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Abstract: In this paper, the problem of nonfragile reliable guaranteed cost control for networked control systems with 
time-varying sampling period sensors and actuator failures is concerned for a given quadratic cost function. For linear 
time-invariant controlled plant, under the assumption that the sampling period is time-varying within a certain known 
bound, the time delay is constant and shorter than the sampling period of the sensors, the system is transformed into a 
time-varying discrete time system, where the time-varying sampling period parts are transformed into norm bounded un-
certainties of the structure parameter. A new linear matrix inequality (LMI)-based approach is proposed to derive a suffi-
cient condition for the existence of nonfragile reliable guaranteed cost controller. Furthermore, the design method of the 
optimal nonfragile reliable guaranteed cost controller is formulated to minimize the upper bound of the closed-loop sys-
tem cost. A numerical example is given to show the usefulness and effectiveness of the proposed method.  
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1. INTRODUCTION 

Recently, networked control systems (NCSs) have been 
induced into the research of control systems for the reasons 
of the developing expansion of system physical setups and 
functionalities. NCSs are a kind of distributed control sys-
tems, in which sensors, actuators, and controllers are inter-
connected by different types of communication networks. 
Because of its flexibility, low cost, and less wiring, NCSs is 
increasingly being used in the field of industrial applications. 
Furthermore, more and more interests have recently been 
paid to the research of NCSs [1-5]. 

However, due to the sampling and controlling data are 
transmitted via the network, network-induced delays and 
data package dropouts always exist. For NCSs with different 
kinds of scheduling protocols, the network-induced delays 
may be in the forms of constant, time-varying, or even ran-
dom. More recently, the stabilization controller design and 
stability analysis for NCSs have been investigated by many 
researchers, and many methods are proposed with the con-
siderations of the effects of network-induced delay and data 
dropout [6-9]. Results on stability analysis and controller 
design of nonlinear networked control systems have been 
obtained in many papers. In [10], based on approximate dis-
crete-time models constructed for a set of nominal (non-
zero) sampling intervals and nominal delay, the controller 
design is propo-sed, while sampling-and-hold effects are 
taken into account. For a class of nonlinear NCSs, [11] pre-
sents a fault-tolerant control framework, decoupled from the 
system fault, the system is transformed into two subsystems. 
 
 

The nonlinear observer is designed to estimate the immeas-
urable state and modeling uncertainty, which are used to 
construct fault estimation algorithm. For that nonlinear NCS, 
considering the sampling intervals induced by the network 
communication, a fault-tolerant control method is proposed  

In recent years, there are many papers considering the 
problem of time-varying sampling period of networked con-
trol systems [12, 13]. For the NCSs, the shorter sampling 
period results in the better the system performance. Howev-
er, the possibility of network congestion would be increased 
by the shorter sampling period. The novel active-varying 
sampling period method is used by Wang and Yang [13] to 
eliminate the probability of packet disordering, which greatly 
simplifies the design and analysis of NCSs, and sufficiently 
uses the network bandwidth when the network is idle. For 
the NCSs with stochastic disturbance, [14] gives the condi-
tions of robust stability, and Gao et al. [15] change the sto-
chastic sampling system into a continuous time-delay sys-
tem, and research the robust H∞  control problem. In [16], 
the nonstatic observer and state controller are designed, with 
no disturbances and noises are taken into account, and the 
application condition of the separation principle is discussed. 
The dynamic interval principle is used by Liu et al. to design 
the corresponding controller [17], but the algorithm proposed 
is complicated and needs a great deal of computations. In 
[18], for the system with uncertain and time-varying sam-
pling period and time-delay, the stability and control issues 
of systems are addressed, the sampling period which is un-
certain and time-varying and the time delay are transformed 
into polytopic and additive norm-bounded uncertainties in 
the discretized system. A Markov chain is modeled for ran-
domly sampled measurement process results from the  
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time-varying channel load in [19], an event-driven transmit-
ter is proposed to transmit the control signal, which depends 
upon the measurement sampling period. 

The paper is organized as follows. In section 2, for the 
given linear time-invariant controlled plant, assume that the 
time delay is constant and the time delay is shorter than the 
sampling period, the sampling is time-varying and within a 
certain known bound, the system is transformed into a time-
varying discrete system, where the time-varying sampling 
period parts are transformed into norm bounded uncertainties 
of the structure parameters. In section 3, the LMI-based suf-
ficient condition for the existence of nonfragile reliable 
guaranteed cost controllers is obtained. Furthermore, the 
optimal reliable guaranteed cost controller which minimizes 
the upper bound of the closed-loop system cost is formulat-
ed. To decrease the amount of LMIs for stability analysis, 
the reduction algorithms are proposed. In section 4, a numer-
ical simulation result shows the validity of the controller 
design and the reduction algorithm. 

2. PROBLEM STATEMENT 

Consider the following NCS; 

   

!x(t) = A
c
x(t)+ B

c
u(t)

y(t) = C
c
x(t)

!
"
#

$#  
(1) 

where 
  
x(t)!R

n  is the state vector, 

   
u(t) = u

1
(t) u

2
(t) ! u

m
(t)!

"
#
$

T

%R
m  is the control vec-

tor, and ( )y t is the output vector. 

Denote k
SCτ  as the sensor-to-controller network transmis-

sion time delay, k
CAτ  as the controller-to-actuator time delay, 

and k
Cτ  is the actuator computation time delay. Due to the 

static memoryless state feedback controller is concerned 
here, the controller could be removed to the actuator end, 
thus, we denote 

 
!
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k
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+!

C

k
= !  as a constant, the 

system is under the assumptions as following: 

(1) The time delay is shorter than a sampling period, that 
is 

  
! < h

min
; 

(2) Time varying sampling period is 
 
T

k
= h

k
+! , due to 

kh  is time-varying and bounded, so the sampling period of 

the NCS is time-varying and bounded, thus 
  
T
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(3) 0h  is the nominal value of kh , thus, 
  
h

k
= h

0
+ !

k
, the 

uncertain part of the time-varying sampling period is kΔ ; 

(4) The actuators and the controllers are event-driven, the 
sensors are clock-driven, and the sampling instant is kt , the 
sampling period is 

  
T

k
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k
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The discretized system according to the sampling period 
kh is obtained as follows: 
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0 0
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, where cA  and cB  are constant 

matrices of appropriate dimensions, then: 
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Introducing the augmented vector 
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where; 
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ϕ  is some real constant. 
Therefore, the discrete system of system (1) as; 
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To determine ϕ , the following lemmas are given. 

Lemma 1. For constant matrix cA , e ecA t tη≤  exists for 
all the 0t ≥ . 

Theorem 1. The uncertain item kF  is norm bounded, 

[ ]max0,  kΔ ∈ Δ , when the real constant 0ϕ ≠  and;  
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Proof. When 0η ≠ , from lemma 1, we can get:  
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! " 0 , the proof is omitted. 

Associated with this system is the cost function; 

  

J = [zT(k)Qz(k)+ uT(k)Ru(k)]
k=0

!

" , (8) 

where 
 
Q  and R  are given positive-definite matrices. 

For the control input ( )iu k , 1,2, ,i m= L , let ( )F
iu k  de-

note the signal from the actuator that has failed. The follow-
ing failure model is adopted in this paper; 
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In the above model of actuator failure, if 
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α  is said to be admissible if α  satisfies 
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From (11) and (12), we define; 
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where:  
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The objective of this paper is to develop a procedure to 
design a memoryless state feedback control law; 

  
u(k) = (K + !K )z(k) , (16) 

such that for any admissible uncertain α , the resulting 
closed-loop system; 

  
z(k +1) = ( A+ B! (K + "K ))x(k)  (17) 

is asymptotically stable and cost function (8) satisfies 
  J ! J

* , where *J  is some specified constant. 

In the controller (16),  K  is the nominal controller gain, 
and KΔ  represents the gain perturbations. In this paper, the 
following two types of perturbations are considered: 

(a) KΔ  is of the additive form; 

  
!K = M

1
F

1
(k)N

1
，

  
F

1

T (k)F
1
(k) ! I , (18) 

where 1M  and 1N  are known constant matrices, and 1( )F k  
is the uncertain parameter matrix. 

(b) KΔ  is of the multiplicative form; 
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 are known constant matrices, and 
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is the uncertain parameter matrix. 

Definition 1. A control law 
  
u(k) = (K + !K )z(k)  is said 

to be a reliable guaranteed cost control law associated with a 
cost matrix 0P >  for system (1) and cost function (8), if the 
following matrix inequality; 

  
A+ B! (K + "K )#

$
%
&

T

P A+ B! (K + "K )#
$

%
&   

  
!P +Q + (K + "K )T

#R# (K + "K ) < 0  (20) 

holds for all admissible α  and uncertain matrix kF  satisfy-
ing T

k kF F I≤ . 

Lemma 2. (Schur complement). Given the constant ma-
trices 

 
!

1
, 

 
!

2
, 

 
!

3
 of appropriate dimensions, where 

 
!

1
=!

1

T  and 
 
!

2
=!

2

T
> 0 , then 

 
!

1
+!

3

T
!

2

"1
!

3
< 0  if and 

only if: 

 

!
1

!
3

T

!
3

"!
2

#

$

%
%

&

'

(
(
< 0  or 

 

!"
2

"
3

"
3

T "
1

#

$

%
%

&

'

(
(
< 0 . 

Lemma 3. [20]. Given matrices , ,Y H E  of appropriate 
dimensions and with Y  symmetric, then for all F  satisfying 
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3. MAIN RESULTS 

The following theorem gives the nonfragile reliable guar-
anteed cost controller for systems (1) and (8). 

Theorem 2. For the system (1) and the cost function (8), 
if there exist matrices   X > 0 , 
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where ( )∗  denotes the symmetric element of a matrix, then; 

  
u(k) = YX

!1
z(k)  (22) 

is a reliable guaranteed cost controller, the corresponding 
closed-loop cost function satisfies: 
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So the closed-loop system is quadratic stable. Further-
more, from (16), we can obtain:  

  
z(k)TQz(k)+ u(k)T
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Pre- and post-multiplying the left-hand side matrix in (25) 
by the matrix 

  
diag I ,  I ,  P-1{ } , respectively, define 1X P−= , 

using the Schur complement, and Substitute 
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Substituting 
  
K = K + !K = K + M

1
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 into (26), de-
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!1 , for 
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The proof is complete. 

Based on Theorem 2, the design problem of the optimal 
nonfragile reliable guaranteed cost controller can be formu-
lated by solving a certain optimization problem as following. 

Theorem 3. Consider the system (1) with cost function 
(8), if the following optimization problem 
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has a solution ! , ! , ! , 
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is the optimal nonfragile reliable guaranteed cost controller. 
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Remark 1. When the controller gain perturbation  !K   
is of the multiplicative form (19), the criterion for the  
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nonfragile reliable guaranteed cost control of the systems is 
identical to the LMI (21), except that 

  
M

1
,  N

1
X  are changed 

as 
  
M

2
,  N

2
Y , respectively. The proof is omitted. 

4. SIMULATIONS 

For the NCS  

   

!x(t) =
0 1

0 !0.1

"

#
$

%

&
' x(t)+

0

0.1

"

#
$

%

&
'u(t)

y(t) = 0 1"
#

%
& x(t)

(

)
**

+
*
*  

(28) 

We take the time-varying part of the sampling period as 

  
h

k
! 0.5 1.0"
#

$
%s , time delay  ! = 0.4 s , 

  
Q = 0.5I

3!3
, 

  R = 1 . Because 0.5525 0η = ≠ , 
  
! "# / e

#$
max %1( ) . It is 

assumed that the input to the system has partial failure as 
follows:

  

!
! = 0.75 , 

  

!
! = 1.25 . For the 

  
h

0
= 0.5(h

max
+ h

min
)  , 

we choose 
 
! = 3.1 , and 

  
M

1,2
= 0.1 , 

  

N
1,2

=
!0.1

0.1

"

#
$
$

%

&
'
'

T

. 

(1) When the gain perturbations KΔ  is of the additive 
form (18), the corresponding optimal reliable guaranteed 
cost controller is: 

  
u(k) = !0.7692 !7.5836 !0.5491"

#
$
% z(k) ,  

the associated upper bound over the closed-loop cost func-
tion is * 101.6916J = . 

(2) When the gain perturbations KΔ  is of the multiplica-
tive form (19), the corresponding optimal reliable guaranteed 
cost controller is: 

  
u(k) = !0.9384 !8.6852 !0.4627"

#
$
% z(k) ,  

the associated upper bound over the closed-loop cost func-
tion is * 128.4815J = . 

CONCLUSION 

For the given linear time-invariant controlled system, un-
der the assumption that the time delay is constant and the 
time delay id shorter than the sampling period, the sampling 
period is time-varying within a certain known bound, the 
system is transformed into a time-varying discrete time sys-
tem. Based on the linear matrix inequality (LMI) approach, 
the design method of nonfragile reliable guaranteed cost con-
trollers is derived. Furthermore, a problem of convex optimi-
zation with LMI constraints is formulated to design the op-
timal controller which minimizes the upper bound of the 
closed-loop system cost. In order to decrease the numbers of 
necessary LMIs, reduction algorithms are proposed for sta-
bility analysis. 
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