
Send Orders for Reprints to reprints@benthamscience.ae

1958 The Open Automation and Control Systems Journal, 2014, 6, 1958-1961

 1874-4443/14 2014 Bentham Open

Open Access
A New Method for Modeling on Concurrent System

Jing Guo*, Zhongwei Xu and Meng Mei

School of Electronics & Information Engineering, Tongji University, Shanghai, 201804, China

Abstract: Binary decision diagrams (BDDs) are effective means to cope with complex concurrent system. But the size of
BDD itself can be relatively large. We study the BDD representation of large synchronous, asynchronous and interleaved
processes with communication via shared variables. Due to the features of communication, we introduce a novel represen-
tation strategy. Based on the model, we continue to model and map up the synchrony, and detect the deadlock errors.

Keywords: Formal verification, Model checking, BDD, Concurrent system.

1. INTRODUCTION

To model the concurrent system is a relatively difficult
task due to interaction between concurrently executing pro-
cesses. The computer-aid verification is a useful and well-
accepted method to solve the problem.

Model checking has proved to be a powerful for the veri-
fication of concurrent finite state system. The system is de-
scribed as a model and check whether the specifications are
satisfied by the model. In symbolic model checking, the
transition relation is described by boolean formulas to find
satisfying assignment of the formula. States are represented
as sets of boolean formulas. The key is whether the boolean
formulas can be efficiently expressed as binary decision dia-
grams (BDDs). The variables are in form of successive case
distinctions. Variables ordering is useful to normal forms. To
eliminate the size of BDD is vital to the system efficiently.

Related work on representation of digital circuits [1-3].
The width of circuits is the maximum number of wires,
through which any cut go through netlist. It turns out that the
communication aspect of BDD is responsible for size of
BDD. [3] is also concerned with digital circuits. BDD tree is
a appropriate structure that is smaller than BDD itself. BDD
can be used to help model checking of another structure [4].
Petri nets grows exponentially in the number of states, so it
present a method for representing the state space in the form
of BDD. [5] focus on the variable ordering of BDD. The
impact and placement of mechanism is integrated into the
procedure.

There are several difficulties in modeling BDD [6]: 1)
how to represent interleaved, synchronous, asynchronous
execution [7] 2) the complexity of the communication be-
tween the processes [8] 3) how to plan the concurrent pro-
cesses [9]. We focused on the above problems. In this paper,
we propose a extension of model method to BDD. We use
mutually disjoint sets of boolean variables to represent each
process. Instead of on process, our analysis constructs a

compositional heuristics for variable ordering for entire sys-
tem. Next we show synchronization can be modeled effi-
ciently. Already have eliminated the detail, deadlock can be
find in our reduced model.

The rest of this paper is organized as follows. Section 2
presents the preliminaries. Section 3 presents the novel mod-
el of BDD. Section 4 extends the model to model the details
of synchronization and extension of it for deadlocks. Section
5 outline the summary and future work.

2. PRELIMINARIES

Definition (Transition System) triple (Init, S, →) where
Init ⊆ S is the set of initial state,

!" S # S is transition

relation and S is the set of states. Every transition is labeled
with formula, which is enabling condition [10].

Binary decision diagrams (BDDs) [11] are a canonical
form representation for a boolean formulas, which are often
substantially more compact than traditional normal forms. Its
structure is a directed acyclic graph rather than a tree, and
variables are ordered as one traverses the graph from root to
leaf. A path from the variable to the boolean value 1 or 0 is a
form of assignment.

a

b

c

d

0 1

0

0

1

1

0 1

0 1

1

1

Fig. (1). A binary decision diagram.

A New Method for Modeling on Concurrent System The Open Automation and Control Systems Journal, 2014, Volume 6 1959

3. MODELING CONCURRENT SYSTEMS WITH
SHARED DATA VARIABLES

Concurrent processes communicate each other with
shared data variables. Each assignment is same as former or
the value of variable is update. It is defined as follows:

a[x := v](y) =
a(y) if x ! y

v if x = y

"
#
$%

 (1)

Particularly,

a[!] = a .

Every process is modeled as form of transition system
(Init, S, !). However, states are in the form of

A

p
! L

p

where

A

p
 is a assignment and

L

p
 is a location. Transitions

must be

g,l() !

"
$# g '

,l '() = g,l() % or x:=v

"
$### g '

,l '() .

! or x := v is assignment related to shared variables, and !

is a boolean formula. The finite set of the variables is

V

a
, the

set of variables is X.

T

x is the set of updates. Processes are

indexed by i. Processes can be in form of

P

1
!!!, P

i
,!!!, P

n
. For

L

i
,

L

j
, if

i ! j then

L

i
! L

j
=" . Processes communicate

each other through shared variables, so

X

i
! X

j
" # . Glob-

al assignment is a function that maps the variable to a value.
ig denoted the global assignment take place in Process i.

The set of global assignment is GA. The set of indexes of
processes that share x is given as

In

x
. Processes are consid-

ered as cartesian product. If only one process is active at a
time, the composition of processes is interleaving. It is a
transition system

C

|
= Init, S ,!

|() where

1) S = GA! L (A global assignment and local location
states put together a state.)

2) Init=

g, l
!"

#$
%
&'

g
i,

l
i

!"
#$

%
&'
(Init

i
for all i

"

#$
%

&'
)
*
+

,+

-
.
+

/+
.(In the pro-

cess i, it is the initial state of that process.)

3)

g
i
, l

i

!"
#$

%
&'

(
)* !* g

i

'
,l

i

'

!"

#$
%

&'
. (The interleaved global transi-

tion arises from local transition by

P

i
.

If some process were active at a time, the situation should
be asynchronous composition.

C

|||
= Init, S ,!

|||()where Init

and S is same as interleaving, but the set

In! n"# $% .

For each i !In ,

g
i
, l

i

!"
#$

%
&'

(
)* !* g

i

'
,l

i

'

!"

#$
%

&'
.

If

i ! n"# $% \ In ,

l
i

'

!

= l
i

!

.

There may be some conflicts, which are processes want
to update the same variable at the same time. Therefore, we
map out our strategy. The conflict solution for variable x is a
binary relation

!

x
 between the set of

!

i
.

!

i
 must be in the

process where the update exists. The relation resolve which
update take place. If there were updates, all the update
should meet the requirements.

If all of processes were active at a time, it would be syn-
chrony. It is similar to synchrony apart from that

In = n!" #$.

And we use

C

||
= Init, S ,!

||() to represent the composition.

BDDs is boolean relation, but the transition system is
transition relation between states been labeled. We unify the
representation by trying to use boolean formula to represent
the transition.

Any variables can be a vector of

x
1

!

,""", x
!

length x

#
$
%

&
'
(

. If it up-

dated, then

x
!up i

= x
1

! up i

,""", x
!

length x

up i#
$
%

&%

'
(
%

)%
. A member of vector is

true, the relevant boolean vector is 1. Otherwise, it is 0. We
define X as next operator, which encode state changes. LX
encodes local variable update. Update flag

U

x

i denotes the i-
th transition updates x. The i-th transition could be transform
to boolean formula as:

R !

i
() = " a,l() #

$
% !%

i
a

'
, l

'() .

=

!
x"x

i

¬U
x

i if # $T
x

U
x

i if # "T
x

%
&
'

('

)

*
+
+

,

-
.
.

!
TRUE if# = /

LX x
0up i

i v
0

if# := v

%
&
'

('

!1 '

! !
h"L

i

¬h if h 2 l

h if h = l

%
&
('

!
¬Xh if h 2 l '

Xh if h = l '

%
&
'

('

)

*

+
+
+
+
+

,

-

.

.

.

.

.

3

4

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

6

7

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

 (2)

We judge whether the value is true, the related variable
exist. The thinking is through the structure. In order to re-
mark asynchronous and interleaved situation, we need to
define three particular formula: idle, sched and communica-
tion. Idle describe the situation that the process remains at
current location and does not carry out any variable update:

Idle
i
= !

x"x
i

¬#
x

i$
%&

'
() ! !

l"L
i

xl * l
$
%&

'
() (3)

The second situation is only one variable is true at any
time:

1960 The Open Automation and Control Systems Journal, 2014, Volume 6 Guo et al.

Sched = !
i=1

n

"
j=1

n ¬s
j
if j # i

s
j

if j = i

$
%
&

'&
 (4)

From now on we continue to define the third situation,
local copies the value from the global variable:

Communication = !

x"X
!

x"own
i

x
#

$ x
#

up i

(5)

own

i
 is the set of index of processes where the variable

update. For the conflict situation, we define the relation x® :

R !
x() = !

x"X

#
x:=v

i()
i"In

!
x

x := v

!
x"In

$
x

i ! LX x
%up i

i v
%

i

&

'
(

)

*
+

&

'
(
(

)

*
+
+

! !
i"own

x
\ In
¬U

x

i&
'(

)
*+

! X x
%

i v
%&

'(
)
*+

,

-

.

.

.

.

.

.

.

.

.

/

0

1
1
1
1
1
1
1
1
1

!
i"own

x

¬U
x

i&
'(

)
*+ ! X x

%

2 x
%&

'(
)
*+

,

-
.

/

0
1

,

-

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

/

0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

 (6)

The first disjunction over all elements of

!

x
and the se-

cond covers the circumstance of no update.

Interleaving relation use to denote idle transition and il-
lustrate that exactly one is is true at any time.

R !
|() =

"
i=1

n

s
i
" R !

i()()# ¬s
i
" Idle

i()()
"Sched "Communication"R !

x()

$

%

&
&

'

(

)
) (7)

R !
|||() =

"
i=1

n

R !
i()# Idle

i()
"Communication"R !

x()

$

%

&
&

'

(

)
) (8)

R !
||() =

"
i=1

n

R !
i()

"Communication"R !
x()

#

$

%
%

&

'

(
((9)

In interleaving, the conflict does not occur, the

R !

x
()

merely account for local and global update.

4. DETAILED MODEL OF SYNCHRONY

We assume that processes communication with each oth-
er only via global variables. In real world, concurrent syn-
chronization is a regime where multiple groups of whole

system are synchronized. We establish a mechanism for
model the situation better. The variable im has two value
state: L(locked) and U(Unlocked).

t
i
i m

i
=

t
i

if m
i
= L

¬t
i
if m

i
=U

!
"
#

$#
 (10)

If we model the process explicitly, the result would be a
complicated model. Fortunately, we neglect the details.
When it ignores the internal implementation, two executions
have the same states:

! "

m
!

' .

D = !

i"In

t
i
i m

i
! X t

i
i m

i
()() (11)

Lock wait m is unlocked, and changes the state. Unlock
is similar.

Conditions are classified into three: wait, signal and
broadcast. Signal awakens one of executions that are waiting
for this condition. Broadcast awakens all of the executions
that are wait for this condition. Wait use m(Locked, Un-
locked) as parameter. cond[i] flag is true, there is a wait in i-
th process.

wait = cond i!" #$ = 1% s
i
i m

i
& s

i()%

Idle until con i!" #$ = = 0()% s
i
i m

i
= s

i()
(12)

signal =

(choose i)!
cond i"# $% = = 1()& cond = = 0()()

' cond i"# $% = 0

(

)

*
*

+

,

-
-

 (13)

Deadlock may be take place all the processes are waiting.
Based on lock and wait, we add a global variable
_ _P in wait to counter the number of processes in a wait

state. We want to lock the process then find the process is
already in state Locked. We increase the variable.

P _ in_ wait is not more than N. Otherwise, a deadlock is
detected. After we set up the cond, increase or decrease the

P _ in_ wait . We use dd to illustrate that the deadlock is
founded.

lock
new

=

dd !
t

i
= =U()" t

i
i m

i
= t

i()()#

t
i
= = L()" P _ in_ wait $()

%

&

'
'

(

)

*
*

! wait t
i
= = L()! P _ in_ wait = = N " dd = 1()()

 (14)

wait
new

=

dd ! cond i"# $% = 1! t
i
= =U ! P _ in_ wait &

! P _ in_ wait = = N ' dd = 1()

! cond i"# $% = = 0' P _ in_ wait (()

 (15)

A New Method for Modeling on Concurrent System The Open Automation and Control Systems Journal, 2014, Volume 6 1961

CONCLUSION

In summary, we present a new model of interleaved, syn-
chronous and asynchronous concurrent systems. This model
shows improvement in the size. To better model synchroni-
zation, a mechanism is introduced. We hold the new trends
of the concurrent processes, and plan the execution, so can
detect the deadlock. For further work, we will discuss other
“regular” errors and calculate the up bounds for BDDs sizes.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

The work is support by the National Natural Science
Foundation of China under grant No. 60674004, No.
61075002, the National "Twelfth Five-Year" Plan for Sci-
ence & Technology Support under grant No.2011BAG-
01B03, the railway ministry basic research program of China
under grant No.2012AA112801, the National High Technol-
ogy Research and Development Program 863 under grant
No. 2012AA112801

REFERENCES
[1] R. Bryant, “Symbolic boolean manipulation with ordered binary

decision diagrams”, ACM Computing Surveys, vol. 41, pp. 686-
698, June 1992.

[2] K. McMillan, “Symbolic Model Checking: An Approach to the
State Explosion Problem,” Technical Report CMU–CS–92–131,
PhD Thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA, 1992.

[3] K. McMillan, Hierarchical Representations of Discrete Functions,
with Application to Model Checking. In Computer Aided Verifica-
tion, LNCS: Springer–Verlag, Germany, pp. 41-54, 1994.

[4] P. Miczulski, “Calculating State Spaces of Hierarchical Petri
Nets Using BDD”, In: Design of Embedded Control Systems,
2005, pp. 85-94

[5] R. Goré, and J. Thomson, “An improved BDD method for intui-
tionistic propositional logic: BDDIntKt system description”,
Lecture Notes in Computer Science, vol. 7898, pp. 275-281, 2013.

[6] T. K. Nguyen, J. Sun, Y. Liu, J. S. Dong, and Y. Liu, “Improved
BDD-based discrete analysis of timed systems”, Lecture Notes in
Computer Science , vol. 7436, pp. 326–340, 2012.

[7] J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, and E. Andr´e, “Model-
ing and verifying hierarchical real-time systems using stateful
timed CSP”, ACM Transactions on Software Engineering and
Methodology, vol. 22, no. 1, pp. 3.1-3.29, 2013.

[8] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “PAT: Towards flexible
verification under fairness”, Lecture Notes in Computer Science,
vol. 5643 of Springer, pp.709-714, 2009.

[9] J. Sun, Y. Liu, J. S. Dong, and X. Zhang, “ Verifying stateful timed
CSP using ımplicit clocks and zone abstraction”, Lecture Notes in
Computer Science, vol. 5885, pp. 581-600, 2009.

[10] F. Herbreteau, B. Srivathsan, and I. Walukiewicz, “Efficient empti-
ness check for timed b¨uchi automata”, Lecture Notes in Computer
Science, vol. 6174, pp. 148-161, 2010.

[11] D. Beyer, C. Lewerentz, A. Noack, “ Rabbit: A tool for BDD-based
verification of real-time systems”, Lecture Notes in Computer Sci-
ence, vol. 2725, pp. 122-125, 2003.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Guo et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

