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Abstract: In order to reduce the memory footprint and energy consumption of embedded microcontroller in mobile robot, 

the concise differential evolution algorithm based on chaotic local search (CDE-CLS) is proposed for online optimization 

of recurrent fuzzy neural network (RFNN) controller in robot path planning so that the robot can be adaptive real-time ob-

stacle avoidance. The CDE-CLS algorithm reduces the memory footprint of the controller using virtual population and in-

creases the ability to explore help to fast convergence introducing a simple and efficient chaotic local fine search and in-

hibit premature convergence perturbing the virtual population. Contrast tests on the typical Benchmark functions verify 

the global convergence and stability of the algorithm comparing with other concise evolutionary algorithm. Finally, the 

simulation result on the robot path planning controller shows the effectiveness of the proposed method. 

Keywords: Chaotic local search, concise differential evolution, online optimization, recurrent fuzzy neural network (rfnn), robot path plan-
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1. INTRODUCTION 

Online optimization of controller in mobile robot path 
planning control system also needs to constantly enrich the 
optimization method and introduce the new algorithm. Dif-
ferential Evolution (DE) algorithm is an optimization algo-
rithm with real-value encoding and random search in contin-
uous space [1], which is simple, robust, fast convergence, 
and has the better performance than the particle swarm and 
other evolutionary algorithms [2], and can be applied to 
online optimization. However, in practical applications, the 
DE algorithm has also been exposed to many shortcomings, 
such as it is easily trapped into local optimum, slow conver-
gence in the late and a certain blind search on solving diffi-
cult high-dimensional and multi-peak complex optimization 
problems, resulting in poor feasibility in practical engineer-
ing applications of the large scale and highly nonlinear and 
real-time requirement [3]. Therefore, some scholars had 
made improvements in DE. In [4] a novel mutation was used, 
i.e. using the history of the target individual optimal solution 
to guide the new population search direction. In [5] the bi-
nomial crossover strategy was used. The above methods can 
accelerate the convergence rate and reduce precocious prob-
ability, but stability of the algorithm needs to be strength-
ened. Additionally, the DE and other evolutionary algo-
rithms, such as Genetic Algorithms (GA), Particle Swarm 
Optimization (PSO) are population-based meta-heuristic 
methods and generally require a general purpose computer to 
perform the optimization, but directly executing the optimi- 
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zation algorithm is not feasible for embedded controller with 

limited memory and power supply etc, as it consumes huge 

hardware resources for realization of the algorithm. For the 

embedded control engineering, such as a small robot control 

or a manipulator control and an intelligent vehicle control 

etc., it is not possible to use a high-power general-purpose 

computing device due to the limitations of the cost and the 

size. To solve these problems, some concise evolutionary 

algorithms have been proposed. In [6] a real-value compact 

genetic algorithm (RCGA) was proposed. The RCGA is 

based on the idea of virtual population to reduce the memory 

footprint, but it slows the search speed relatively and has the 

phenomenon of premature convergence. In [7] a memetic 

compact differential evolution (MCDE) algorithm was pro-

posed to implement online optimization of a three-joint ma-

nipulator controller. The MCDE references the RCGA and 

combines an additional local search algorithm to improve the 

optimization efficiency, but it may increase the probability 

of the premature convergence during operation. In order to 

solve the above problems, this paper proposes a new modi-

fied concise differential evolution algorithm, namely a Con-

cise DE based Chaotic Local Search (CDE-CLS). The CDE-

CLS employs an intensively exploitative evolutionary 

framework based on a DE logic aided by a concise efficient 

fine exploitative chaotic local search algorithm to improve 

the algorithm's ability to help help explore fast convergence, 

and a perturbation mechanism was applied to the virtual 

populations to help global convergence. In addition, the 

CDE-CLS algorithm is run with less memory use due to the 

virtual populations. Thus, the CDE-CLS algorithmis not only 

concise and efficient but requires much less memory devices 

and is particularly suitable for embedded controller online 
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optimization. The numerical results and simulation on recur-

rent fuzzy neural network controller optimization for robot 

path planning show effectiveness of the proposed algorithm. 

2. CONCISE DIFFERENTIAL EVOLUTION BASED 
CHAOTIC LOCAL SEARCH (CDE-CLS) ALGO-
RITHM 

Assume that the fitness function is f(x) for optimization 
problems, the optimization problem can be described as fol-
lows: 

min f (x)  (1) 

where x is a vector of n design variables in the decision 

space D, that is, x=[x1, x2, ...., xn]. Without the loss of gener-

ality, it is assumed that the parameters are standardized so 

that each search interval is in [-1,1]. 

2.1. CDE-CLS Algorithm Processes 

Step 1. By the Gaussian probability distribution function 
(PDF) within U[-1,1] an n 2 probability vector VP is gener-
ated: 

VP(t) = [ (t) (t)]  (2) 

where, VP is an n 2 matrix, n is the dimension of the solu-

tion space. (t)=[ 1(t), 2(t),…, n(t)]
T and (t)=[ 1(t), 2(t),…, 

n(t)]
T are mean vector and standard deviation vector of a 

PDF within the interval [-1,1] for each design variable I, 

respectively. The height of the PDF has been standardized so 

as to maintain their area which is equal to 1. t is the genera-

tion.  

Step 2. (Initialization) t=0. For each design variable i, set 

i(0) =0, i(0)= , i=1,2, , n =10. 

Step 3. An individual is sampled from VP, and marked as 
elite xelite.  

Step 4. (Chaos local search) A random number rand (0,1) 
is Generated, if rand (0,1)<Ls then Step (a) to perform chaos 
local traversal search will be performed, else it would go to 
Step 5. 

Step (a). A n-dimensional vector is generated randomly 
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, where  is the chaos ad-

justment parameters and its value is determined by the Eq. 

(3). 

  

=
1, if rand(0,1) 0.5

1, otherwise
 (3) 

The  is introduced so as to ensure the best individual 
traverse towards the positive and negative directions. 

Step (c). The fitness values of Xq+1 are computed to find 
the local optimal individual Xopt, and the fitness of the Xopt is 
compared with fitness value of the xelite, if the Xopt is better 

than the xelite, then the xelite is replaced with Xopt, otherwise it 
cannot be replaced. 

Step (d). Go to Step 8. 

Step 5. (Mutation operating) 3 individuals are generated 

by means of VP: xk1, xk2 and xk3. The mutation is performed 

according to Eq.(4), then a temporary offspring 
  
x

off

' is gener-

ated: 

  
x

off

' =xk3+F(xk1-xk2) (4) 

where F [0,1] is a scale factor. 

Step 6. (Crossover operating) 
  
x

elite

'
= x

elite
. Each gene of 

the individual 
  
x

off

'  is exchanged with the corresponding gene 

of 
  
x

elite

'  with a uniform probability and then final offspring 

xoff is generated: 

x
off

[ j] =

x
off

' [ j] if (rand(0,1)) < Cr

x
elite

' [ j] otherwise
 (5) 

where j =1,2, ..., n is the index of the gene under checking, 
Cr is the constant value namely crossover rate. This crosso-
ver strategy is a binomial crossover (bin). Since the binomial 
crossover strategy is usually better than the exponential 
crossover in performance [4]. 

Step 7. (Selection operating) The fitness value of final 

offspring xoff is computed and compared with that associated 

with xelite. If 
  
f (x

off
) < f (x

elite
)  then the elite is replaced with 

xoff, else the elite xelite is preserved. 

Step 8. (The VP is updated) The VP is updated by Eqs. 
(6), and (7) [6, 7]. 

  

(t +1) = (t) +
b l

Np
+ (rand(0,1) 0.5)  (6)  

  

( (t +1))2
= ( (t))2 ( (t +1))2

+
b2 l2

Np

+ rand(0,1)

 (7) 

Where, 

  

=
1, if rand(0,1) < Mp

0, otherwise
 (8) 

The Np is the virtual population size, b is the individual 
of the current winner and l is the current loser among elite 
and newly generated offspring. In Eqs. (6) and (7), the last 
term is an additional perturbation, where  is the maximum 
amplitude of perturbation. Mp is a constant representing per-
turbation probability. 

Step 9. t=t+1. If the termination condition is met (such 
as to achieve the maximum generation), then the algorithm is 
ended and the obtained elite solution is outputted, otherwise 
the parameters Ls is updated by Eq. (9), through Step 4. 

  
Ls(t) = Ls

min
+

Ls
max

Ls
min

t max
t  (9) 

where t is the current generation, tmax is the maximum gen-

eration of the algorithm, Lsmin and Lsmax are the maximum 

and minimum values of Ls, respectively. 
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2.2. CDE-CLS Algorithm Features 

It is through parameters Ls that the chaotic local search 
(CLS) algorithm is determined whether it needs to be exe-
cuted to replace the normal mutation and crossover. After 
each iterate, the CLS performs local fine search near the elite 
individual for Q times, if the found individual is better than 
the previous elite, then the elite is replaced. The usual chaot-
ic model is one-dimensional Logistic map [8]. As can be 
seen from Eq. (9) that CLS executed probability Ls increases 
with the iteration number, that is, at a later stage, the CDE-
CLS algorithm will have more opportunities to execute the 
CLS algorithm to deeply develop viable solutions and to 
prevent from premature convergence. 

Another important feature of the proposed algorithm 
CDE-CLS is that, due to its simplicity and low memory re-
quirement (only four memory use, i.e. two for the VP, one 
for xelite, and one for the offspring) using virtual population 
compared with population-based version, it can easily be 
implemented into embedded hardware characterized by a 
limited memory and power, such as PIC32 microcontroller 
with 8-32KB RAM. The optimization of a population-based 
algorithm is likely to overflow in the computational power or 
the available memory resources. 

The balance between global and local search in the pro-
posed CDE-CLS algorithm is obtained by using perturbation 
in VP update rule. The perturbation mechanism then inhibits 
the algorithmic premature convergence and force the algo-
rithm to search elsewhere in the decision space, possibly 
exploring new promising solutions. 

3. NUMERICAL RESULTS 

In order to verify the effectiveness of the proposed algo-
rithm CDE-CLS, it is tested on five typical Benchmark func-
tions, and compared with other concise algorithms RCGA 
and MCDE, lasting elitist strategy is used in the RCGA, and 
lasting elite, DE/rand/1 mutation and the binomial crossover  
 

strategy and other parameters set same as [7]. These test 
functions selected are as follows: f1 (x) is a Sphere function, 
f2 (x) is a Rosenbrock function, f3 (x) is a Ackley's function, 
f4(x) is a Griewank function and f5 (x) is a Rastring function, 
each function mathematics expression are given in [9, 10]. 
For each function, n = 30. 

For three algorithms, the termination condition of each 
single run is fixed as 5000 n =150,000 fitness evaluations. 
The CDE-CLS algorithm parameters are: Q = 10, F = 0.5,  
Cr = 0.7, Np = 2 * n = 60, =0.2, the probabilities of activat-
ing chaotic local search Ls and perturbing the virtual popula-
tion Mp have been set as 0.002 and 0.001, respectively.  
Table 1 shows the average fitness and standard deviation 
value detected by each algorithm over 30 times runs. The 
best results are highlighted in bold face. 

Numerical results showed that the algorithm CDE-CLS is 
better than RCGA and MCDE on average. Simultaneously, 
standard differential results showed that CDE-CLS algorithm 
is more stable.  

For example of f4(x), the problem of low-dimensional 
and f5(x), high dimensional, Fig. (1) and Fig. (2) showed the 
convergence rate of CDE-CLS algorithm is close to the 
MCDE, and clearly better than RCGA. For solving f5(x) 
high-dimensional problem, RCGA and MCDE appear at 
premature convergence, while CDE-CLS can converge to 
better solutions. Therefore, CDE-CLS algorithm not only 
can guarantee the convergence rate, but also improve the 
optimization accuracy and stability. 

4. MOBILE ROBOT PATH PLANNING BASED ON 
CDE-CLS ALGORITHM AND RECURRENT FUZZY 
NEURAL NETWORK CONTROL 

4.1. Mobile Robot Kinematics Model 

Assume that the robot's current coordinate is (x , y ) and 
the goal point coordinate is (xg, yg). As shown in Fig. (3), E  

Table 1. Fitness value and standard deviation comparison for three concise algorithms. 

Function 

RCGA MCDE CDE-CLS 

Fitness Value 

(Standard Deviation) 

Fitness Value 

(Standard Deviation) 

Fitness Value 

(Standard Deviation) 

f1(x) 
1.91E+04 

(9.61E+03) 

6.53E-25 

(8.45E-25) 

2..62E-02 

(2.17E-02) 

f2 (x) 
2.01E+09 

(2.23E+09) 

1.48E+04 

(6.91E+04) 

5.64E-02 

(3.67E-02) 

f3 (x) 
1.86E+01 

(4.12E-01) 

1.87E+00 

(1.73E+00) 

1.65E+00 

(4.65E-01) 

f4(x) 
2.31E-03 

(4.23E-03) 

6.87E-03 

(1.90E-02) 

5.45E-03 

(1.81E-03) 

f5 (x) 
2.134E+02 

(2.81E+01) 

6.49E+01 

(1.42E+01) 

1.64E+01 

(3.21E+00) 
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Fig. (1). Optimization curve of the f4 (x). 

 

Fig. (2). Optimization curve of the f5 (x). 

 

Fig. (3). Mobile robot kinematics model diagram. 
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Fig. (4). Fuzzy recurrent neural network structure. 
 

is a vector which the robot (x , y ) points to goal (xg, yg). The 
modulus of the E and its direction angles are: 

  
E = (x x

g
)2

+ ( y y
g
)2  (10) 

  

= arctan

y
g

y

x
g

x
 (11) 

 is the angle between the current robot and goal point, 
which is constantly revised according to current position of 
the robot, always pointing to the goal position. The subscript 
 is time. 

In reactive navigation [11], the mobile robot plans local 
path based on sensor information. In the process of the robot 
moving, if there are no obstacles around the robot, the robot 
moves toward the goal point at angle . If there is an obsta-
cle ahead, a perturbation  needs to be artificially added, 
thereby establishing the following equation: 

 
= + m  (12) 

where,  is pre aiming direction of the robot, m is a propor-

tionality coefficient,  is a perturbation angle added and its 

value will be determined by the adaptive fuzzy recurrent 

neural network (RFNN) controller according to the robot 

current environment in [-30°, 30°], the negative number rep-

resents an increased perturbation amount in clockwise direc-

tion, positive number represents an increased amount in 

counterclockwise direction for the robot. The robot is closer 

to the obstacle, the absolute value of  is greater. When 

there are no obstructions ahead i.e. =0, the robot moves 

toward the goal, while there is an obstacle ahead i.e. 0, 

the robot moves forward according to the goal direction after 

the offset of the additional perturbation. 

4.2. Fuzzy Recurrent Neural Network Controller 

The fuzzy recurrent neural network (RFNN) controller 
real-time outputs perturbation angle and online adjustments 
pre-aiming direction of the mobile robot so that the mobile 
robot can trend a collision free goal. Designed RFNN is a 
four-layer structure shown in Fig. (4). The two-input & one-
output structure is selected to reduce system complexity, 
inputted data are measured obstacle distance around left and 
right sides by the sensor of the robot (minimum measured 
value should be taken among them respectively), the output 
is a disturbance angle in [-30°, 30°] based on the current 
robot environment. Each hidden layer node represents a 
fuzzy subset, which is divided into five fuzzy subsets: {NB, 
NS, ZE, PS, PB}; If the two feedback connections are re-
moved, the structure of the network becomes a feed-forward 
Fuzzy Neural Network (FNN). 

The first layer is the input layer, its output is expressed as: 

  
y

i

1(k) = s
i
(k)w

oi
(k 1) i = 1,2  (13) 

where, 
  
y

i

1(k) is the output of the layer, woi is recurrent weight 
from output to input layer, k is the number of iterations. 

The purpose to introduce recurrent layer is to describe the 
nonlinear dynamic behavior of the system through additional 
state feedback neurons. The recurrent node memories output 
the value of the previous time, equivalent to a step of delay 
operator. It can be seen that the recurrent layer can store past 
information of the system to make the network increase the 
processing capability of dynamic information. 

The second layer is a fuzzification layer, has 10 nodes, 
each node represents a membership function. Here we use 
the Gaussian function as the membership function, the input-
output relationship is: 
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ij
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ij

2(k))  

i=1,2 j=1,2,…,5 (14) 

where aij and bij represent the central value and width value 
of the Gaussian function respectively. 

The third layer is fuzzy reasoning layer. The number of 
nodes is equal to the number of rules, up to 25 (i.e. 52) nodes. 
The input-output relationship is: 

u
j

3(k) = y
ij

2(k)
i=1

2

, y
r

3(k) = u
r

3(k)  (15) 

where, j =1,2, ...,5; r =1,2,...,25 or 11 (experience value) 

The fourth layer as output layer completes defuzzifica-
tion and generates the network output. 

  

u4(k) = w
r
y

r

3(k)
r=1

N

,

(k) = y4(k) =
u4(k)

y
r

3(k)
r=1

N

 (16) 

where, wr is a weight value of the r-th fuzzy rule acting on 
output node. 

The system uses the proposed CDE-CLS algorithm 
online training RFNN. The optimized RFNN parameters 
includes: the central values aij and width bij of the member-
ship function, network recurrent connection weights woi, the 
weights of the output layer wr, i = 1,2; j = 1,2, ..., 5; r =1 , 
2, ..., 25. These parameters as a gene sequence constitute one 
chromosome. Due to a total of 47 parameters to be optimized, 
the dimension is 47 for each individual, and real-coded.  

Fitness function for evaluating individual x is as follows: 

2

1

))()((
1

)( tt
T

xf
i

T

i

d

ii
=

=

 (17) 

where, T is the time points, d

i
and 

i
are desired output and 

the actual output on RFNN. The optimization goal is mini-
mizing f (xi), when f (xi) = 0, the output value and the desired 
value are consistent. 

4.3. Robot Path Planning Simulation 

Before simulation is performed, the input parameters of 
the RFNN should be normalized to guarantee the network 
convergence. Computer simulation is done to test perfor-
mance of proposed algorithm for robot path planning in 
Matlab 7.0. The simulation results are shown in Fig. (5), 
where, the box represents obstacle. The starting position of 
the robot movement is s and the goal position is g. Set 

s= s= 45°, m=6. The CDE-CLS algorithm has been run 
with the same parameter setting specified in section 3. The 
CDE-CLS algorithm runs independently twenty-five times. 
After CDE-CLS algorithm performs optimization to RFNN, 
the optimal solution x = {a, b, w} is generated as the 
RFNN’s optimization parameters. The Optimal RFNN con-
troller controls the robot movement from the starting point to 
the goal point avoiding obstacles in real time. 

The RFNN network training error is shown in Fig. (6), 
after 10000 fitness evaluations the error value is reduced to 
0.062° or less. 

Fig. (5b) shows that the robot path is not smooth due to 
directly using RFNN network with the BP learning algorithm 
(without the CDE-CLS algorithm training), and leaned pa-
rameters of RFNN are imprecise. 

Fig. (5c) shows that when the robot is close to the obsta-
cle and needs to avoid the obstacle, its motion direction 
should be deviated from the obstacle and beyond the meas-
urement range of the sensor, the robot then moves toward the 
obstacle because the controller have the ability to store past 
information, thus the oscillation is generated in the process 
of obstacle avoidance. The results showed that the feedfor-
ward fuzzy neural network controller can not accurately de-
scribe the dynamic performance of the system. 

In order to test the robot controller adaptability to the en-
vironment and adaptive ability to unknown environment, we 
change the robot local environment. The experimental results 
showed that a behavior which is well evolved well using 
proposed evolutionary algorithms in an environment has 
better adaptability to unknown environment, as shown in  
Fig. (5d). The robot’s starting point and the goal point have 
been changed, a new obstacle Q has been added, after the 
robot has run 15 steps, obstruction P begins to run from left 
to right at the same speed as the robot, the robot can avoid 
real -time obstacle by controller evolved. 

 

(a) Robot path by CDE-CLS & RFNN controller 
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(b) Robot path by only RFNN controller 

 

(c) Robot path by CDE-CLS & feedforward fuzzy neural network (FNN) controller 

 

(d) Robot path by CDE-CLS & RFNN controller in an unknown environment 

Fig. (5). The simulation results. 
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Fig. (6). Neural network training error. 
 

CONCLUSION 

This paper proposes a differential evolution algorithm 
based on virtual population and chaotic local search, the al-
gorithm has a concise structure, fast convergence, high pre-
cision of optimization, and less demand for memory, it is 
more suitable for online optimization within the embedded 
controller with limited resources. Additionally, chaotic local 
search can assist the DE to change the direction of the search 
to improve the ability to global converge. The simulation 
results on controlling the robot path planning based on 
RFNN controller show the effectiveness of the proposed 
CDE-CLS algorithm. 
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