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Abstract: In this paper, the author discusses the Global attractor of solution for the boundary value problem of the dy-
namic system with impulsive case. Based on the prey-Predator with impulsive Effect and HollingIII functional response is 
proposed and analyzed. By using the Floquet theory of impulsive equation and comparison theorem, sufficient conditions 
for the system to extinct and some permanence arc given. Finally, the numerical simulation was introduced to support the-
se excellent extensions of results. The authors extend dynamic behavior and the critical value to continuum more previous 
work [3, 7, 8, 9 and 10]. 
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1. INTRODUCTION  

The problem of Attractor in dynamic system is not only 
to examine foundation of solution in the corresponding sys-
tem, and it is also to study well-pseudo-plastic with stability, 
branch, period, extinction and blow-up of solutions, and 
chaotic phenomenon premise, it is to examine the solution as 
an important method (See [1-10]). In applications, we utilize 
these problems to study and discussion that species perma-
nence and development, environmental protection, atmos-
pheric turbulence and the strong convective phenomenon 
case are an important investigation role [1-3]. 

2. MODEL INTRODUCED 

We have a sigmoid functional response in food-
dependent digestion model, consider a more general situation  

where, the parameters 1, 2, 3, 4, , , , , , , , , , ,i i i ia b c d e f r h d b iλ =  
are the normal number, 1, 2, 3, 4i = 1, 2, 3;1 3k α= ≤ ≤  
when

2 3 42, 1, 0,k α λ λ λ= ≡ = = = 2 3 4 0d d d= = = , 

2 3 4 0b b b= = = , ( ) ( )z t tω= ( ) 0tη= = , Sigmoid functional 
response to food- dependent digestion model [3]. 

  

!x (t) = x(t) r " ax# (t) " by(t) " cz(t) " d$ (t) " e%(t)( )
!y (t) = y(t) &1b1x

k (t) / 1+ h1b1x
k (t)( )" d1( )

!z (t) = z(t) &2b2xk (t) / 1+ h2b2xk (t)( )" d2( )
!$ (t) =$ (t) &3b3x

k (t) / 1+ h3b3x
k (t)( )" d3( )
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 (2.1)  

The models of (2.1) are assumption as follow: 
1. No Predator, the prey is logistic growth. 

2. Four kinds of predator and a prey with relation in di-
rect proportion to that

1 ( ) ( )b x t y t− ,
2 3( ) ( ), ( ) ( ),b x t z t b x t tω− −  

4 ( ) ( )b x t tη− . 

3. All four types of prey in the absence, resulting in the 
form of mortality index, which is

1 2 3 4( ), ( ), ( ), ( ).d y t d z t d t d tω η− − − −  

4. Four types of predator on prey growth rate is 

( )1 1 1 1( ) ( ) / 1 ( )k kb x t y t h b x tλ + , ( )2 2 2 2( ) ( ) / 1 ( )k kb x t z t h b x tλ + , 

( )3 3 3 3( ) ( ) / 1 ( )k kb x t t h b x tλ ω + , 
( )4 4 4 4( ) ( ) / 1 ( )k kb x t t h b x tλ η + ,  

which 
1 2 3 4, , ,b b b b for predator search rate of prey, predator

1 2 3 4, , ,h h h h are four kinds of prey, respectively, digestion 

time, 
1 2 3 4, , ,λ λ λ λ  is the predator, respectively, the four diges-

tion rate of prey species.  

In fact, after a simple calculation shows that the model 
(2.1) to the classical Lotka-Volterra model has the same line, 
such as dumping. 

 We assume that: 

( ) ( ) ( ) ( )

{ }

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

1 2 3 4

min , , ,

max , , ,

kk k kb d b h b d b h b d b h b d b h

a d d d dr

αα α α
λ λ λ λ

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

− − − −

>

 

then the system (2.1) there is a balance point 
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( )* * * *0, ( ), ( ), ( ), ( )y t z t t tω η . 

The introduction of periodic pulse injected to kill pests 
and natural enemies to control pest populations to achieve 
balance. To this end digestion of food-dependent model (2.1) 
to improve the time for the pulse to give with impulsive dif-
ferential equation 

 

  

!x (t) = x(t) r " ax# (t)" by(t)" cz(t)" d$ (t)" e%(t)( )
!y (t) = y(t) &1b1x

k (t) / 1+ h1b1x
k (t)( )" d1( )

!z (t) = z(t) &2b2xk (t) / 1+ h2b2xk (t)( )" d2( )
!$ (t) =$ (t) &3b3x
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  (2.2) 

where 

  !x(t) = x(t+ )" x(t),!y(t) = y(t+ )" y(t),!z(t) = z(t+ )" z(t),  

  !" (t) =" (t+ )#" (t)  and ( ) ( ) ( )t t tη η η+Δ = −  

( )0, 1,2,3,4i iτ ≥ = ( )0 1, 1, 2,3, 4,5jp j≤ < = , ( )( ) 1 ( )x te R x tθ θ θ= + , 

here ( )( )22 ( ) 2 ( ) / 2, , 0R x t x t n N Nθ ξ= + ∈ ≥ integer set, the T 

implies periodic impulsive. 

3. DEFINITIONS AND LEMMAS 

Set { }5 5[0, ), 0R R Rσ σ+ += ∞ = ∈ ≥ . Function

1 2 3 4 5( , , , , )Tf f f f f f= , which are the equations 

1 2 3 4 5, , , ,f f f f f  of (2.2) give the function equation of the 

right end of (2.2) . Assume that  

({
( )}

5
0

( , ) ( , ),

, , ( 1) ,

( , ) ,t u nT t nT

V V R R R V C nT n T

V t u V nTσ σ+

+ + +

→ > +

⎤⎦

⎯⎯⎯⎯⎯⎯⎯→

= × → ∈ +  

Definition 2.1 Set
0V V∈ , Then

( ] 5( , ) , ( 1) )t nT n T Rσ
+

∈ + × , on systems (2.2) is defined as the 
upper right derivative 

( )
0

( , ) lim sup , ( , ) ( , ) /
h

D V t V t h hf t V t hσ σ σ σ
+

+

→
= + + −⎡ ⎤⎣ ⎦

. 

 
 

Lemma 2.2 Set ( )tσ is solution of the initial value of the 

system (2.2) with (0 ) 0σ + ≥  , then if for arbitrary 0t ≥ , we 
have ( ) 0tσ ≥ . Thus we obtain ( ) 0, 0t tσ > ≥ , for the

(0 ) 0σ + > , here ( )( ) ( ), ( ), ( ), ( ), ( )t x t y t z t t tσ ω η= . 

Proof: easy to have 

( )( )
0

,

1 1( ) (0 )

exp ( ( ) ( ) ( ) ( ) ( ))

m

t

R px t x

r ax s by s cz s d s e s dsα

θ θ

ω η

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

− +

×

=

− − − − −∫
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( )

1 1 1 1 10

4

1
1

( ) (0 )exp ( ) / 1 ( )

( ) / 1 ( ) ,

t k k

t k k
i i i i iiTi

y t y b x s hb x s d ds

b x s hb x s d ds

λ

τ λ

+

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟⎝ ⎠

= + −

+ + −

∫

∑∫  
which them is in the interval [0, ]t of the pulse frequency, 

[ )0,t ∈ +∞ is arbitrary, in the same way, for ( ) ( ),z t tω , 

( )tη , by above same calculating method that we obtain 
similar result. 

Definition 2.3 If ( )( ), (( ), ( ), ( ), )t tx t y t z t ω η  is solution 

of system (2.2) satisfy (0 ), (0 )x y+ + , (0 ), (0 )z ω+ + and 

(0 ) 0η + > . when there is constants 0M m≥ >  such that 

( )( ) , ( ) , ,m t Mm x t M m y t M η≤ ≤≤ ≤ ≤ ≤ L , (2.3)  

then the system (2.2) is called uniformly persistence. 

We consider the following system of the nature of extinc-
tion,  

/ ( ), ,

( ) ( ) , .

d dt p t t nT

t p t t nT

σ σ

σ σ τ

= − ≠

Δ = − + =
⎧
⎨
⎩

 (2.4) 

Lemma 2.3 System (2.4) there is a global asymptotic 
stability of positive periodic solution: 

( ) ( ]( )( ) / 1 (1 ) , ,( 1) ,pTp t nTt P e t nT n T n Neσ τ∗ −− −= − − ∈ + ∈ ,  

where, the initial value of ( )(0 ) / 1 (1 ) pTP eσ τ∗ + −= − − . 
From lemma 2.3, we may get bellow lemma. 
Lemma 2.4 System (2.2) there is a predator eradication 

periodic solution, that is 

  

0, y*(t),z*(t),! *(t),"*(t)( )

=

0, #1e
$ p2(t$nT )

1$ (1$ p2)e$ p1T
, #2e

$ p3(t$nT )

1$ (1$ p3)e$ p2T ,

#3e
$ p3(t$nT )

1$ (1$ p4)e$ p1T
, #4e

$ p4(t$nT )

1$ (1$ p5)e$ p1T
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-,n+N .  
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We use the literature [2], Theorem 3.1.1] the methods and 
results are given the following lemma 

Lemma 2.5 [3] (comparison theorem) Let
0V V∈  to sat-

isfy the following inequality  

( , ) ( , ( , )), ,

( , ( )) ( , ( , )), ,n

D V t h t V t t nT

V t t t V t t nT

σ σ

σ ψ σ

+

+

≤ ≠

≤ =

⎧
⎨
⎩

 (2.5)  

Which  h : R
+

5 ! R satisfy in the Theorem 3.1.1 [2]. As-

sumption that   h : R
+
! R

+

5 " R
+
 in   nT , (n + 1)T( ]! R

+

5 contin-

uous, and the   ! "R
+

5 , n "N , there exists

  h(t,u) ! h(nT + ," ), as 

( , ) ( , )t u nT σ+→ . Here :n R Rψ + +→  is non-decrease 

function. Let ( )r t is the maximal  

solution on [0,+!) in the following scalar impulsive differ-
ential equation. 

 

( )
( )

0

, ( ) , ,

( ) ( ) , ,

(0 )

n

u h t u t t nT

u t u t t nT

u u

ψ+

+

′ = ≠

= =

=

⎧
⎪
⎨
⎪
⎩

 (2.6)  

Then
0 0(0 , )V uσ+ ≤ . So  V (t,! (t)) " r(t), t # 0 ,   ! (t)  is 

the solution of (2.2).  
We give the fundamental nature of subsystems of the 

(2.2) 

 21

3 22 1

0 0

( ), ,( ), ,
( ) (1 ) ( ) ,( ) (1 ) ( ) , , ,

, ,
(0 ) . (0 ) .

z d z t t nTy d y t t nT
z t p z ty t p y t

t nT t nT
y y z z

ττ ++

+ +

⎧⎧
⎪⎪
⎪⎪⎪ ⎪

⎨ ⎨
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎩

=− ≠=− ≠ ′′
= − += − +

= =
= =
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4

5 4

0

( ), ,

( ) (1 ) ( ) ,

,

(0 ) .

d z t t nT

t p t

t nT

η

η η τ

η η

+

+

′ = − ≠

= − +

=

=

⎧
⎪
⎪
⎨
⎪
⎪⎩

 (2.7) mma 2.6 The subsystem 

(2.7) of (2.2) has a positive periodic solution * *( ), ( ),y t z t
* ( ),tω * ( )tη , and the any other solution

( ), ( ), ( ), ( )y t z t t tω η of the subsystems (2.7), we have  

* * * *( ) ( ) 0, ( ) ( ) 0, ( ) ( ) 0, ( ) ( ) 0y t y t z t z t t t t tω ω η η− → − → − → − →  

as when t→∞ . where  

 

 

 

   

y*(t) = !1e
"d1(t"nT ) / 1" (1" p2 )e"d1T( ),t #(nT ,(n+1)T ],n#N ,

y*(0" ) = !1 / 1" (1" p2 )e"d1T( ),
z*(t) = ! 2e

"d2 (t"nT ) / 1" (1" p3)e"d2T( ),t #(nT ,(n+1)T ],n#N ,

z*(0" ) = ! 2 / 1" (1" p3)e"d2T( ),!,

$*(t) = ! 4e
"d4 (t"nT ) / 1" (1" p5)e"d4T( ),t #(nT ,(n+1)T ],n#N ,

$*(0" ) = ! 4 / 1" (1" p5)e"d4T( ).  

3. MAIN RESULTS  

We will give control of the conditions of Prey ( )x t  ex-
tinction. 

Theorem 3.1 The system set ( )( ), ( )( ), ( ), ( ), t tx t y t z t ω η  
(2.2) of any one solution, if 

( )( ) ( )( )
4

1 1
max1 1

1
ln 1/ 1 / 1i i i i

i
T r p r b rd P Tθ τ

Δ
− −

+
=

< − + − =∑  

established, Periodic Solutions of the predator extinction
* * *(0, ( ), ( ), ( ),y t z t tω * ( ))tη is globally asymptotically sta-

ble. 

Proof : First, we consider the small perturbation solution 
of periodic solutions identify the local stability. Our defini-

tion of    x(t) = u
1
(t), y(t) = y* (t) + u

2
(t),!,

  !(t) = ! * (t) + u
5
(t) ,  

then we have  

1 1

5 5

( ) (0)
( ) ,0

( ) (0)

u t u
t t T

u t u

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=Φ ≤ <⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

M M . 

where Φ  to satisfy the following equation 
* * * *

*
1 1

*
4 4

( ) ( ) ( ) ( ) 0 0
( )( ) ( )

0 0
( ) 0 0

r by t cz t d t e t
b y t dd t t

dt
b t d

ω η

η

⎛ ⎞− − − −
⎜ ⎟−Φ ⎜ ⎟= Φ⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

L
O M

M O

 

(0) IΦ = is a unit matrix. From the above equation can be 
easily find 

( )
1

4

* * * *

0
exp ( ( ) ( ) ( ) ( )) 0 0

0( )
0

t

d t

d t

r by s cz s dy s ez s ds

et

e

−

−

⎛ ⎞− − − −⎜ ⎟
⎜ ⎟ΔΦ = ⎜ ⎟
⎜ ⎟Δ
⎜ ⎟

Δ Δ Δ⎝ ⎠

∫ L

L
M O

 

This brings me to sign "Δ " items to determine the form 
of the following does not affect our analysis, not calculated.  
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By for t nT= case of system (2 .2) reduce into the linear 
equation as 

( )1 11

222

555

( ) ( )1 1 0 0
( )0 1( )

0
( )0 0 1( )

u nT u nTR p
u nTpu nT

u nTpu nT

θ θ+

+

+

⎛ ⎞ ⎛ − + ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ − ⎝ ⎠⎝ ⎠⎝ ⎠

L
O M

MM O OM
L

. 

We are T periodic pulse from the linear differential equa-

tions by Floquet theory [1] that   0, y * (t), z * (t),! * (t)," * (t)( )  is 
the stability of periodic solutions given by the following sin-
gle-valued matrix M defined by eigenvalues. 

Therefore, if the matrix 
 

   

M =

1!" 1+ R"( ) p1 0 ! 0

0 1! p2 " #

# " " 0
0 ! 0 1! p5

#

$

%
%
%
%
%

&

'

(
(
(
(
(

)(T ) =
 

   

m11 0 ! 0

* m22 " #

* * " 0
* * * m55

!

"

#
#
#
#
#

$

%

&
&
&
&
&

 

Where in above matrix that the diagonal elements;
, ( 1, 2, 5)i iim iµ = = L . If the five eigenvalues of modulus less 

than 1, then the cycle is a partial solution 

( )* * * *0, ( ), ( ), ( ), ( )y t z t t tω η  stable. In fact, the five Floquet 
multipliers are  

( )( ) * * * *
1 1 0

,1 1 exp ( ( ) ( ) ( ) ( ))
t

R p r by s cz s d s e s dsµ θ θ ω η⎛ ⎞⎜ ⎟⎝ ⎠
= − + − − − −∫  

and 1 2, 3, 4,5(1 ) ,j
j

d t
j jp eµ −−= − = , according to Floquet theory, 

if 1, 2,3, 4,51,i iµ < = , that is,  

( )( ) ( )( )4
1 1

1 1
1

ln 1/ 1 / 1i i i i
i

T r p r b d Pθ τ− −
+

=
< − + −∑  

System (2.2) Periodic Solutions ( )* * * *0, ( ), ( ), ( ), ( )y t z t t tω η  

is a local stable. 

Next, proof the ( )* * * *0, ( ), ( ), ( ), ( )y t z t t tω η is global attrac-

tor. 

We consider the following impulsive differential equa-
tion 

( ) ( ) ( )
( )0(0 )

, , ( ) ( ) , ,

v

v dv t t nT v t v t v t pv t t nT

σ

τ
++

+

=

′ = − ≠ Δ = − = − + =⎧⎪
⎨
⎪⎩

 

By Lemma 2.2 and Lemma 2.3, to be 
( ), ( ), ( ), ( ) ( ),y t z t t t u tω η ≥ and *( ) ( )v t y t→ , as t → ∞ . 

So * ( ) ( ) ( ),y t v t y tε− < ≤  then for ( ), ( )( ), t tz t ω η by above 
same method for all 0t ≥  that similar conclusion. 

From the system (2 .2) available  

( )
( )

* * * *

1

( ) ( ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) , ,

( ) 1 ( ), .

x t x t r b y t c z t d t e t t nT

x t p x t t nT

ε ε ω ε η ε

θ+

⎧
⎪
⎨
⎪⎩

≤ − − − − − − − − ≠′

= − =

 (*) 

Use Lemma 2.3, easy access to 

  

x (n+1)T( )
! x nT +( )exp r "b(y*(t)"# )" c(z*(t)"# )" d($ *(t)"# )" e(%*(t)"# )( )dt

nT

(n+1)T

&
'

(
)

*

+
,

  

  

= x nT( ) 1!" p1( )
# exp rT ! b(r / d1)! c(r / d2)! d(r / d3)! e(r / d4)! 4$T( )

 

As a result of ( ) ( )0 nx nT x δ+≤ and ( ) 0
n

x nT
→∞
→ . Because

( )110 ( ) ( ) rTpx t x nT eθ−< ≤  

for ( 1)nT t n T< ≤ + . So ( ) 0x t →  when n→∞ . 

Theorem 3.2 Assume that constant 0M > , such that for 
any a solution of system (2.1) with 

  ! t( ) = x(t), y(t), z(t)," (t),#(t)( ) , as time t  enough large, 
that  

{ }max ( ), ( ), ( ), ( ), ( )x t y t z t t t Mω η ≤  

Proof: Let ( ) ( )( ), ( ), ( ), ( ), ( )t x t y t z t t tσ ω η=  for with 
any a solution of system (2.1). 

Assume 
( ) 1 1 1( ) / 2 ( ) ( ) ( ) ( )V t x t h b y t z t t tλ ω η= + + + + , then

( ) ( )0 0V t V V t∈ =  and imply  

  

D+V t( )+CV t( )
= !1x(t)(r " ax# (t)" by(t)" cz(t)" d$ (t)" e%(t)

2 h1b1  

( )1 1 1( ) / 2 ( ) ( ) ( ) ( )c x t h b y t z t t tλ ω η⎛ ⎞⎜ ⎟⎝ ⎠
+ + + + +  

( )

( ) ( )1 2

1
1 1 1 1

1 1 1 1 1 1 1 1

1 1

1 1 1 1
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2
( ) ( ) ( ) ( )
2 2

d c y t d c z t

r c x t ax t bx t y t cx t z t
hb hb hb hb

dx t t ex t t
hb hb

αλ λ λ λ

λ ω λ η

+

− − − −

+
≤ − − −

− −

 

( ) ( )3 4 ( )( ) td c t d c eηω− − − − , ,t nT≠  (4.4)  

( ) 1 1 1( ) / 2 ( ) ( ) ( ) ( )V nT x nT hb y nT z nT nT nTλ ω η τ+ = + + + + +  

Clearly, when { }1 2 3 4min , , ,0 d d d dc< < , the first ine-
quality (4.4) is bounded, and choose these constants

( )0 1 2 3 40 , , , ,,Mc τ τ τ τ τ τ= .So, the (4.4) reduces 

( ) ( )
( ) ( )

0 0 , ,

, .

DV t c V t M t nT

V nT V nT t nTτ+

≤ − + ≠⎧⎪
⎨

≤ + =⎪⎩
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By lemma (3.4) in [3], we get  

  
V t( ) ! V 0+( )" M0 / c0( )e"c0t +# (1" e"nc0T ) / (1" e"c0T )( )e"c0 t"nT( ) + M0 / c0

,  

where ( )( ), 1t nT n T∈ + .Thus ( )V t  is essential bounded, 
and there is constant 0M > , such that any a solution of (2.1) 
with ( ) ( )( ), ( ), ( ), ( ), ( )t x t y t z t t tσ ω η= , if t  enough large, it 
is also hold { }max ( ), ( ), ( ), ( ), ( )x t y t z t t t Mω η ≤ . 

Remark: The further we can along with the way in [3], the 

system (2.2) can be the persistence by  

( ) ( )
4 1

1 1
1

./ (1 )) ln 1i i i i
i

rT b d p pτ θ −
+

=
− − > −∑  

4. NUMERICAL COMPUTATION 

 The Numerical simulations have been carried out to 
substantiate our analytical findings and investigate the global 
dynamical behavior of the nonlinear system (2.1).In the pre-
vious sections, the qualitative analyses of system are pre-
sented in Predator-Prey systems. Now, to see dynamical be-
havior of the system by Fig 1(a), (b), (c), and Fig. 2 (a), (b), 
(c).  

For convenience, only consider three species with impul-
sive case for us as the following set of parameters: =0,r 3θ =
, 1k 1, a 0.2, b 0.75, b2 0.9= = = = , 1c 0.9= , 2c 0.85= , 

1d 0.2= , 
2d 0.18= ， 1h 0.8= ， 2h 0.9= . Assume that initial 

value ( )0 2, 0.1, 0.1σ = , by condition of above theorem 3.1 
and theorem 3.2, and computing that critical value

max 4.000T ≈ When impulsive periodic
max 4.000T T< ≈  for 

action that the prey can be eradicated (see Fig.1 (a) (b) (c)). 
If it is with impulsive periodic

max 4.000T T> ≈ , that occur 
complex dynamic action of the periodic coexistence, and 
strange attractor. etc. (see Fig. (2a) (b) (c).  

 

 

Fig. 1(a). Figure description case for pest species with parameters 
r=3, k=1, a=0.2, b1=0.75, b2=0.9, c1=0.9, c2=0.85, d1=0.2, 
d2=0.18;h1=0.8;h2=0.9. When the impulsive periodic T=3.5, the 
prey species x(t) with decrease case for changing time. 

 
Fig.1(b). Figure description implies change of nature enemies spe-
cies y(t) with increase for changing time. 

 

 
Fig.1(c). Figure description the change of nature enemies species 
z(t) with decrease for changing time. 

 

 
Fig. (2A). The system (2.2) has an chaos attractor,  parameters with 
r=3, k=1, a=0.2, b1=0.75, b2=0.9, c1=0.9, c2=0.85, d1=0.2, 
d2=0.18, h1=0.8, h2=0.9.When the impulsive periodic T=5.5,  the 
prey species x(t) with decrease case for changing time. 

 
Fig. (2b). Implies change of nature enemies species y(t) along time. 
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Fig. 2(c). Shows the branch of pest and nature enemies z(t). 

CONCLUSION 

This article mainly studies the general dynamics behav-
iour of Burger-equation of blasting and extinguishing phe-
nomenon, to discuss these cases through certain parameters 
values. Such equations always exhibit a rich phenomenology 
attracts many attention in engineering mechanics, material 
mechanics and fluid mechanics with application value. The 
authors extend dynamic behaviour and the critical value to 
continuum more previous work [3, 8, 10] for in-depth 
achieve for apply value. 
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