
Send Orders for Reprints to reprints@benthamscience.ae

782 The Open Automation and Control Systems Journal, 2014, 6, 782-787

 1874-4443/14 2014 Bentham Open

Open Access
The Design of Real-time Message Middleware Based on Event Service

Pengjie Wang1, Houjie Li2*, Haiyu Song1, Wei Li1 and Chengxue Yu3

1College of Computer Science & Engineering, Dalian Nationalities University, Dalian, 116600, China
2College of Information & Communication Engineering, Dalian Nationalities University, Dalian, 116600, China
3College of International Business, Dalian Nationalities University, Dalian, 116600, China

Abstract: The Event Service defined in Common Object Request Broker Architecture provides an asynchronous, mul-
ticast communication model among distributed objects. However, the standard CORBA Event Service and previous
methods lack important features required by real-time applications. For instance, message transferring programs for coop-
erating design groups may have requirements of real-time processing and persistent storage of Event data. To address the-
se problems, we propose a real-time message middleware design based on Event service. First, we extend Standard Event
Service to a real-time Message Middleware by improving the QoS (Quality of Service) of Event Channel. Second, we
propose a model that can persistently store the Event data and recover after the system crushed. Finally, we introduce an
Event Channel Manager object to well manage the Event Channels. By using this real-time message middleware, the Ob-
ject Request Brokers can communicate stably with each other without caring whether the two or many communication
sides have relation or whether the other communication side is ready.

Keywords: Distributed computing, message middleware, Event Service, asynchronous multicast communication, real-time
system.

1. INTRODUCTION

In typical CORBA (Common Object Request Broker
Architecture) based applications, most of the communica-
tions between client and server are one-way and synchronous
[1]. This way is the default communication way between
distributed objects, and it is widely used in lots of engineer-
ing scenarios. However, there are also scenarios, where a
loosely-coupled communication way is demanded. For ex-
ample, in a designing project, which may last long period of
time and need elaborate cooperation between designers,
there are often setup of new designing groups and teardown
of an old designing groups. At the same time, the members
of group are also often changed. If each member of the group
communicate with any other member one-way and synchro-
nously, the tight coupling communication program will be
too complex, and this will affect the scalability of the system.
A new communication way, which is asynchronous and mul-
ticast, is demanded. In CORBA, the Event Service [2] and
Notification Service [3-5] can offer this kind of asynchro-
nous and multicast communication.

From the specification [3] and some implementation of
the Notification Service [4, 5], we can see that the Notifica-
tion Service is too complex and bring much overhead. On
the other hand, the Event Service is more simple and practi-
cal, and also has lots of engineering applications [6-8].

Event Service adopts the policy of “Trying the best” and
it has lots of disadvantage as a message middleware. Thus it
needs to be improved greatly, before it can be applied in re-
al-time system. There are several extensions and implemen-
tations for Event Service [9-11]. Chen et al. [9] improved the
Event Service by introducing filtering mechanism. This fil-
tering mechanism can reduce unnecessary Event message
and can reduce the number of Events sent to the consumers.
Chen et al. also proposed to build Event repository structure
in order to increase additional Event types and information
about properties. Zhang et al. [10] address fault-tolerance
issues of the CORBA Event Service. They proposed to use
object replication technology to implement fault-tolerance
CORBA Event Service. They also applied their fault-
tolerance Event Service to one distributed power monitor
system, and proved that their method is feasible. Gong et al.
[11] proposed an asynchronous callback model for Event
Service of CORBA. The key of this model was to separate
the cycle of requesting and responding, in order to form two
separate invoking routes. Through this model, the requests
message and responses message were non-interference from
each other. User can query response using IIOP Client at any
time after sending a request. Thus they achieved asynchro-
nous transmission of information.

However, the QoS (Quality of Service), real-time issue
and persistent storage have not been the focus in these de-
signs and implementations. In this paper, based on our pre-
vious work [12], we propose a message middleware design
based on Event Service. In this message middleware, we
introduce the persistent storage mechanism and improve the

The Design of Real-time Message Middleware Based on Event Service The Open Automation and Control Systems Journal, 2014, Volume 6 783

Quality of Service for the real-time Event message transfer-
ring.

Fig. (1) shows the overall structure of our message mid-
dleware system. Event Channel Manager is responsible for
managing Event Channels in the message system, as Fig. (2)
shows. Please refer Section 2 for the details. Event Channel
is responsible for transferring Events data from the Supplier
to the Consumer, as Fig. (2) shows. Please refer Section 3 for
the details. The unit of Persistent Storage is introduced here
to permanently store the Events data in the Event Channel. It
can start the recovery process after the Event Channel fails
unexpectedly, as Fig. (3) shows. Please refer Section 4 for
the details. Section 5 present a application case and Section 6
give the conclusions.

2. EVENT CHANNEL MANAGER

The extended Event Channel Manager is response for the
creating, destroying, suspending, transferring and searching

for the Event Channel. Any design group can request to cre-
ate a new Event Channel, and the one who start a new Event
Channel becomes the owner of this Event Channel. Other
designers can search and browser all the Event Channels and
they can also request to join any Event Channel which they
are interested in. If the project is suspended, the owner of the
Event Channel can request to suspend the Event Channel
temporarily. After the project is finished, the group will be
dismissed, and the owner can request Event Channel Manag-
er to destroy the channel. When the Channel Manager re-
ceived the request, it will check the status of the Event
Channel and approve destroying the channel after it make
sure that there is no transferring Event data. Normally, the
owner cannot logout from the Event Channel until the Chan-
nel is destroyed. However, if the owner does want to logout
from the Channel, he has to request transferring the owner-
ship of the channel to other member of this channel. After
the Event Channel Manager receives the request, it will ran-
domly pick one member as the owner of the Channel.

Supplier/
Consumer

Message system

Event Channel

Event Channel Manager

Persistent Strorage

Event Logs

Event Backups

Supplier/
Consumer

Consumer

Supplier

Supplier/
Consumer

Supplier/
Consumer

Fig. (1). The overall structure of message middleware system.

Event Channel

Event
Channel

.

.

.

.

.

.

Consumer
Manager

Event
Monitor

Consumer
Manager

Supplier
Proxy

Consumer
Proxy

Supplier
Proxy

Consumer
Proxy

.

.

.

.

.

.

Fig. (2). The structure of Event Channel.

784 The Open Automation and Control Systems Journal, 2014, Volume 6 Wang et al.

Event Channel Manager also has the responsibility of de-
stroying the Orphan Channel, which is defined as a Channel
that has no communication ends attached. The reason that
leads to the orphan channel is that the owner of the Event
Channel unexpectedly fails and aborts from the system be-
fore it has enough time to destroy the Channel.

All the activities of user will be written into the logs ac-
cording to data structure defined in Section 4.2. Based on
these backups, we can restart and rebuild the Event Channel,
even after the breakdown of message middleware system.
Section 4 gives the details.

In order to meet the requirement of our message middle-
ware system, we need to extend the Event Service specifica-
tion by adding the IDL (Interface Description Language) of
Event Channel Manager, COSChannelManager, as following.

module COSChannelManager
{
interface EventChannelManager
{
CosEventChannelAdmin::EventChannel CreateChannel
(in string ChannelName)
Raises (NameAlreadyUsed);
CosEventChannelAdmin::EventChannel SearchChannel
 (in string ChannelNname)
Raises (EventChannelNotFound);
CosEventChannelAdmin::EventChannel RestartChannel
 (in string ChannelName)
Raises (EventChannelNotFound);
CosEventChannelAdmin::EventChannel DestroyChannel

(in string ChannelName)
Raises (EventChannelNotFound);
CosEventChannelAdmin::EventChannel SuspendChannel

(in string ChannelName)
Raises (EventChannelNotFound);
CosEventChannelAdmin::EventChannel TransferChannel

(in string ChannelName)
Raise (EventChannelNotFound);
exception NameAlreadyUsed { };
exception EventChannelNotFound{ };
};
};

3. EVENT CHANNEL

The Event Channel is shown as Fig. (2).

3.1. Two-way Communication

When one designer requests to join a particular existing
Event Channel, he/she can choose the access type between
read-only and two-way (read and write). This leads to three
types of user in our message middleware system. One is
“Supplier/Consumer”, which is not only the Event supplier
but also the Event consumer, and its connection to the mid-
dleware system is two-way. Another two types is the “Sup-
plier” which only sends the Event data to the middleware
system, and “Consumer” which only receives the Event data

from the middleware system. Fig. (2) shows the two-way
communication scenario.

Two-way communication will make the race condition in
Event Channel more serious. This happens when more than
one Supplier send Event data in the same Event Channel.
There are two solutions to address this problem. Solution one
is that each supplier builds his own Event Array in the Event
Channel in order to store the Event data produced by one
specific Supplier. The advantage of this solution is that it can
avoid the race condition and lock mechanisms completely.
However, we have to build a new Event Array every time a
new Supplier is added. To maintain these arrays will be a
problem, especially when there are too many designers in a
cooperating design group.

Solution two is to keep only one Event Array for all Sup-
pliers. In this situation, we have to deal with the concurrency
problem. The request of the Supplier may be suspended for
waiting if the lock mechanism is introduced to our middle-
ware system. To avoid this, more temporal memory need to
be allocated for the Supplier Proxies. This also leads to
memory overhead.

Based on above discussion, we choose Solution one. As
Fig. (2) shows, the Event data is put into Consumer Manager.
In Fig. (2), we only show one Event Array.

3.2. The Data Structure of Event Array

The structure of Event Array is (PushSupplierID, EvDa-
taIOR, EvData, State, Priority, ElapseTime). Here,
“PushSupplierID” is the ID of the Supplier. “EvDataIOR” is
the IOR (Interoperable Object Reference) of an Event. “State”
is used to record whether the Event has been received by all
the “Consumer” of this Channel. If yes, “State” will be set,
and at the same time, this Event will be put into destroying
list, waiting for destroying. “EventData” is the Event data,
and “Priority” records the priority of the Event. “ElapseTime”
is the time duration that the Event exists in the Event Chan-
nel (Seciton 4.4 will give the details for the last two parame-
ters).

3.3. Communication Quality Control

The Event Monitor is introduced to improve the commu-
nication quality, as Fig. (2) shows. It monitors the communi-
cation process and makes sure that all Event data is trans-
ferred to all consumers in time and with high quality.

3.3.1. Event Monitoring Process

(1) The Event data is sent from Supplier to Consumer
Proxy, which further sends the Event to Event Channel and
notifies the Event Monitor at the same time.

(2) A timer is opened for this Event by the Event Monitor.
(3) The Event Channel passes the Event to Consumer

Manager, and then to Supplier Proxy, which finally pushes
the Event to Consumer.

(4) Consumer notifies Supplier Proxy that it has success-
fully received Event.

The Design of Real-time Message Middleware Based on Event Service The Open Automation and Control Systems Journal, 2014, Volume 6 785

(5) The Supplier Proxy sends the success message further
to Event Monitor.

(6) If Event Monitor received all the success messages
from the Supplier Proxy before the timer’s alarming time, we
can delete the Event from the Monitor Array. Otherwise,
Event Monitor will request Event Channel to resend the
Event.

We have to change the return value of push method to
meet the requirement of Event Monitor. In addition, we have
to design the data structure of the Monitor Array.

3.3.2. Changing the Return Value of Push Method

In the standard IDL, the return value of push method is
“void”. In above Event Monitor, we can see that Supplier
Proxy need feedback message. Thus, we change the return
value of push method from “void” to “Boolean” in order to
meet this requirement. That is,

boolean push (in any data) raises(Disconnected)
where returned value being true means that the Event has
been sent successfully, and false unsuccessfully.

3.3.3. The Data Structure of Monitor Array

The data structure of Monitor Array is (PushSupplierID,
EvDataIOR, EventState). In the structure, “PushSupplierID”
is the ID of Supplier. “EvDataIOR” is the IOR of the Event.
“EventState” is an array which records whether the Consum-
er has successfully received the Event. Its specific definition
is,

typedef boolean EventState[n]
where n is the number of Consumers that is connected to
Event Channel.

Many Suppliers may share one Event Monitor. We can
handle this race condition by two means. One is to build one
Monitor array for each Supplier, and the other is to introduce
lock mechanism to share the Event Monitor in a mutual ex-
clusion manner. Because each row of Monitor Array has
little information, it takes little time and overhead to main-
tain these locks. Therefore, we adopt the latter method to
address this concurrency problem.

3.4. Priority Control

We add new overloaded method in the IDL of Proxy-
PushConsumer,

Boolean push (in any Data, in short Priority)
Raises (Disconnected)
where we have 5 levels “Priority” from 1 to 5, and 5 is

the top priority. When Supplier send the Event tagged with
priority, the push method should be invoked to push Event to
Event Channel.

The Events in Event Array of the Consumer Manager is
ordered by a product between “Priority” and “ElapseTime”,
which shows how long the Event has been stayed in the
Event Array. This order can assure that high priority Event is
sent immediately and at the same time, low priority Event is
not starved.

4. PERSISTENT STORAGE

Fig. (3) shows structure of the unit of Persistent Storage
of our message middleware system. This unit is responsible
for the persistent storage of the Event data (backup of the
Event data) and the recovery of the Event data. Event Chan-
nel will write logs in specific time (please refer Section 4.1).

Logs

Event Channel and Channel Manager

Event
Channel

Channel
Manager

Persistent Storage

RecoveryManagerConcurrent-
Control

LogWriter LogReaderLogTimer

Writing ReadingLog Switching

Reading LogsWriting Logs

Writing Reading

Fig. (3). Persistent Storage unit of our message middleware system.

786 The Open Automation and Control Systems Journal, 2014, Volume 6 Wang et al.

The detail process has two steps. In the first step, Concur-
rentControl schedules the Event Channels by introducing
lock mechanism. In the second step, LogWriter will be in-
voked to write logs to hard disk. Log has to follow one spe-
cific data structure, as shown in Section 4.2. LogTimer is
used to trigger Event log switching every a specific time
interval. Event Channel Manager will initial the recovery
process, after Event Channel fails and breakdowns unexpect-
edly. First, LogReader sends the requested Events to Recov-
eryManager, and, RecoveryManager sends them further to
Event Channel Manager. Second, based on the user infor-
mation written in logs, the Event Channel will be recreated
by RecoveryManage and Event Channel Manager, and then
Events will be recovered.

In order to get the backup of Events data, two problems
should be addressed. One is when to write logs to disk from
memory, and the other is how to structure the log file. We
will give the details in the following subsections.

4.1. Log Writing Time

(1) When a user joins, logouts, suspends, transfers and
destroys an Event Channel, its activities should be logged.

 (2) In the following 3 situations, we will write Event
logs. The first is when the Event Channel memory is 30%
full. The second is when the thread is timed out. For example,
we can set a timer, which will alarm every 5 seconds. The
third is just before one specific Event will be removed from
the Event array.

4.2. Log Specification

 (1) The structure of user activities logs is as (UserType,
UserIOR, EvChannelIOR, Time). Here “UserType” has three
options, “Event Consumer”, “Event Supplier” and “Suppli-
er/Consumer”. “UserIOR” is the IOR of the user, and
“EvChannelIOR” is the IOR of Event Channel.

(2) The structure of Event data is (PushSupplierID,
EvChannelIOR, Any, EventState, Time). Here, “PushSuppli-
erID” is the ID of Supplier, and “EvChannelIOR” is the IOR
of Event Channel. “Any” is the Event data. “EventState” is
the state whether the Event data has been successfully re-
ceived by all consumers (please refer 3.3.3). With this state,
after recovery, we can resend the Event to the consumers
which have not received the Event successfully. “Time” is
the time when the Event was sent.

5. APPLICATION AND EXTENSION

In this Section, we give an application for our message
middleware. In a designing group, there are many roles, like
designer, auditor and project manager. In Fig. (4), project 1
has N designer, one auditor and one project manager. When
the designer chooses to join project 1, he chooses the two-
way mode. That is, he can receive the Event message from
the CES (CORBA Event Service) or send the Event to CES.
On the other hand, the auditor chooses read-only mode. That
means he can only receive the Event message from CES.
During the project, if a new designer applies to join in CES,
he can choose to receive past Event messages, since our CES
has backed up the Event data.

In a project, there are often lots of sub-projects. It is nec-
essary to share the designer information between these pro-
jects CES. In order to achieve this goal, we should add a new
method for interface EventChannelManager,

CosEventChannelAdmin:: transferEvent
 (in String SourceChannelName,
in String DestChannelName,
 in String EvDataIOR)
Raises (EventChannelNotFound);

As Fig. (4) shows, when Designer1 want to get some

Event message from project2 CES, he can invoke this meth-
od. Then, he can get any Event message in the Event channel
or Event message that has been backed up.

CONCLUSION

Asynchronous and multicast communication is one of the
most important topics in the application of distributed appli-
cations. In this paper, we give a design for a message mid-
dleware system based on Event Service. With this middle-
ware system, distributed agents can communicate and coop-
erate with each other. Our message middleware can be em-
bedded in the ERP system, taking the responsibility for the
message transfer and storage.

In recent years, the Internet of Things technology devel-
op quickly. Our real-time middleware can serve as the mes-
sage middleware among distributed objects, such as a refrig-
erator or a table etc. However, the middleware should sup-
port protocols more than CORBA. In addition, the whole

Fig. (4). Application and communication between CES.

The Design of Real-time Message Middleware Based on Event Service The Open Automation and Control Systems Journal, 2014, Volume 6 787

structure need to be more agile for communication between
mobile device. As a future work, we would like to explore
these issues.

CONFLICT OF INTEREST

The author confirms that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work is partially supported by NSFC (Project Num-
ber: 61300089, 61300084, 71373035), the Research Founda-
tion of Education Bureau of Liaoning Province, (Project
Number: L2013502, L2014540), the Doctoral Research Fund
of Liaoning Province (Project Number: 20131023), Tech-
nology Innovation Fund from Ministry of Culture of China
(Project Number: 2014KJCXXM12), Fundamental Research
Funds for the Central Universities of 2015 entitled “Human
motion retrieval and recognition based on sensors”, China
Postdoctoral Science Foundation (Project Number:
2014M561228), the Xiniuniao Innovation Foundation of
CCF-Tencent 2014 (Project Number: CCF-TencentI
AGR20140112), and Doctoral Research Fund of DLNU
(0710-110005).

REFERENCES
[1] S. Tanenbaum, Distributed Operating System, Delhi: Dorling

Kindersley, 2009.

[2] Object Management Group, Event Service Specification, 2002.
[3] Object Management Group, Notification Service Specification,

2002.
[4] T. Lei, W. D. Yang, and T. Wang, “Design and Optimization of

Application Integration Based on Notification Service,” In: Pro-
ceedings of IEEE 3rd International Conference on Software Engi-
neering and Service Science, pp. 224-227, 2012.

[5] P. Gore, R. Cytron, and D. Schmidt, “Designing and Optimizing a
Scalable CORBA Notification Service,” In: Proceedings of the
ACM SIGPLAN Workshop on Optimization of Middleware and
Distributed Systems, pp. 196-204, 2001.

[6] S. J. Xue, and W. Z. Sun, “Real-time radar data transfer based on
corba event service,” Journal of Wuhan University of Technology,
vol. 32, no. 6, pp. 93-97, 2010.

[7] N. N. Yang, and J. Yang, “Networking schema of safety production
monitoring and control system for coal mine based on CORBA
event service,” Mining R & D, vol. 28, no. 4, pp. 56-57, 79, 2008.

[8] H. Wang, J. F. Xu, and Z. Gao, “The application of CORBA mid-
dleware to the distributed flight control,” Computer Application
and Software, vol. 23, no. 5, pp. 15-18, 2006.

[9] Y. Chen, Y. Q. Wang, and Y. Liu, “Extended and distributed event
service design based on CORBA,” Journal of Computer Applica-
tion, vol. 31, no. S1, pp. 138-143, 2011.

[10] J. S. Zhang, and J. Wu, “Research and implementation of fault-
tolerant event service based on CORBA,” Microelectronics &
Computer, vol. 24, no. 6, pp. 166-169, 2007.

[11] F. H. Gong, and M. L. Qi, “Design of asynchronous communica-
tion based on event service of CORBA,” Electronic Design Engi-
neering, vol. 18, no. 5, pp. 22-28, 2010.

[12] H. Y. Song, P. J. Wang, W. Li, and X. F. Li, “Implementation of
extended and light CORBA event service,” Computer Engineering
and Design, vol. 28, no. 20, pp. 4847-4849, 2007.

Received: November 28, 2014 Revised: January 09, 2015 Accepted: January 20, 2015

© Wang et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.

