re-
spect to 1 2( , , , , )c c T R d  if there exists a state feedback con-
troller in the form (4) and the condition (6) holds. 

Remark 2. Notice that conditions (7) can be guaranteed 
by letting

  
!

T (t)! (t) " d  (see [17–19, 23–24]). In the pres-
ence of external inputs, FTS can lead to the concept of FTB. 
Thus, FTS can be recovered as a particular case of FTB by 
setting 0d = , that is, FTB implies finite-time stability, but 
the converse is not the fact. FTB and FTS are open-loop 
concepts. The finite-time control problem concerns the de-
sign of a state feedback controller which ensures the FTS or 
the FTB of the closed-loop time-delay NCSs (3). 

Lemma 1 [3] The LMI 

  

Y (x) W (x)

W
T (x) R(x)

!

"

#
#

$

%

&
&
> 0  

Is equivalent to, 

  
R(x) > 0,Y (x)!W (x)R

!1(x)W T (x) > 0  

Where, 
  
Y (x) = Y

T (x), R(x) = R
T (x) and

  
W (x)  depend 

on x . 

3. MAIN RESULTS 

In this section, we consider the finite-time control syn-
thesis for NCSs with state delay and communication delay, 
in terms of LMIs, we obtain the sufficient condition for the 
finite-time stabilization via state feedback.  

Theorem 1. Given three positive scalars 1 2, ,c c T , with

1 2c c< , a positive definite matrix R , the time delay NCSs 

Actuator Sensor

Delay

Plant

Controller

Delay	   ca 	   scNetwork Medium

 

Fig. (1). A typical networked control system. 
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(3) is finite-time stabilization via state feedback with respect 
to 1 2( , , , , )c c T R d , if there exist a scalar 0α ≥ , positive defi-
nite matrices n nP R ×∈  , n nQ R ×∈ , n nT R ×∈ , l lS R ×∈ , and 

matrix m nK R ×∈  such that the following matrix inequalities 
hold 

  

! PA
h

PBK PB
1

" #Q 0 0

" " #T 0

" " " #$S

%

&

'
'
'
'
'

(

)

*
*
*
*
*

< 0

 

(8) 

And, 

   

c
1
(!

max
( !P)+ h!

max
( !Q)+"!

max
( !T ))+ d!

max
(S )(1# e#$T )

!
min

( !P)
< c

2
e#$T  (9) 

Where, 

 
! = PA+ A

T
P +Q +T "#P ,   !P = R

!1/2
PR

!1/2 , 

   
!Q = R

!1/2
QR

!1/2 ,    !T = R
!1/2

TR
!1/2

 and 
  
!

max
(i)  and 

  
!

min
(i)  

indicate the maximum and minimum eigenvalue of the aug-
ment, respectively. 

Proof; For given symmetric positive definite matrix
, ,P Q T , we construct the following Lyapunov–Krasovskii 

function: 

  

V (x(t)) = xT (t)Px(t)+ xT (! )Qx
t-h

t

" (! )d!

+ xT (! )Tx
t-#

t

" (! )d!
  (10) 

The time derivative of ( ( ))V x t along the trajectories of 
system (5) is given by  

   

 !V (x(t)) = xT (t)(PA+ AT P)x(t)+ 2xT (t)PA
h
x(t ! h)

               + 2xT (t)PBKx(t !" )+ 2xT (t)PB
1
# (t)

               + xT (t)Qx(t)+ xT (t ! h)Qx(t ! h)

               + xT (t)Tx(t)+ xT (t !" )Tx(t !" )

             =xT (t)(PA+ AT P +Q +T )x(t)

               + 2xT (t)PA
h
x(t ! h)+ 2xT (t)PBKx(t !" )

               + 2xT (t)PB
1
# (t)+ xT (t ! h)Qx(t ! h)

               + xT (t !" )Tx(t !" )

            =

x(t)

x(t ! h)

x(t !" )

# (t)

$

%

&
&
&
&
&

'

(

)
)
)
)
)

T

*

x(t)

x(t ! h)

x(t !" )

# (t)

$

%

&
&
&
&
&

'

(

)
)
)
)
)

  

Where, 
 
 
 

  

! =

PA+ AT P +Q +T PA
h

PBK PB
1

" #Q 0 0

" " #T 0

" " " 0

$

%

&
&
&
&
&

'

(

)
)
)
)
)

 

From condition (8), we have 

   

!V (x(t)) <!x
T (t)Px(t)+!" T (t)S" (t)

           <!V (x(t))+!" T (t)S" (t)  
(11) 

Multiplying (11) by e
!"t , we can obtain 

   
e
!"t !V (x(t))! e

!"t
"V (x(t)) <"e

!"t
#

T (t)S# (t)   

Furthermore 

  

d

dt
(e!"t

V (x(t))) <"e
!"t
#

T (t)S# (t)   

By integrating the above inequality from 0 to t , with
[0, ]t T∈ , it follows that 

  
e
!"t

V (x(t))!V (x(0)) < "e
!"#$ T (# )S$ (# )d#

0

t

%  
(12) 

Noting that  ! " 0 ,   !P = R
!1/2

PR
!1/2 , 

   
!Q = R

!1/2
QR

!1/2 , and 

   
!T = R

!1/2
TR

!1/2 , we can obtain the following relation: 

   

xT (t)Px(t) !V (x(t))

< e"tV (x(0))+"d#
max

(S )e"t e$"% d%
0

t

&
< e"t[xT (0)Px(0)+ xT (% )Qx

$h

0

& (% )d%

 + xT (% )Tx
$'

0

& (% )d% + d#
max

(S )(1$ e$"t )]

< e"t[xT (0)R1/2 !PR1/2x(0)

 + xT (% )R1/2 !QR1/2x
$h

0

& (% )d%

 + xT (% )R1/2 !TR1/2x
$'

0

& (% )d%

 + d#
max

(S )(1$ e$"t )]

< e"t[#
max

( !P)xT (0)Rx(0)

 + #
max

( !Q) xT (% )Rx
$h

0

& (% )d%

 + #
max

( !T ) xT (% )Rx
-'

0

& (% )d%

 + d#
max

(S )(1$ e$"t )]

< e"T [c
1
(#

max
( !P)+ h#

max
( !Q)+'#

max
( !T ))

 + d#
max

(S )(1$ e$"t )]

 (13) 

On the other hand, it yields 

   
x

T (t)Px(t) = x
T (t)R

1/2 !PR
1/2

x(t) ! "
min

( !P)x
T (t)Rx(t)  (14) 
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Putting together (13) and (14) we have 

   

xT (t)Rx(t)

<

e!T [c
1
("

max
( !P)+ h"

max
( !Q)+#"

max
( !T ))+

d"
max

(S )(1$ e$!T )]

"
min

( !P)  

(15) 

Condition (9) and inequality (15) imply,  

  
x

T (t)Rx(t) ! c
2
," t #[0,T ] . 

This completes the proof. Therefore, the proof follows. 

Theorem 2. Given three positive scalars 
  
c

1
,c

2
,T , with

1 2c c< , a positive definite matrix R , the time delay NCSs 
(3) is finite-time stabilization via state feedback 

  
u(t) = KX

!1
x(t)  with respect to 

  
(c

1
,c

2
,T , R,d )  if, there exist 

scalars 
  
! " 0,  #

i
> 0,  i = 1,2,3,4. , positive definite matrices 

 X !R
n"n  , 

 
Q !R

n"n ,  T !R
n"n ,  S !R

l"l , and matrix 

 K !R
m"n

 such that the following matrix inequalities hold: 

  

! A
h
X BK B

1

" #Q 0 0

" " #T 0

" " " #$S

%

&

'
'
'
'
'

(

)

*
*
*
*
*

< 0

 

(16) 

  
!

1
R

"1
< X < R

"1

 (17) 

  
!

2
Q < !

1
X  (18) 

  
!

3
T < !

1
X  (19) 

  
0 < S < !

4
I  (20) 

  

d!
4
(1" e

"#T )" c
2
e
"#T

c
1

h $

% "!
1

0 0

% % "!
2

0

% % % "!
3

&

'

(
(
(
(
(
(

)

*

+
+
+
+
+
+

< 0

 

(21) 

Where 

 
! = AX + XA

T
+Q +T "# X  

Proof. Now we prove that the inequality (8) is equivalent 
to the inequality (16). 

Pre-and post-multiplying the inequality (8) by block-
diagonal matrix 

  
diag{P-1, P-1, P-1, I} , we know the inequali-

ty (8) is equivalent to 
1 1

1
1 1

1 1

0 0
0

0

hA P BKP B
P QP

P TP
Sα

− −

− −

− −

⎡ ⎤Σ
⎢ ⎥∗ −⎢ ⎥ <⎢ ⎥∗ ∗ −
⎢ ⎥
∗ ∗ ∗ −⎢ ⎥⎣ ⎦

  (22) 

Where,  
1 1 1 1 1 1 1TAP P A P QP P TP Pα− − − − − − −Σ = + + + −  

By letting
  
X = P

-1
, K = KP

!1
,Q = P

!1
QP

!1
,T = P

!1
TP

!1  , 
the inequality (22) is equivalent to inequality (16).  

On the other hand, we denote 

   
!X = R

!1/2
XR

!1/2
, !Q = R

!1/2
QR

!1/2
, !T = R

!1/2
TR

!1/2   

 Consider that R is the positive-definite matrix and 

  

!
max

(X )=
1

!
min

(P)
  

Now inequalities (17-20) imply that 

   

1< !
min

( !P),!
max

( !P) <
1

!
1

,!
max

( !Q) <
!

1

!
2

!
max

( !P),

!
max

( !T ) <
!

1

!
3

!
max

( !P),!
max

(S ) < !
4

  (23) 

With the Schur Lemma1, we know the inequality (21) is 
equivalent to  

  

d!
4
(1" e

"#T )" c
2
e
"#T

+
c

1

!
1

+
h

!
2

+
$

!
3

< 0

 
(24) 

With (23), the condition (9) follows that 

   

c
1
(!

max
( !P)+ h!

max
( !Q)+"!

max
( !T ))+ d!

max
(S )(1# e#$T )

!
min

( !P)

< d!
4
(1# e#$T )+

c
1

!
1

+
h

!
2

+
"

!
3  

(25) 

Inserting the inequality (24) into (25), the inequality (9) 
is satisfied. This completes the proof. 

Remark 3. If condition (16) in Theorem 2 is satisfied 
with 0α = , then system (3) is also asymptotically stable in 
the sense of Lyapunov. Moreover in this case the finite-time 
properties are guaranteed for all  0T > . 

Remark 4. We can see that the conditions in Theorem1 
and Theorem 2 are not LMIs with respective to 2, cα , since 

 
! , c

2
appear in a nonlinear fashion. However, once we fixα , 

they can be turned into LMIs based feasibility problem 
which can be solved via existing software (for example the 
LMI Control Toolbox of MATLAB). 

4. NUMERICAL EXAMPLE 

Consider the network control systems in the form of (3), 
where,  

   

!x(t) =
!1 2

0 !1

"

#
$

%

&
' x(t)+

!0.1 0.2

0 !0.2

"

#
$
$

%

&
'
'

x(t ! h)

          +
0

1

"

#
$
%

&
'u(t !( )+

0.1

0.2

"

#
$
$

%

&
'
'

1

) (t)

 



Finite-time Stabilization for a Class of Networked Systems with Delay The Open Automation and Control Systems Journal, 2014, Volume 6    1783 

In this case, we choose 
  
c

1
= 0.25,! = 1,T = 2, R = I

2
，

  d = 4,! = 0.5,h = 0.8 . By Solving the LMIs (16-21), we can 
obtain the controller 

1( ) ( ) [ 6.5421  7.3927] ( )u t KX x t x t−= = −  

We select 

  

x(0) =
0.5

!0.5

"

#
$

%

&
'  

The simulation result are shown in the following figure. 
From the above Fig. (2), it is clear that the finite-time 

stabilization of NCSs (3) via state feedback of desired 
closed-loop properties. 

CONCLUSION 

In this paper, we considered the finite-time control prob-
lem via state feedback for a class of NCSs with state delay 
and communication delay. Based on finite-time stability the-
ory combined with LMIs techniques, sufficient conditions 
that ensure the closed-loop system finite-time stability is 
obtained. 
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