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Abstract: This paper discusses the constructional problem for a class of spring-mass systems whose part particles are 
connected to the ground. The problem is converted to an inverse eigenvalue problem for Jacobi matrix. An inverse eigen-
value problem of determining the system from its some physical parameters and incomplete eigenpairs is solved. The nec-
essary and sufficient condition for constructing the system uniquely with positive parameters is obtained. Furthermore, the 
concrete expressions of the solution and the related numerical algorithm are derived, and numerical results show that the 
algorithm is effective.  
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1. INTRODUCTION 

Problems such as the longitudinal vibration of pile are of-
ten encountered in engineering practice. Along the long di-
rection, rod is connected to the elastic foundation in such 
problems, and the rod vibration system can also be dispersed 
into spring-mass systems by using finite difference method. 
Inverse eigenvalue problems for spring-mass systems are the 
basic problems of dynamic inverse problems in mechanics, 
and related research has important application in vibration 
control, structural design, parameters identification and so 
on. The inverse eigenvalue problems for spring-mass sys-
tems are using part frequency (eigenvalues) and the corre-
sponding vibration (eigenvectors) which have been measured 
to determine the remaining physical parameters of systems. 
Such problems in mathematics are converted to inverse ei-
genvalue problems for Jacobi matrices. At present, research 
on the inverse eigenvalue problems for Jacobi matrices had 
some good results in [1-6]. Gladwell and Gbadeyan [7], and 
Nylen and Uhlig [8] considered the inverse vibration prob-
lems of spring-mass systems only from two sets of eigenval-
ues. Using one eigenpair or two eigenpairs, the inverse ei-
genvalue problems for spring-mass systems were studied by 
Ram and Gladwell [9], and Tian and Dai [10]. Huang, et al. 
[11] studied by two incomplete eigenpairs to determine a 
spring-mass system, and the numerical method of the prob-
lem was given. In fact, it is difficult to obtain the entire spec-
trum of a system from vibration test in most situations, and 
only some of the eigenvalues and the eigenvectors of a sys-
tem are got easily. Combined with the engineering of appli-
cation, this paper constructs a grounding spring-mass system 
that is different from [10] by some physical parameters and 
incomplete eigenpairs of the system. Moreover, existence 
condition and expressions of the solution and the corre-
sponding numerical algorithm are obtained.  

 
 

N degree of freedom of spring-mass system whose ante-
rior 

 
p  particles are connected to the ground by springs (Fig. 

1). Generalized eigenvalue equation for the system is: 

 KX = !MX ,  

where λ  and X  are respectively eigenvalue and eigenvec-
tor of matrix pair 
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In this paper, we consider the following inverse eigen-
value problem:  

Problem As for spring-mass system whose anterior 
 
p  

particles are connected to the ground by springs, particle 
quality 

   
m

i
> 0(i = p +1, p + 2,!,n)  and ungrounded spring 

stiffness 
   
k

i
> 0(i = 1,2,!,n!1)  are known. Given  

  
! , µ "R

+

 
(! " µ)  and vectors 
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X

1
= (x

1
,x

2
,!,x

p
)T ,  

    
Y

1
= ( y

1
, y

2
,!, y

p
)T

!R
p ,  

construct physical parameters of the system, that is, solve 
particle quality im , grounded spring stiffness  

   
c

i
> 0(i = 1,2,!, p)  and vectors  

   
X

2
= (x

p+1
,x

p+2
,!,x

n
)T , 

    
Y

2
= ( y

p+1
, y

p+2
,!, y

n
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!R
n" p ,  

such that  

 KX = !MX , 
 
KY = µMY , (1) 

where vectors X  and Y  are 

  
X = ( X

1

T , X
2

T )T , 
   
Y = (Y

1

T ,Y
2

T )T
!R

n ,  

 K  and  M  are respectively mass matrix and stiffness 
matrix, 

  
(!, X )  and 

  
(µ,Y )  are respectively the i'th and the j'th 

eigenpair of the system 
  
(1! i

' , j
'
! n) , when eigenvalues of 

the system are arranged in ascending order.  

2. THE ANALYSIS OF PROBLEM 

 If 
   
m

i
> 0(i = 1,2,!,n) , then the equation  KX = !MX  

is equivalent to the equation  

 JX = !X ,  

where   J = M
!1

K  is  n! n  Jacobi matrix.  

In [12], Gladwell gave the following definition and theo-
rem. 

Definition. For   n!1  real vector  

 
   
X = (x

1
,x

2
,!,x

n
)T ,  

 

 

sign change number of sequence which composed of the 
component (that value being equal to zero can be neglected ) 
is denoted by 

  
S( X ) .  

The eigenvalues of the Jacobi matrix are unequal real 
numbers, so let 

   
!

i
> 0(i = 1,2,!,n)  be eigenvalues of  n! n  

Jacobi matrix  J .  

If 
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1
< !

2
<!< !

n
, then  

 Lemma. Let 
  
(!, X )  be eigenpair of  n! n  Jacobi matrix 

 J , then 
  
(!, X )  is the ith eigenpair of  J  if and only if  

  
S( X ) = i !1 , 

   
i = 1,2,!,n .  

Matrices  K ,  M ,  X ,  Y can be expressed the following 
partitioned matrices.  
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where p p×  Jacobi matrix 
  
K

1
 is the top left corner matrix 

of  K , 
  
(n! p)" (n! p)  Jacobi matrix 

  
K

2
 is the bottom 

right corner matrix of  K , 
 
p ! p  diagonal matrix 

  
M

1
 is the 

top left corner matrix of  M , 
  
(n! p)" (n! p)  diagonal ma-

trix 
  
M

2
 is the bottom right corner matrix of  M , 

  
p !1  unit 

vector  

   
e

p
= (0,0,!,1)T , 

 

 

 

 
Fig. (1). A grounding spring-mass system. 
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(n! p)"1  unit vector  
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2
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formula (1) can be rewritten as follows.  
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where 
  
k

0
= 0 , 

  
x

0
= y

0
= 0 .  

From (2), the problem solution can be transformed into 
solving the following problem I and Ⅱ: 

Problem Ⅰ. Given 
  
K

2
, 
  
M

2
 and positive real number λ

, µ ( ! " µ ), 
  
X

1
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Y

1
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Problem II. Given positive real number ! , µ（ ! " µ

） , 
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i = 1,2,!, p ,  

where 
  
k

0
= 0 , 

  
x

0
= y

0
= 0 .  

3. THE CONDITIONS OF UNIQUE SOLUTION OF 
THE PROBLEM 

Let  

  
!
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(# ) = det(K

2
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2
) ,  
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0
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!
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Theorem 1. Systems of linear equations 
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Proof. Systems of linear equations 
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If 
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From Theorem 1, the conditions for Problem Ⅰ has 
unique solution is easy to derive.  

Theorem 2. Problem Ⅰ has a unique solution if and only 
if  

  
!

n" p
(#) $ 0 , 

and 
  
!

n" p
(µ) # 0 ,  

and the solution is  

  

x
i
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p
!

n" p
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(6) 

   
i = p +1, p +2,!,n .  

Theorem 3. Problem Ⅱ has a unique solution if and only 
if  

  
z

i
! 0 ,  

and iii srz ,,  have the same sign, the solution is  
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r
i

z
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c
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s
i

z
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,  (7) 

   
i = 1,2,!, p .  

Proof. Systems of linear equations (4) have a unique so-
lution if and only if coefficient determinant 
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and the solution is  
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c
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s
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z
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And for 
  
m

i
> 0 , 

  
c

i
> 0 ,  

iii srz ,,  have the same sign, 
   
i = 1,2,!, p .  

  
(!, X )  and 

  
(µ,Y )  are respectively the i'th and the j'th 

eigenpair of the system 
  
(1! i

' , j
'
! n) , when eigenvalues of 

the system are arranged in ascending order. Combined with 
lemma, from Theorem 2 and Theorem 3, we have the neces-
sary and sufficient condition for unique solution of the prob-
lem.  

Theorem 4. Problem has a unique solution if and only if,  

(1) 
  
!

n" p
(#) $ 0  and 

  
!

n" p
(µ) # 0 ;  

(2) 
  
S( X ) = i

'
!1 , 

  
S(Y ) = j

'
!1 ; 

(3) 
  
z

i
! 0 , and iii srz ,,  have the same sign, 

   
i = 1,2,!, p .  

4. NUMERICAL ALGORITHM AND EXAMPLE 

The above discussion allows us to write down the algo-
rithm to solve Problem, presented as follows. 

Algorithm. Given diverse positive real number ,λ µ  

( !  and µ are respectively the i'th and the j'th eigenvalue 

of the system 
  
(1! i

' , j
'
! n) , when eigenvalues of the system 

are arranged in ascending order.) , 
  
m

i
!R

+

  
(i = p +1,

   
p + 2,!,n) , ik ∈ 

 R
+

   
(i = 1,2,!,n!1) , and 

   
x

i
, y

i
(i = 1,2,!, p) , construct 

   
m

i
,c

i
!R

+

   
(i = 1,2,!, p) and vectors  

  
X

2
, 
   
Y

2
!R

n" p :  
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Step 1. From recurrence formula (5), compute 
  
!

i
(") , 

   
i = 1,2,!,n! p . If 

  
!

n" p
(#) = 0 , go to step 7.  

Step 2. From recurrence formula (5), compute 
  
!

i
(µ) , 

   
i = 1,2,!,n! p . If 

  
!

n" p
(µ) = 0 , go to step 7.  

Step 3. From formula (6), compute ix  and iy , 

   
i = p +1, p +2,!,n .  

Step 4. Compute 
  
S( X ) , 

  
S(Y ) . If 

  
S( X ) ! i

'
"1  or 

  
S(Y ) ! j

'
"1 , go to step 7.  

Step 5. Compute iz , 
   
i = 1,2,!, p . If some 

  
z

i
= 0 , 

   
i = 1,2,!, p , go to step 7. 

Step 6. Compute 
  
r

i
,s

i
, 

   
i = 1,2,!, p . If 

  
z

i
,r

i
,s

i
(

   
i = 1,2,!, p ) have different sign, go to step 7.  

Step 7. The solution can not be determined uniquely, end 
the algorithm.  

Step 8. From formula (7), compute im , ic , 

   
i = 1,2,!, p,  

Example. Given 

 
! = 2.2533, µ = 3.7120 ,   n = 8 , 

  
p = 3 ,  

  
m

4
= 3 , 

  
m

5
= m

6
= m

7
= 4 ,

  
m

8
= 5 ,  

  
k

1
= 1 , 

  
k

2
= k

3
= 2 , 

  
k

4
= 3 ,  

  
k

5
= k

6
= 5 , 

  
k

7
= 6 , 

and 
  
X

1
= (x

1
,x

2
,x

3
)T

=   
(!0.3336,0.5026,0.5421)T , 

  
Y

1
= ( y

1
, y

2
, y

3
)T

  
= (0.1852,! 0.8192,0.4907)T .  

We need to construct K ,  M , and design a 8 degree of 
freedom of the grounding spring-mass system. Moreover !  
and µ  are respectively the 5th and the 7th eigenvalue of the 
system.  

By Algorithm, we get: 

  
{!

i
(")}

0

5
={0.0010e+ 03,# 0.0053e+ 03,# 0.0465e  

  
+03,0.0858e+ 03,1.0746e+ 03,! 2.6636e+ 03} , 

  
{!

i
(µ)}

0

5
={0.0001e+ 04," 0.0013e+ 04,0.0012e  

  
+04,0.0254e+ 04,!0.2049e+ 04,1.0286e+ 04},  

 
!

5
(") # 0  and 

 
!

5
(µ) " 0 ,  

  
X

2
= (x

4
,x

5
,x

6
,x

7
,x

8
)T  

  
= (! 0.4374,!0.1048,0.2837,0.1608,! 0.1832)T ,  

 

  
Y

2
= ( y

4
, y

5
, y

6
, y

7
, y

8
)T  

  
= (!0.1955,0.0728,0.0176,!0.0899,0.0429)T .  

The sign change number 
  
S( X ) = 4 ,

  
S(Y ) = 6 , and the re-

sults show that λ  and µ  is respectively the 5th and the 7th 
eigenvalue of the system.  

  
{z

i
}

1

3
={0.0901,0.6006,! 0.3880} ,  

  
{ f

i
}

1

3
={0.1802,0.6907,0.1087} , 

  
{g

i
}

1

3
={0.0000,0.1802,0.6907} ,  

  
{h

i
}

1

3
={0.1802,1.6036,0.9460} , 

  
{l

i
}

1

3
={0.0901,1.4053,1.5281} ,  

  
{r

i
}

1

3
={0.1802,1.2012,!1.1641} , 

  
{s

i
}

1

3
={0.1802,1.8019,!1.1644} ,  

0≠iz ，and iii srz ,,  have the same sign, 
  
i = 1,2,3 .  

Then,  

  
{m

i
}

1

3
={2.0000,2.0000,3.0003} , 

  
{c

i
}

1

3
={1.9995,3.0002,3.0009} .  

Therefore, 
  
M = diag(2,2,3.0003,3,4,4,4,5) , 

  

K =

2.9995 !1

!1 6.0002 !2

!2 7.0009 !2

!2 5 !3

!3 8 !5

!5 10 !5

!5 11 !6

!6 6

"

#

$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'

.  

Using Matlab, we get all generalized eigenvalues of 
 KX = !MX  are 

  
! (K , M ) ={0.0435,0.5969,1.2430,1.5271,  

 
2.2533,3.0723,3.7120,4.5018} .  

The eigenvector which corresponds to eigenvalue 
 ! = 2.2533  is, 

  
X = (!0.3335,0.5026,0.5421,! 0.4375,  

  
! 0.1048, 0.2837, 0.1608, ! 0.1832)T  

and the eigenvector which corresponds to eigenvalue 

 
µ = 3.7120  is: 
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Y = (0.1852,! 0.8193,0.4907,! 0.1955,  

  
0.0728, 0.0176, ! 0.0899, 0.0429)T . 

These data indicate that the algorithm is very effective.  

CONCLUSION 

Some physical parameters of the grounding spring-mass 
system and two defective modes to construct real vibration 
system are presented in this paper. The problem comes down 
to the inverse eigenvalue problem for Jacobi matrix. The 
necessary and sufficient condition for the reconstruction of a 
physical vibration system with positive mass and stiffness 
elements from the known data is derived. And numerical 
algorithm and example are provided.  
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