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Abstract: In the practical applications, most of the chaotic systems are on the finite precision devices (such as computer), 
and their trajectories turn to be periodic which do not meet their evolution functions. The synchronization of digital chaot-
ic systems has been studied in this paper. Both theoretical analysis and numerical experiments show that the digital sys-
tems can achieve synchronization. The relation between the roundoff of computer and synchronization has also been dis-
cussed in this paper. 
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1. INTRODUCTION 

 Chaotic synchronization was first proposed by Pecora 
and Carroll in 1990 [1], they use the conditional Lyapunov 
exponent of the response system to judge synchronization. 
After this, studies show that it is only a necessary condition 
of synchronization. Although all the conditional Lyapunov 
exponents of response system are smaller than 0, the systems 
may not achieve synchronization. In 1992, He and Vaidya 
proposed the judgment of synchronization by the state error 
of driven and response systems [2]. The systems can achieve 
synchronization if and only if the state error converges to 0. 
Till now, it is still the most widely used judgment of syn-
chronization [3-7]. 

 Shortly after chaotic synchronization was proposed, it 
led to extensive study and application in secure communica-
tion. In recent years, a growing number of cryptosystems 
based on continuous systems utilize the idea of synchroniza-
tion of chaos [8, 9]. However, recent studies show that the 
performance of these systems is very poor and insecure [10, 
11]. The insecurity results mainly from the insensitivity of 
synchronization to system parameters [12]. Recently, dis-
crete chaotic communication systems have been given much 
more attention [13-15]. However, all the discrete chaotic 
systems are on the finite precision devices (such as comput-
er). Trying to generate a chaotic signal on a finite precision 
device leads to dynamical degradation of chaotic properties 
[16]. The chaotic trajectories turn to be periodic in a discrete 
phase space. In other words, there is no chaos under finite 
precision [17].  

 Among all the studies of chaos, including chaotic syn-
chronization, the results are all based on ideal conditions. 
The problem of finite precision has always been ignored in  
 
 

theoretical studies. Motivated by this, in this paper, we study 
on the synchronization of chaotic systems which are on the 
computers. We call them digital chaotic systems in this paper. 
Denote δ be the rounoff of computer, two cases have been 
considered: 1) The two digital systems are on the computers 
with the same δ. 2) The two digital systems are on the com-
puters with different δ. Both theoretical analysis and experi-
ments show that the digital chaotic systems can achieve syn-
chronization. Furthermore, we also discuss the relation be-
tween synchronization and the roundoff of computer. 

 The paper is organized as follows. In Section 2, we pre-
pare some preliminaries. The synchronization of digital cha-
otic systems with the same roundoff is studied in Section 3. 
The synchronization of digital chaotic systems with different 
roundoff is studied in Section 4. Finally, we close our paper 
with conclusions in Section 5. 

2. PRELIMINARIES 

 Consider the following driven and response systems 
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Here xk and p are state variable and parameter of the cha-
otic system F respectively. yk and q are state variable and 
parameter of the chaotic system G respectively. C(xk, yk) 
denotes control function for state variable. The choice of 
control function is not unique [18]. The synchronization of 
these two systems is defined as: 

 Definition 1. Let ek = yk – xk be the error system of the 
driven system (1) and the response system (2), then system 
(1) and (2) are said to be synchronized if 
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here ||·|| denotes the Euclidean norm. 
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Definition 1 is the most widely used judgment of syn-
chronization. The error ek is continuous and converge to zero 
with time k. Once the systems are F and G are implemented 
on a finite precision device (such as computer), the phase 
space of xk and yk become discrete, and the phase space of 
error ek becomes discrete. Therefore, it is not suitable to 
judge the synchronization of digital systems by (3). 

 Consider the following two digtial systems 
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Here {·} denotes the finite precision represented. xk and p 
are state variable and parameter of the digital system F re-
spectively. yk and q are state variable and parameter of the 
digital system G respectively. C(xk, yk) denotes control func-
tion for state variable. The synchronization of these two digi-
tal systems is defined as: 

Definition 2. Let ek = yk – xk be the error system of the 
driven system (4) and the response system (5), then system 
(4) and (5) are said to be synchronized if there exist a natural 
number K, for every k ≥ K, we have || ek || ≤ ε. ε is the error 
which can be tolerated in practical applications.  

The digital systems can achieve synchronization in prac-
tical if they satisfy definition 2. In this paper, we only con-
sider the synchronization of the same system and parameter, 
that is F = G, and p = q. 

3. SYNCHRONIZATION OF DIGITAL SYSTEMS 
WITH THE SAME ROUNDOFF 

In this Section, we will study on the synchronization of 
digital chaotic systems with the same δ. Theorem 1 shows 
that the digital systems can achieve synchronization in prac-
tical with a suitable control function C(xk, yk). 

Theorem 1. Consider the following two digital chaotic 
systems 
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Here, xk and yk are the state variables, p is the parameter 
of system and C(xk, yk) =(k1I –((f(yk, p) – f(xk, p))(yk –xk)-

1)·(xk – yk) is the control function, k1 is the control coefficient, 
and I is the unit matrix. The systems (6) and (7) can achieve 
synchronization in practical if | k1 | < 1 – δ/ε. 

Proof: Subtract (6) from (7), we have 
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 Here δk,x and δk,y are the truncation errors, and we have 
max{δk, y , δk, x} < δ. Then 
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 If || ek || > ε (which means before achieved synchroni-
zation), we have  
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Let A = | k1 | + δ/ε, we have | A | < 1. Here, we can see 
that the error || ek || decreases with the growth of k. Thus, 
there must exist a critical value K, satisfy 
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Next, we will proof that if || yK – xK || < ε, then we have || 
yK+1 – xK+1 || < ε, which means that systems (6) and (7) can 
achieve synchronization in practical. 
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Thus, concluding our proof. 
Remark 1. Due to the inequality | k1 | < 1 – δ/ε, we have 

that if the tolerated error ε is larger than the roundoff δ, the 
digital systems (6) and (7) can achieve synchronization by 
choosing a suitable control coefficient k1. 

Next, we do some numerical experiments. Consider the 
following digital Logistic maps 
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The control function C(xk, yk) = (r – rxk – ryk – k1)(xk – yk).  

The roundoff of the computer is 2-16. Let r = 4, k1 = 0.2, 
x0 = 0.3541, y0 = 0.6325, ε = 2-15, the experiment results are 
shown in Fig. (1). The experiments by employing different 
parameters and initial values indicate that this scheme is ef-
ficient and robust. 

Fig. (2) shows the relation between the roundoff and the 
critical value K. K denotes the step when the systems firstly 
achieve synchronization. Here ε = 2δ. Fig. (2) shows that the 
larger the roundoff is, the slower the systems achieve syn-
chronization. The relation is approximately linear. 

4. SYNCHRONIZATION OF DIGITAL SYSTEMS 
WITH DIFFERENT ROUNDOFF  

In this Section, we will study on the synchronization of 
digital chaotic systems with different δ. 

Consider the following two digital Logistic systems 
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Here, xk and yk are the state variables, p is the parameter 
of system and C(xk, yk) is the control function. {·}1 and {·}2 
denote the finite precision represented of these two systems, 
the roundoff are δ1 and δ2 respectively. 

Eq. (10) is the driven system and Eq. (11) is the response 
system. The synchronization is implemented on the second 
computer with roundoff δ2. If δ1 < δ2, the driven signal will 
be truncated. The driven signal will be represented with 
roundoff δ2. These two digital systems are with the same 
roundoff δ2, which has already been studied in Section 3. 
Next, we consider the case of δ1 > δ2. 

Theorem 2. Consider the digital chaotic systems (10) and 
(11), C(xk, yk) =(k1I –((F(yk, p) – F(xk, p))(yk –xk)-1)·(xk – yk) is 
the control function, k1 is the control coefficient, and I is the 
unit matrix, δ1 > δ2. The systems (10) and (11) can achieve 
synchronization in practical if | k1 | < 1 – δ1/ε. 

Proof: Subtract (10) from (11), we have 
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Here, δ1,k,x and δ2,k,y are the truncation errors, then we 
have max{δ1,k,x} < δ1, and max{δ2,k,y} < δ2, thus 
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If || ek || > ε (which means before achieved synchroniza-
tion), we have  
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Let A = | k1 | + δ1/ε, we have | A | < 1. Here, we can see 
that the error || ek || decreases with the growth of k. Thus, 
there must exist a critical value K, satisfy 
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Next, we will proof that if || yK – xK || < ε, then we have || 
yK+1 – xK+1 || < ε, which means that systems (10) and (11) can 
achieve synchronization in practical. 
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Fig. (1). Synchronization of digital Logistic map with the same roundoff 

 

Fig. (2). The relation between the roundoff and the critical value K. Dots are data from the numerical experiments. 
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Thus, concluding our proof. 
Remark 2: Due to the inequality | k1 | < 1 – δ1/ε, we see 

that the synchronization is only influenced by δ1. For any ε > 
δ1, the digital systems (10) and (11) can achieve synchroni-
zation by choosing a suitable control coefficient k1. 

Also, we do some numerical experiments. Consider the 
following two digital Logistic maps 
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The control function C(xk, yk) = (r – rxk – ryk – k1)(xk – yk).  
The roundoff of the computer are 2-16 and 2-24 respective-

ly. Let r = 4, k1 = 0.2, x0 = 0.1, y0 = 0.8, ε = 2-15, the experi-
ment results are shown in Fig. (3). The experiments by em-
ploying different parameters and initial values indicate that 
this scheme is efficient and robust. 

From theorem 2 and the analysis above we know, the 
synchronization of digital systems mainly depends on the 
computer which has a larger roundoff. Let δ1 = 2-16 and  
ε = 215, Fig. (4) shows that the critical value K remains the 
same when δ2 changes. 

CONCLUSION 

 The digital chaotic systems on the finite precision de-
vices is not chaotic any more, their trajectories turn to be 
periodic. In this paper, we focus on the digital systems, dis-
cuss the synchronization of them. The theorems and experi-
ments in this paper show that the digital systems can achieve 

synchronization with both the same and different roundoff. 
The relation between the roundoff and the synchronization 
speed has also been studied. Besides synchronization, other 
studies on digital chaotic system are also of great interest, 
such as digital (discrete) chaos theory. In our future work, 
we will study on this issue. 
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