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Abstract: The geodesic saliency method in the literature was based on the boundary and connectivity priority, which as-
sumed that most of the background regions can touch the image boundaries. It cannot deal with the images with complex 
backgrounds or variant textures. To address such problem, we propose an improved saliency detection method by involv-
ing the important foreground priority. First, the statistical results of randomized Prim’s algorithm are used to generate a 
coarse conspicuity map, which aims to roughly estimate the potential foreground. Then, the image is over-segmented into 
some individual superpixels and an affinity propagation clustering method is used to group the superpixels having a simi-
lar color appearance together. This is followed by the foreground probability map computation through the spatial interac-
tion information between the coarse conspicuity map and superpixel based color clusters. The final saliency map is gener-
ated by integrating the above foreground probability map and background color contrast in a unified way. The quantitative 
and qualitative comparisons on the benchmark dataset MSRA-1000 and SED show that our method outperforms many re-
cent proposed state-of-the-art approaches significantly. 

Keywords: Background contrast, coarse conspicuity map, foreground probability map, randomized prim’s algorithm, saliency 
detection. 

1. INTRODUCTION 

The selective visual attention mechanism of human be-
ings can effectively and effortlessly guide people to find the 
most attractive and important regions from a scene. Various 
image saliency detection methods have been presented to 
equip computer vision with similar ability of automatically 
capturing the potential informative and interesting content. 
Motivated by the importance of saliency results in a variety 
of applications, such as image compression, object recogni-
tion, target tracking, etc., there is rapid increase in the inter-
est in saliency detection recently [1]. Different from predict-
ing human eye fixation [2], salient object detection aims to 
highlight the whole object, which we focus on in this paper 
[3].   

Most existing bottom-up saliency methods suppose that 
the distinctive appearance contrast between salient object 
and redundant background is apparently high, and measure 
the saliency in a center-surround contrast way [4-8]. As the 
most famous and influential models, Itti et al. [4] combine 
intensity, color and orientation features across multi-scale by 
local center-surround differences to measure saliency. 
Achanta et al. [5] construct a two-layer sliding window, and 
evaluate saliency via the color differences between the inner 
and outer windows. Based on the similar sliding window 
assumption, Rahtu et al. [6] intuitively utilize a Bayesian 
framework to compute the color contrast. But due to the lack  
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of high-level prior knowledge of real object, it directly de-
fines the prior probability in the framework as a constant, 
which is too idealistic and fragile. To get more accurate re-
sults, the convex hull based Bayesian saliency models are 
presented in [7, 8], which circle the important Harris points 
to form a coarse salient region (foreground) and detect sali-
ency through color and spatial information. But these meth-
ods are still failed when dealing with the pictures with com-
plex backgrounds. 

Moreover, some methods which are based on contrast or-
ganize the global salient clues in other ways [9-12]. Fre-
quency-tuned method [9] defines the saliency of a pixel by 
its color difference with respect to the average image color. 
Cheng et al. [10] present a region contrast-based saliency 
method, and improve it in [11] by incorporating the soft im-
age abstraction technique. Perazzi et al. [12] estimate salien-
cy by the efficient N-D Gaussian filtering. 

The above methods can achieve acceptable results in 
their own aspects, but they only consider the main salient 
features of foreground prior, which is insufficient for the 
generic salient object detection problem. Thus, from the per-
spective of background prior, Wei et al. [13] suppose that 
most of the background regions connect to image boundaries 
and define the geodesic saliency of a region as its shortest 
path to the pre-assumed background regions. The above idea 
achieves excellent performance among the state-of-the-art 
methods, but it does not hold when dealing with the pictures 
with complex backgrounds and highly textured images. In-
spired by the work of [13], Shuai et al. [14] directly compute 
a superpixel’s saliency as the summation of its k minimum 
color distance to the background superpixels after texture 
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suppression. Zhu et al. [15] make a great improvement via 
the robust boundary connectivity and saliency optimization. 

To overcome the drawback of geodesic saliency, which 
only pays attention to the background information, we con-
sider both the background contrast prior and potential fore-
ground distribution. The statistical results of randomized 
Prim’s algorithm which is based on object proposals are used 
to get a coarse location of the salient foreground area. The 
spatial interaction information between the estimated coarse 
conspicuity map and superpixel based color clusters is com-
puted to acquire the foreground probability map. Then, the 
above map is effectively integrated with background color 
contrast to get the improved saliency results. Some repre-
sentative saliency maps of [13] and our improved method are 
shown in Fig. (1), our results can uniformly and accurately 
highlight the real salient object. 

 
(a) Original image   (b) GS-SP [13]            (c) Our      (d) Ground Truth 

Fig. (1). Some saliency maps of GS-SP and our method. 

2. COARSE CONSPICUITY MAP 

Some small-scale variations or textures of background 
may influence the saliency computation due to their high 
local contrast. First, we employ the simple Gaussian filter to 
smooth out these undesired image details. Then, we present 
the foreground prior generated by randomized Prim’s algo-
rithm which is based on object proposals. It can effectively 
alleviate the dependency on the background assumption of 
geodesic saliency [13].  

The randomized Prim’s algorithm is applied to a graph 
model to get high-quality object proposals quickly with some 
bounding boxes in [16]. The main principle of this method is 
that the groups of some connected superpixels included in 
the same object can be estimated by sampling partial span-
ning trees of superpixels that have high sum of edge weights. 
Let G = (V, E, ρ) be the weighted connectivity graph of an 
image, where the vertices V are the superpixels generated by 
the efficient graph based image segmentation [17], and the 
edges E connect two neighbor nodes. The weight ρi,j repre-
sents the probability that the superpixels i and j are included 
in the same object. 

How to set the weight function ρ is very important. 
Manen et al. [16] utilize the logistic regression to obtain ρi,j: 

, ,( )T
i j i jW bρ σ= Φ +   (1) 

! (x) = (1+ exp(!x))!1                   (2) 

where ,i jΦ is a meaningful feature vector, which 
measures the appearance similarity between i and j. The 
normalized color consistency, common border ratio and size 

are used to constitute the feature vector. σ is the sigmoid 
function. The weighs w and bias term b can be learned from 
the training data. 

Then, for the node i, its neighbor nodes are defined as 
N(i). If there is a set of vertices S, the frontier N(S) can be 
formulized as: 

( ) ( ) \i SN S N i S∈= ∪                       (3) 
Based on the above graph model, the randomized Prim’s 

algorithm [18] is used as an iterative tree growing procedure 
to construct the partial spanning tree Tk at the k-th iteration. 
At each iteration, a candidate node from frontier N(S) is add-
ed to the tree Tk according to the edge weight by multinomial 
sampling strategy.  It always selects the edge with maximum 
weight. 

When the randomized stopping criterion is met, i.e., the 
opportunity of adding a new node to Tk is low enough, the 
expected partial spanning tree is generated, which indicates 
the location of potential object. Then, the bounding box is 
used to generate the final object proposal (see Fig. (2b)) as 
the foreground prior.  

To get more stable and accurate results, we sample N 
bounding boxes based on the randomized Prim’s algorithm 
independently and overlap them. Then, the conspicuous val-
ue in the coarse conspicuity map of a pixel x is: 

1
( ) ( )N

kk
C x p x

=
=∑                       (4) 

where the probability pk(x) is defined as: 

pk (x) =
1,x !Bk
0,otherwise

"
#
$

%$
                    (5) 

Bk represents the k-th bounding box. x!Bk means the lo-
cation of x is within Bk. In our experiments, N=1000. 

By normalizing the conspicuous values of all pixels with-
in the range [0,1], we get the coarse conspicuity map. A rep-
resentative example is shown in Fig. (2c), it can roughly 
provide the location of potential foreground regions. 

3. FOREGROUND PROBABILITY MAP 

The coarse conspicuity map (CCM) can effectively dis-
regard most background while preserving important fore-
ground regions, but it cannot establish well-defined bounda-
ries of the large-scale salient object precisely due to the ge-
ometric shape of various bounding boxes (Fig. 2c). There-
fore, we introduce the spatial interaction information to pro-
duce the foreground probability map. 
 

 
                        (a)                        (b)                         (c) 

Fig. (2). (a) is the original image, (b) is the object proposal results 
annotated by bounding boxes, we choose 10 for visualization, and 
(c) is the coarse conspicuity map. 
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Human vision tends to take perceptual homogeneous im-
age regions as a unit. To achieve the similar capability for 
computer vision, we employ Quick Shift [19] method to ab-
stract the image into perceptually uniform superpixles (Fig. 
3a); each superpixel is shown with the average color of all 
pixels in it). Note that this method is different from the graph 
based image segmentation [17] used in Section II. The rea-
son of our choice is that Quick Shift has the ability of shape 
well adaptivity, boundary alignment and proper size control 
of individual superpixels.  

To emphasize the whole salient object, we adopt the af-
finity propagation clustering (APC) to assemble those super-
pixels together according to their color appearance similarity 
(Fig. 3b). APC does not need to predefine the cluster num-
ber, which is very applicable to process the unknown color 
distributions of different images.  

Now, we have decomposed the image into 2 high-layer 
hierarchical structure—superpixel layer and cluster layer. 
Then, we gradually refine the CCM in each layer to get the 
final foreground probability map. 

We assume the image is abstracted into M superpixels 
and the i-th superpixel is spi. Then, the value of spi in the 
superpixel layer refined CCM is: 

1

1 ( ),iM
i j j ij

i

CR C x x sp
M =

= ∈∑    (6) 

where Mi is the number of pixels included in spi and xj is 
the j-th pixel. The result is shown in Fig. (3c). 

To greatly enhance the real salient object, the global spa-
tial interaction information of cluster layer should be consid-
ered. If all the superpixels aggregate to N clusters and the k-
th cluster is ck with Nk superpixels in it, the value of ck in the 
foreground probability map is: 

1

1 ,kN
k i i ki

k

F CR sp c
N =

= ∈∑                   (7) 

Equation 7 gives an intuitive understanding of highlight-
ing entire meaningful object. Some background superpixels 
have relative high conspicuous values (Fig. 3c), but they can 
be significantly reduced by simply considering other clut-
tered background superpixels belonging to the same cluster 
in spatial domain (Fig. 3d). 

 
Fig. (3).  (a) is the Quick Shift superpixel decomposition result, (b) 
is the APC result, (c) is the refined coarse conspicuity map in su-
perpixel layer, (d) is the foreground probability map 

4. FINAL SALIENCY MAP 

The foreground probability map can be integrated with 
the traditional background prior assumption to improve the 
overall salient object detection performance.  

The geodesic saliency method [13] intuitively assumes 
that the image boundaries are mostly background regions. To 
solve the problem of some salient object regions touching 
image boundaries, it presents the “one-dimension rule”, 
which only computes the saliency of all image boundaries 
and confirms the real background regions. 

 
Fig. (4). (a) is the schematic diagram of background regions, prede-
fined background superpixels are shown in black color, (b) is our 
final saliency map, (c) is the saliency map of [13], (d) is the Ground 
Truth 

Inspired by it, we adopt the same background assumption 
(Fig. 4a). But different from using geodesic distance to 
measure the saliency of each superpixel with respect to the 
predefined background superpixels, we directly utilize the 
color difference. 

The background contrast of spi is defined as the summa-
tion of its L minimum color distance with respect to the 
background superpixel spb in CIELab space [14]: 

1
min{ ( , )}L

i i bb
B D sp sp

=
= ∑                  (8) 

In our experiments, we set L=10. 
Finally, we combine the foreground probability of spi 

with its background contrast to get its final salient value: 

,i k i i kS F B sp c= ⋅ ∈                        (9) 

Normalize all the values to [0, 1], we get the final salien-
cy map. As shown in Fig. (4b), our saliency map can high-
light the entire object uniformly and accurately while geo-
desic saliency assigns high salient value to cluttered back-
ground (Fig. 4c). 

5. EXPERIMENTS 

We test our approach on two benchmark datasets. The first 
one is MSRA-1000, which contains accurate human labeled 
Ground Truth (GT) provided by Achanta et al. [9]. The second 
one is the SED dataset [20], which is divided into: the single 
object sub-dataset SED1 and two objects sub-dataset SED2. 
Each sub-dataset contains 100 images with GT. 

To show the effectiveness and efficiency of our method, 
we compare the results of ours with those of 11 state-of-the-
art methods, including: Itti [4], AC [5], FT [9], RA [6], RC 
[10], XL [7], SF [12], GS-SP [13], GC [11], BS [8] and 
PCAS [21]. Note that the most similar method to ours is GS-
SP. GS-SP directly adopts the similar background assump-
tion, while ours uses the superpixel based implementation of 
geodesic saliency (GS-SP) to get the better results. 

5.1. Evaluation on MSRA-1000 Dataset 

Firstly, similar to FT [9], we utilize the precision-recall 
(P-R) curve, which is obtained by varying the thresholds 
from 0 to 255 and computing the precision and recall under 



1858    The Open Automation and Control Systems Journal, 2015, Volume 7 Jianyong et al. 

all the thresholds, as the first quantitative evaluation. As 
shown in Fig. (5), the P-R curve of our proposed method 
outperforms others significantly. Note that when the recall is 
under 0.9, the precision of our method (about 0.96) is appar-
ently higher than that of other methods, especially GS-SP 
[13], demonstrating the effectiveness of combining im-
portant foreground prior and background contrast in our 
method. 

 
Fig. (5). The P-R curves of our method and 11 state-of-the-art 
methods. 

Besides the precision and recall, we use the F-measure to 
evaluate the overall performance: 

2

2

(1 )Pr Re
Pr Re

ecision callF measure
ecision call

β
β
+ ×− =

+
          (10) 

We also set β2=0.3 to weigh precision more than recall 
[9]. Then we draw the F-measure vs. T curve by calculating 
the F-measure at each threshold T ranging from 0 to 255 
when drawing the P-R curve. Fig. (6) shows the comparison, 
where the red line is the result of our saliency map. It is ap-
parent that the the F-measure of our method is higher than 
any other alternatives when the threshold T varies in the 
range [25,125]. We also calculate the maximum F-measure 
and the corresponding threshold T of each compared meth-
od. As shown in Table 1, our method generates the highest 
F-measure 0.8949 when T=74. Note that the best F-measure 
of GS-SP is only 0.8581, indicating the great improvement 
of  our method. 

We adopt the adaptive thresholding [9-12], which is de-
fined as twice of the average image salient values, as the 
third evaluation. From Fig. (7), we conclude that: (1) the 
precision of our method (0.91) is the highest value; (2) alt-
hough the recall of our approach (0.84) is lower than that of 
GS-SP (0.89), the F-measure of our method has the best per-
formance (0.89), which implies that only using the simple 
threshold segmentation on our saliency map, we can get 
more consistent result with the GT. 

Finally, we employ the mean absolute error (MAE) pro-
vided in [12] to both consider these pixels correctly marked 
as a non-salient region (denoted as the black pixels in GT) 
and the pixels labeled as a salient region (denoted as the 
white pixels in GT). As shown in Fig. (8), the MAE of our 

method has the second minimum value (0.1128, slightly 
higher than that of GC 0.1016), proving that our saliency 
map is very close to human labeled Ground Truth. 
 

 
Fig. (6).  The F-measure vs. threshold T Curves of our method and 
11 state-of-the-art methods. 

 

 
Fig. (7). The Precision, Recall and F-measure after adaptive thresh-
olding. 

 

 
Fig. (8). The MAE histograms. 
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Table 1.  The comparison of the maximum F-measure of different methods on MSRA-1000. 

Method Our PCAS BS GC GS-SP SF XL RC RA FT AC Itti 

F-measure 0.8949 0.8309 0.8515 0.8443 0.8581 0.8395 0.8317 0.8031 0.7272 0.6550 0.5528 0.4633 

T 74 102 222 106 131 59 176 130 173 53 34 3 

 

 
Fig. (9). The qualitative visual comparison of 11 state-of-the-art methods and our method. 

 
Some representative saliency maps are shown in Fig. (9). 

Observed from the visual comparison results, we find that 
our method can correctly and uniformly assign high salient 
values to the real salient object while effectively suppress 
diversified background regions. Note that when compared 
with GS-SP, only based only on the background prior, our 
method has obviously better visual effect. 

5.2. Evaluation of SED Dataset 

SED dataset is much more complex than MSRA-1000. 
Similar to [22], on this single object dataset SED1 and two 
objects dataset SED2, we carefully compare our method with 
6 recent proposed state-of-the-art methods for their better 
performance evaluation, including RC [10], XL [7], SF [12], 
GS-SP [13], GC [11] and PCAS [21]. 

The P-R curves on the sub-datasets SED1 and SED2 are 
shown in Fig. (10). We can see that our method outperforms 
others. Note that the precision of our method is much higher 

than GS-SP when the recall is at any location on SED1 and 
SED2, demonstrating the improvement of the proposed 
method when dealing with more complex images.  

As observed from the F-measure vs. Threshold T curves 
in Fig. (11), the F-measure of the proposed method on SED1 
and SED2 datasets are highest when T in the range [60,160] 
and [50, 200], respectively. And more specifically, as shown 
in Table 2, our method produces the best F-measure 0.8350 
on SED1 and 0.8298 on SED2. 

After adaptive thresholding, the average F-measure of 
our method is apparently higher than any other state-of-the 
art methods on both SED1 and SED2 datasets as shown in 
Fig. (12). Note that on SED2, SF has higher precision value, 
because it tends to pop out the most salient regions at the 
expense of low recall, while our method can avoid it. 
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Fig. (10). The P-R curves of our method and 6 state-of-the-art methods. 

 

 
Fig. (11). The F-measure vs. T curves of our method and 6 state-of-the-art methods. 

 

Table 2.  The comparison of the maximum F-measure of different methods on SED1 and SED2 datasets. 

 
Method Our PCAS GC GS-SP SF XL RC 

SED1 
dataset 

F-measure 0.8350 0.7368 0.7797 0.7866 0.6685 0.7451 0.7041 

T 101 86 86 87 6 151 92 

SED2 
dataset 

F-measure 0.8298 0.7447 0.7126 0.7907 0.7890 0.6938 0.7803 

T 121 101 95 94 13 150 109 

 

 
Fig. (12). The Precision, Recall and F-measure of our method and 6 state-of-the-art methods. 
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Fig. (13). The MAE histograms of our method and 6 state-of-the-art methods. 
 

 
 Original Image           RC                   XL                     SF                  GS-SP                 GC                   PCAS               Our                    GT 

Fig. (14). The representative visual comparison of different methods on SED dataset. The first two rows are from SED1 sub-dataset, the last 
two rows are from the SED2 sub-dataset. 
 
Table 3. Comparison of average running times on MSRA-1000 dataset. 

Method Our PCAS BS GC GS-SP SF XL RC RA FT AC Itti 

Time(s) 8.54 6.15 155.86 0.09 7.41 0.15 2.20 0.13 9.45 0.19 0.07 0.34 

 
As shown in Fig. (13), the MAE value of our method is 

slightly higher than those of GC and GS-SP on SED1. On 
SED2, our method has the second minimum MAE value. 
This is because our method tends to assign some background 
regions relatively higher salient value compared to GS-SP, 
while highlights the most important salient objects. But con-
sidering the above three quantitative evaluation comparison 
results, our method improves the background prior based 
saliency  method GS-SP significantly. 

Some representative visual examples are shown in Fig. 
(14). No matter one or two objects existing in images, our 
method can highlight the whole object accurately and uni-
formly while effectively suppresses the background regions 
compared to the 6 state-of-the art methods, i.e., our saliency 
map is more consistent with human labeled GT. We take the 
second image for an example, RC and GC assign some 

background regions with undesired high salient values while 
lacking most real salient regions in the object. SF wrongly 
takes the small background region as the real object. XL, 
GS-SP and PCAS produce low salient value in some im-
portant regions within the object.  

5.3. Running Time 

We compare the average running time of the proposed 
method with those of the 11 state-of-the-art methods on 
MSRA-1000 dataset. The experimental environment is a 
computer with Inter(R) Core(TM)i5-2410M 2.8GHz CPU 
and 8GB RAM and we implement the proposed method by 
Matlab. As shown in Table 3, our method is only faster than 
BS and RA. But when considering both the quantitative 
evaluation results and the average running, our method still 
has some advantage. 
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CONCLUSION 

We proposed a novel saliency detection method by ex-
ploiting the statistical results of randomized Prim’s algo-
rithm which is based on the object proposal and background 
contrast prior assumption. We found that the coarse con-
spicuity map generated by the randomized Prim’s algorithm 
can greatly emphasize the potential salient object at a rough 
scale. The foreground probability map produced by simple 
superpixel and cluster based refinement can provide more 
accurate estimation of real object. The above information can 
be used to optimize the naive background contrast saliency 
measure successfully. Extensive experiments demonstrate 
that our method is apparently superior to 11 sate-of-the-art 
alternatives, especially GS-SP which is built on the previous 
background prior. In the future, we will consider high level 
saliency clues to improve the detection accuracy. 

CONFLICT OF INTEREST  

The authors confirm that this article content has no 
conflict of interest. 

ACKNOWLEDGEMENTS 

This research was supported by the Natural Science 
Foundation of China (NSFC), No. 61473154.  

REFERENCES 
[1] A. Toet, “Computational versus psychophysical bottom-up image 

saliency: a comparative evaluation study,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 33, no. 11, pp. 
2131-2146, 2011. 

[2] A. Borji, D.N. Sihite, and L. Itti, “Quantitative analysis of human-
model agreement in visual saliency modeling: a comparative 
study,” IEEE Transactions on Image Processing, vol. 22, no. 1, pp. 
55-69, 2013. 

[3] A. Borji, D.N. Sihite, and L. Itti, “Salient object detection: a 
benchmark”, In: Proceedings European Conference on Computer 
Vision, Springer Press, 2012, pp. 414-429. 

[4] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual 
attention for rapid scene analysis”, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254-1259, 
1998. 

[5] R. Achanta, F. Estrada, P. Wils, and S. Süsstrunk, “Salient region 
detection and segmentation”, In: Proceedings IEEE International 
Conference on Computer Vision Systems, Springer Press, 2008, pp. 
66-75. 

[6] E. Rahtu, J. Kannala, M. Salo, and J. Heikkila, “Segmenting salient 
objects from images and videos”, In: Proceedings European Con-
ference on Computer Vision, Springer Press, 2010, pp. 366-379. 

[7] Y. Xie, and H. C. Lu, “Visual saliency detection based on Bayesian 
model”, In: Proceedings IEEE International Conference on Image 
Processing, IEEE Press, 2011, pp. 645-648. 

[8] Y. Xie, H. Lu, and M. Yang, “Bayesian saliency via low and mid 
level cues”, IEEE Transactions on Image Processing, vol. 22, no. 
5, pp. 1689-1698, 2013. 

[9] R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk, “Frequency-
tuned salient region detection”, In: Proceedings IEEE International 
Conference on Computer Vision and Pattern Recognition, IEEE 
Press, 2009, pp. 1597-1604. 

[10] M. Cheng, G. Zhang, N. J. Mitra, X. Huang, and S. Hu, “Global 
contrast baed salient region detection”, In: Proceedings IEEE In-
ternational Conference on Computer Vision and Pattern Recogni-
tion, IEEE Press, 2011, pp. 409-416. 

[11] M. Cheng, W. Jonathan, W. Lin, Z. Shuai, V. Vibhav, and C. Ni-
gel, “Efficient salient region detection with soft iamge abstraction”, 
In: Proceedings IEEE International Conference on Computer Vi-
sion, IEEE Press, 2013, pp. 1529-1536. 

[12] F. Perazzi, P. Krahenbuhl, Y. Pritch, and A. Hornung, “Saliency 
filters: Contrast based filtering for salient region detection”, In: 
Proceedings IEEE Conference on Computer Vision and Pattern 
Recognition, IEEE Press, 2012, pp. 733-740. 

[13] Y. Wei, F. Wen, W. Zhu, and S. Jian, “Geodesic saliency using 
background priors”, In: Proceedings European Conference on 
Computer Vision, Springer Press, 2012, pp. 29-42. 

[14] J. Shuai, L. Qing, J. Miao, Z. Ma, and X. Chen, “Salient region 
detection via texture-suppressed background contrast,” In: Pro-
ceedings IEEE International Conference on Image Processing, 
IEEE Press, 2013, pp. 2470-2474. 

[15] W. J. Zhu, S. Liang, Y. C. Wei, and J. Sun, “Saliency optimization 
from robust background detection”, In: Proceedings IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition, 
IEEE Press, 2014, pp. 2814-2821. 

[16] S. Manen, M. Guillaumin, and L. V. Gool, “Prime object proposals 
with randomized Prim’s algorithm”, In: Proceedings IEEE Interna-
tional Conference on Computer Vision, IEEE Press, 2013, pp. 
4321-4328. 

[17] P. F. Felzenszwalb, and D. P. Huttenlocher, “Efficient graph-based 
image segmentation”, International Journal of Computer Vision, 
vol. 59, no. 2, pp. 167-181, 2004. 

[18] R.C. Prim, “Shortest connection networks and some generaliza-
tions”, Bell System Technology Journal, vol. 36, no. 6, pp. 1389-
1401, 1957. 

[19] A. Vedaldi, and S. Soatto, “Quick shift and kernel methods for 
mode seeking”, In: Proceedings European Conference on Comput-
er Vision, Springer Press, 2008, pp. 705-718. 

[20] R. B. S. Alpert, M. Galun, and A. Brandt, “Image segmentation by 
probabilistic bottom-up aggregation and cue integration”, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 
34, no. 2, pp. 315-327, 2012. 

[21] R. Margolin, A. Tal, and L. Zelink-Manor, “What makes a patch 
distinct? ”, In: Proceedings IEEE Conference on Computer Vision 
and Pattern Recognition, IEEE Press, 2013, pp. 1139-1146. 

[22] W. Jiang, L. H. Zhang, H. C. Lu, C. Yang, and M.-H. Yang, “Sali-
ency detection via absorbing markov chain”, In: Proceedings IEEE 
Conference on Computer Vision and Pattern Recognition, IEEE 
Press, 2013, pp. 1665-1672.  

 
 

Received: May 26, 2015 Revised: July 14, 2015 Accepted: August 10, 2015 

© Jianyong et al.; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-
commercial use, distribution and reproduction in any medium, provided the work is properly cited. 


