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Abstract: This paper proposes a hybrid ant colony optimization algorithm to solve the permutation flow-shop scheduling 

(PFS). The hybridization of ant colony optimization (ACO) with path relinking (PR), which combines the advantages of 

two individual algorithms, is the key innovative aspect of the approach. Path relinking (PR) can be interpreted as an evo-

lutionary method where the high quality solutions are generated by introducing features of the guiding solution gradually 

into the initial solution. Moreover, the effective hybrid algorithm is a method to integrate intensification and diversifica-

tion in the search, and it adopts the criterion function restricting the frequencies of using the PR procedure to improve the 

convergence speed. Finally, the proposed algorithm is applied to PFS benchmark problems. The experimental results have 

shown that the hybrid method yields better results to solve the permutation flow-shop scheduling than well-known exist-

ing methods in terms of solution quality.  
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1. INTRODUCTION 

The permutation flow-shop scheduling (PFS) [1] has 
been becoming an important study field in both manufactur-
ing systems and industrial process for improving the utiliza-
tion of resources, and therefore it is crucial to develop effi-
cient scheduling technologies. The classical PFS consists of 
a set N= {J1,…, Jn } of n different jobs to be executed on a 
set M ={M1,…, Mm }of m machines with the objective of 
finding the permutation of jobs that minimizes the makespan. 
Each job Jj is composed of m stages, named operations, and 
every operation has a non-negative processing time. The 
processing time of job Ji on machine Mj is denoted by tij 
(i=1,2,…, n, j=1,2,…, m), while no operation can be pre-
empted. Each job has exactly one operation to be processed 
on each machine and the sequence of processing a job on all 
machines is identical. At any time, each machine can process 
at most one job and each job can be processed on at most 
one machine. Preemption is not allowed; i.e., once an opera-
tion is started, it must be completed without interruption. 
Each job is available and ready for processing at time zero 
and the setup times are sequence independent. A schedule of 
this type, i.e., with the same job ordering on all machines, is 
called a permutation schedule and defined with a complete 
sequence of all jobs.  

The permutation flow shop scheduling problem is often 
denoted by the symbols n/m/T/Cmax. n represents the number 
of jobs, m is the number of machines, T is the processing 
time and Cmax is the makespan. A job permutation is denoted  
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by  = { 1, 2, . . . , n}, where n jobs will be sequenced 
through m machines. Let C( i, m) denote the completion 
time of job i, on machine m. The completion time of the 
permutation flow shop scheduling problem according to the 
processing sequence  = { 1, 2, . . . , n} is shown as fol-
lows: 
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In the above recursion, the departure time of the first job 
on each machine is calculated first, then the second job, and 
so on until the last job. Eqs. (1) and (2) define the departure 
time of job 1 through machine 1 to machine m, making sure 
that at any time, each machine can process at most one job 
and each job can be processed on one machine at most. Eq. 
(3) specifies the departure time of job  (i) on machine 1 (j = 
2,3,…,m). Eq. (4) specifies the departure time of job i on 
machine j = 2,3, … ,m-1, which ensures no job passing is 
allowed. Eq. (5) gives the departure time of job i, i = 
2,3, …,n, on the last machine. Finally, the makespan of the 
job permutation = { 1, 2, … , n} can be defined as :  
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The goal of the permutation flow shop problem is to find 
the most suitable arrangement of 

* 
in the set of all permuta-

tions  such that  
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The following example illustrates the calculation of 
makespan in detail with a permutation  = {4, 1, 3, 2}. Sup-
pose there are four jobs and three machines, the processing 
time ti,j is given by 
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Then the departure time ),( jC i
 is calculated as follows 

(See in Fig. (1)): 
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Thus, the makespan is: 

C( 4,3)= 13 

The permutation flow-shop scheduling (PFS) is well-
known NP-hard problem, and provides a challenging area for 
both exact algorithms and metaheuristic approaches. Many 
researchers have worked on this problem and experimented 
with many different approaches of exact and approximate 
algorithms over the years to solve the permutation flow-shop 
scheduling problem with the objectives of minimizing 
makespan and total flow-time of jobs, considered either 
separately or simultaneously. Exact solution methods can 
only be adopted to solve very small instances, so for real-
world problems, to obtain better results, researchers have 
recently focused on the use of metaheuristic algorithms in 
solving the problem [2, 3]. 

A lot of research work has been carried out and most ap-
proximate or heuristic methods have been proposed in litera-
ture. Most of the published studies for the permutation flow-
shop scheduling have focused on the development of heuris-
tics. The majority of the studies have concentrated particu-
larly on designing efficient and effective heuristics as well as 
taking into account high-quality solutions in short computa-
tional times. Ant colony optimization (ACO) algorithm is a 
population-based, cooperative search procedure which is 
derived from the behavior of real ants. The main idea in ant 
colony optimization is to mimic the pheromone trail used by 
real ants, which are capable of finding the shortest path to 
food sources from their nests as they forage for food in na-
ture. Ant colony optimization (ACO) algorithm was first 
proposed by Dorigo, Maniezzo and Colorni [4] and success-
fully used to solve the traveling salesman problem [5,6]. 
Stutzle [7] has proposed the first ACO algorithm to solve the 
PFS with the objective of minimizing the makespan. The 
ACO algorithm MMAS has been an implementation of the 
max-min ant system. Rajendran and Ziegler [8] have pro-
posed two ACO algorithms for the PFS with the objective of 
minimizing the makespan/total flowtime of jobs. Ahmadizar 
[9] proposed a new ant colony algorithm to solve the PFS 
with the objective of minimizing the makespan. Because the 
permutation flow-shop scheduling problem is very compli-
cated, the solution obtained in the basic ACO construction 
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Fig. (1). An example for calculating makespan. 
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phase is not guaranteed to be locally optimal and becomes 
the starting point for the local search phase. It is a trend to 
adopt hybrid ACO to solve very large scale of the permuta-
tion flow-shop scheduling that makes use of other heuristics 
as an intensification and diversification mechanism. The 
development of modern metaheuristics has led to consider-
able progress, but each metaheuristic has its own strength 
and weakness. Therefore, much research has tried to develop 
the quest for the performance of hybrid algorithms in an ef-
fort to achieve the effectiveness and efficiency.  

The distinctive characteristics of this paper are different 
from all the literatures described above on following points: 
First, the main feature of this hybrid algorithm (ACO&PR) is 
the utilization of the ACO construction solution mechanism 
and the use of an improvement method based on path relink-
ing (PR) without losing their unique features. The PR 
method is embedded into the ACO algorithm as a local 
search to improve the solutions. Moreover, since some of the 
parameters in our proposed algorithm can be adjusted dy-
namically, the hybrid algorithm can search different solution 
space in order to ensure to escape from the local optimum. 
Finally, the computational results on the benchmark in-
stances have shown that the hybrid algorithm is comparable 
to other existing methods in terms of solution quality.  

The rest of this paper is organized as follows. Section 2 
introduces ant colony optimization (ACO) for the permuta-
tion flow-shop scheduling (PFS). Section 3 gives path relink-
ing (PR) for the permutation flow-shop scheduling. Section 4 
describes our ACO&PR algorithm to the permutation flow-
shop scheduling. Section 5 provides the computational ex-
periments. Finally, Section 6 presents some conclusions. 

2. ANT COLONY OPTIMIZATION FOR PFS 

Ant colony optimization (ACO) [4] is based on the forag-
ing behavior of ant colonies in nature. As an ant travels, it 
lays pheromone trail that other ants can follow. The more 
pheromone trail on the paths can enhance the probability of 
the next ants to choose. Over time, as more ants are able to 
complete the shorter route, pheromone accumulates faster on 
shorter paths and longer paths are less reinforced. A greater 
amount of pheromone on the path gives an ant a stronger 
stimulation and thus a higher probability to follow it. Ants 
are capable of not only finding the best path from their nests 
to food sources, but also modifying according to the envi-
ronment as the old path is no longer the best due to a new 
obstacle. The Ant colony optimization method consists of 
solution construction and pheromone trail updating. 

2.1. Solution Construction 

In the PFS, when building a schedule with ant colony op-
timization, each artificial ant constructs a complete solution 
by iteratively applying a transition rule. Each ant starts with 
an empty sequence and chooses one of the jobs. The ant suc-
cessively selects an unscheduled job to the partial sequence 
constructed so far until a complete solution is built, i.e., and 
all jobs have been selected. The ant k at the current position 
of job i chooses the next job j according to the following 
probabilistic formula: 
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where 
il

 is the amount of pheromone trail of placing job l 

in the position i of a sequence. This pheromone trail repre-

sents the desirability of processing the job in the given posi-

tion. The value q is a random number uniformly distributed 

over [0,1], and q0 is a tunable parameter in the interval [0,1], 

which evaluates the relative importance of exploitation ver-

sus exploration. If 
0
qq  then the best jobs are selected ac-

cording to Eq. (8); otherwise an edge is chosen according to 

S, which represents the candidate list and is chosen accord-

ing to the above probabilistic rule as in Eq. (9). 
k
ijp  is the 

probability distribution with which ant k selects to search 

from job i to job j. The ants working memory Mk is the set of 

jobs already selected by an ant and are not considered for 

choice.  

2.2. Pheromone Trail Updating 

The pheromone trails are dynamically modified at run-
time in order to form a kind of adaptive memory of previ-
ously found solution to guide exploring high-quality regions. 
The pheromone information is modified by both local trail 
updating after individual solutions have been constructed 
and global trail updating of the best solution. During con-
structing a solution, local updating is changed to reduce the 
amount of pheromone on all chosen jobs in order to simulate 
the natural evaporation of pheromone and to ensure that no 
job becomes too dominant. This is performed with the fol-
lowing rule: 

k
ijij C
+= )1(  (10) 

where is a pheromone decay parameter, is a parameter 

that determines the relative importance of this sequence. Ck 

is the makespan of the complete sequence of ant k. 

On the other side, to intensify the search in the neighbor-
hood of the best solution, global updating rule is applied 
after all ants finish their schedules. Only the best schedule is 
adopted to globally adjust the pheromone trail. Global trail 
updating provides a greater amount of pheromone trail be-
tween adjacent jobs of best schedule. Global trail updating is 
accomplished according to the following equation, 

best
ijij C
+= )1(  (11) 

where Cbest is the makespan of the best sequence produced 
by ants until the current iteration. 
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3. PATH RELINKING FOR PFS 

Path-relinking (PR) [10] is a metaheuristic that was 
originally proposed as an approach to integrate diversifica-
tion and intensification in the context of tabu search [11]. 
The PR can produce a series of new solutions by searching 
paths that link initial solutions and guiding solutions in a 
reference set RefSet. The reference set RefSet is a set of fea-
sible solutions. It is critical to balance solution quality and 
solution diversification in a reference set RefSet. Therefore, 
the reference set consists of high quality solutions and di-
verse solutions. Path-relinking generates new solutions by 
exploring paths that connect high-quality solutions starting 
from one of the solutions, called an initial solution, and gen-
erating a path in the neighborhood space that leads toward 
the other solution, named a guiding solution. This path is 
explored by selecting moves that introduce features con-
tained in the guiding solutions with the aim to systematically 
reach the guiding solution. In this process, the features of the 
guiding solution are progressively increased, and the features 
which are not included in the guiding solution are gradually 
deleted. Unlike genetic algorithms, where randomness is a 
key factor in the creation of offsprings from parent solutions 
to produce new solutions, path relinking adopts systematic, 
deterministic rules for combining solutions [12]. The path 
relinking process can generate a series of intermediate solu-
tions with fewer features from the initiating solution and 
more from the guiding solution. The generating path (i.e., 
sequences of intermediate solutions) could reasonably hope 
to find better solutions than the initiating or guiding solution. 
Process flow of path relinking is illustrated for instance in 
Fig. (2). Two solutions A and B represent an initiating solu-
tion and a guiding solution respectively. The path from A to 
B (dashed line) can yield two better solutions, while the path 
from A to B (solid line) cannot generate solutions improving 
A or B.  

The Path relinking approach produces paths (trajectories) 
connecting elite solutions in the neighborhood space. The 
character of such paths consists in reference to by introduc-
ing in the initial solution features of the guiding solution 
features. The approach may be regarded as a strategy that 

seeks better moves. At each step, all moves that incorporate 
features of guiding solutions are analyzed and the best move 
is selected by creating inducements to favor these features 
from the guiding solutions. Therefore, it is important to se-
lect initial and guiding solutions which denote the starting 
and ending points of paths during the path relinking phase, 
since the quality of the intermediate solutions is highly de-
termined by these solutions. Usually the guiding solution is 
of high quality. To generate the desired trajectory, the initial 
and guiding solutions are chosen from RefSet according to 
the following three selection criteria. 

C1: The guiding solution is chosen to be the best solution 
in RefSet, while the initial solution is the second best one. 

C2: The guiding solution is chosen as the best solution in 
RefSet, while the initial solution is defined as the solution 
with the most diversity. 

C3: The initial solution is chosen randomly in RefSet and 
the guiding is defined as the best solution. 

For illustration, an example will be described to explain 

the path relinking process. Consider the following two solu-

tions
A

  =(4,5,6,1,3,2) and
B

 =(3,1,5,4,2,6) and the path 

from 
A

 to
B

 . We start with location 1 in solution
A

 . 

Since the job of this location is 4 in
A

  (
A

1
=4) and 3 

in
B

  (
  1

B
=3), we then exchange jobs 3 and 4 in solu-

tion
A

 corresponding to the locations 5 and 1, respectively. 

So, solution
A

 has changed to 1 
A

=(3,5,6,1,4,2) (i.e. we 

have performed the move from 
A

  to 1 
A

). The job of 

location 2 in solution 1 
A

 is 5 and in solution
B

  is 1. Job 

1 is assigned to location 4 in solution 1 
A

, and therefore we 

exchange jobs 5 and 1 in solution 1 
A

, corresponding to 

locations 2 and 4, respectively. We obtain solu-

tion 2 
A

=(3,1,6,5,4,2). In this way the relinking process 

continues up to matching solution
B

  in five steps. 

A
B

Objective

function value

Moves

Initial solution

Guiding solution

C

Intermediate solution

 

Fig. (2). Process flow of path relinking.  
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4. ACO&PR ALGORITHM 

In this section, we present our proposed algorithm to 
solve the permutation flow-shop scheduling. Since the per-
mutation flow-shop scheduling (PFS) is a well-known NP-
hard problem, metaheuristics are recommended for searching 
good solutions within reasonable computation times. We 
present for this problem a hybrid ant colony optimization 
algorithm (ACO&PR), in which the search diversification 
and the search intensification are improved by effectively 
combining the solution construction mechanism of the ACO 
with path relinking (PR) without losing their unique features. 
During the initial population generation, it is critical to bal-
ance solution quality and solution diversification. So, we 
first generate initial solutions by adopting ant colony algo-
rithm and a greedy randomized procedure based on the NEH 
heuristic [13]. At each iteration, artificial ants probabilisti-
cally construct solutions to the problem under consideration 
using artificial pheromone trails. The PR method is embed-
ded into the ACO algorithm as a local search to improve the 
solutions. To save computation time, we limit the certain 
frequencies of applying the PR procedure such as at every 10 
iterations, or we execute it only if the best solution is im-
proved. The termination criterion is solution quality or the 
maximum number of iterations. Repeat the procedure until 
some termination criterion is satisfied, that is, usually when a 
sufficient solution is reached or when the number of itera-
tions is satisfied. The general framework of our proposed 
ACO&PR algorithm can be described as follows:  

Step 1: Generate initial solutions. Initialize parameters 
and generate distinct solutions obtained by ant colony opti-
mization (ACO) and a randomized rule based on the NEH 
heuristic. 

Step 2: Build and maintain the reference set (RefSet). The 
reference set includes quality solutions and diverse solutions. 
Select b1 high quality solutions with best objective function 
values and b2 diverse solutions with highest diversity from 
initial feasible solutions, and then let |RefSet|= b1 + b2 be the 
reference set. 

Step 3: Build a feasible solution with ant colony optimi-
zation (ACO). 

Step 4: Improve the solution quality by the local search. 
To transform the feasible solution into one or more enhanced 
feasible solutions, the PR procedure is executed to enhance 
the solution quality, after a feasible solution has been gener-
ated. 

Step 5: Update the best solution Bestsol. Calculate the 
objective function values of the solution, and determine the 
best solution with the least objective function in the refer-
ence set. If the best local optimum is better than the best so-
lution Bestsol found so far, replace the best solution Bestsol 
generated so far. 

Step 6: Update the reference set. Both building and up-
dating can take the objective function value and the diversity 
of the solutions into account. 

Step 7: Repeat Steps 4-6 until a stopping condition is met. 

5. COMPUTATIONAL RESULTS 

In this section, the proposed hybrid ant colony optimiza-

tion has been coded in the visual C++ and run 

on a LENOVO computer with 2.0GB memory and 2.50Ghz 

CPU Speed. To evaluate performance of our proposed algo-

rithm for the permutation flow-shop scheduling, the per-

formance of our algorithms was tested on benchmark prob-

lems and the test problems can be downloaded from the OR-

library web site. The objective of the computational experi-

ments is to evaluate the performance of the algorithms in 

terms of solution quality. Several experiments were con-

ducted on test problems in order to determine the tendency 

for the values of parameters. We tested several values for 

each parameter while all the others were held constant. In 

most cases, the parameter values have been set through di-

rect numerical experiments. On the basic of a set of prelimi-

nary experiments, the algorithm parameters are set with the 

following settings: q0=0.85, =3~5 and =0.05. Other set-

tings were: |RefSet|=10, 
0
= 0.01 . Moreover, the algorithm 

terminates when the maximum iterations reaches 2000, i. e . 

CNmax=2000. 

 

Table 1. The Comparison of CT_ACO with ACO Algorithm. 

Problem Optimal Solution ACO ACO&PR Improvement 

Car1 7038 7038 7038 0 

Car2 7166 7166 7166 0 

Car3 7312 7312 7312 0 

Car4 8003 8102 8003 1.24 

Car5 7720 7786 7770 0.20 

Car6 8505 8565 8548 0.20 

Car7 6590 6670 6590 1.2 

Car8 8366 8483 8385 1.17 
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Table 1 summarizes the results of two algorithms on the 
problem instances. From the results in Table 1, where ACO 
refers to basic ACO, and ACO&PR is the algorithms we 
proposed, in terms of solution quality. Table 1 reports the 
comparison between ACO&PR and the basic ACO algo-
rithm without combination with other algorithms. It has 
shown that ant colony optimization (ACO) can find the bet-
ter solutions, but our proposed ACO&PR outperforms the 
basic ACO. This demonstrates that the path-relinking proce-
dure can improve the quality and stability of the solutions 
obtained by ACO algorithm.  

We compare the hybrid ACO&PR algorithm with the 
better existing approaches available for the PFS, and the re-
sults of some problems are shown in Table 2, where NEH 
denotes NEH heuristic by Nawaz et al. [13], IGA to im-
proved genetic algorithm by Lyer [14], and ACO&PR is the 
hybrid algorithm we present. The results have indicated that, 
in terms of solution quality, the hybrid ACO&PR algorithm 
actually performs even better than the existing methods. 
Moreover, the computational results show that the hybrid 
ACO&PR algorithm can obtain the optimal or best known 
solutions published so far for some benchmark problems. In 
Table 2, the last column describes the average percentage 
deviation. The deviation of solution value is defined as the 
percentage increase in the objective function value compared 
to the lower bound. A zero deviation indicates that the algo-
rithms can produce best known solutions. In comparisons to 
the best known solutions, performance of the hybrid 
ACO&PR algorithms are statistically excellent in terms of 
solution quality, and the total average deviation is only 
0.17%. These average improvements indicate that our pro-
posed method is more efficient and competitive to solve the 
permutation flow-shop scheduling (PFS) than other existing 
methods with respect to solution quality. 

6. CONCLUSIONS  

In this paper, an effective hybrid ant colony optimization 
ACO&PR algorithm is developed for solving the permuta-
tion flow-shop scheduling (PFS). In this hybrid algorithm, 
the search intensification and the search diversification are 
improved by adopting the solution construction mechanism 
of the ACO and the PR. The PR method is embedded into 

the ACO algorithm as a local search to enhance the solution 
quality. The computational results on the benchmark in-
stances have indicated that the hybrid ACO&PR algorithm 
can obtain the optimal or best known solutions in a short 
timeframe and it actually performs even better than the exist-
ing methods on the permutation flow-shop scheduling.  
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