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Abstract: A new diagnostic method to identify alternating current field measurement (ACFM) signal based on sample en-
tropy combined with wavelet packet feature is put forward in order to accurately evaluate the damage degree of welding 
defects. A butt welded tubular specimen with three kinds of different welding qualities was inspected and the correspond-
ing ACFM signals were recorded by a commercial instrument. Subsequently sample entropies of the original signals and 
their wavelet package coefficients were computed respectively and compared via the bar graphs. The results show that the 
sample entropy successfully discriminates between different welding defects, and moreover it can be utilized to detect ear-
ly or slight damage, demonstrating that the proposed approach is a promising and effective tool in characterizing the 
ACFM signals of welding defects. 
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1. INTRODUCTION 

Welding is being widely used for construction of various 
engineering structures in petroleum industry, and inevitably 
some flaws will occur during welding and long-term service. 
For this purpose, a new electromagnetic nondestructive test-
ing technique, named alternating current field measurement 
(ACFM) has been pioneered to detect surface and subsurface 
flaws, especially crack defects and underwater welding qual-
ity [1], and has attracted much attention because it can esti-
mate both defect length and depth simultaneously by meas-
uring two magnetic field components Bx and Bz without 
calibration. Raine et al. summarized the principles, devel-
opments of the technique and its applications in detail [2], 
and Li et al. investigated the rules and characteristics of the 
electromagnetic signal distribution in the defected area using 
finite element simulation [3]. Also, a wavelet network 
scheme was proposed for inverting ACFM crack signals to 
the depth profile of a surface crack with no geometrical 
shape [4]. So far, the ACFM technique has been widely ap-
plied in many fields, such as offshore platforms [5], high-
speed inspection of rails [6], drill collar threaded connections 
[7], etc. 

However, the ACFM signal is nonlinear and non-
stationary, susceptible to noise interference, such as scanning 
speed, fluctuation and lift-off value of probes, etc. The approx-
imate entropy (ApEn) was first developed to measure the 
complexity of time series by Pincus in 1990 [8], and can be 
applied to deterministic and stochastic systems compared to 
the parameters of nonlinear dynamics such as correlation di-
mension, Lyapunov exponent. However, ApEn is biased 
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and even leads to inconsistent results due to self-matches. 
More recently, Richman et al. improved the ApEn method 
and introduced the sample entropy (SampEn) to quantify the 
irregularity of a sequence of numbers [9], which has been 
successfully utilized to estimate physiological data [10], 
electromagnetically acoustic emission signals [11], and bear-
ing fault diagnosis [12], etc. owing to less sensitivity to the 
length of data. 

The objective of the present work is to analyze quantita-
tively the damage degree of welding defects by virtue of 
SampEn and wavelet package. In this respect, a satisfactory 
estimation could allow the prediction time series regularity, 
thus identifying the early and serious damage successfully. 

2. INTRODUCTION OF SAMPLE ENTROPY 

SampEn can be computed as follows formally, given a 
standardized time series  u1,u2,!,uN  with N data points [11]: 

The first step of the algorithm is to define vector se-
quences of length m given by 

x(i) = [u(i),u(i +1),!,u(i +m !1)] , i = 1,2,!,N !m +1  (1) 

And then define the distance d x(i), x( j)[ ]  between vec-
tors xi{ }  and x j{ } , as the absolute maximum difference 
between them, i.e. 

 
d x(i), x( j)[ ] = max

k=0,!,m!1
u(i + k)! u j + k( )   (2) 

Subsequently, the following quantity is defined for a giv-
en tolerance r 

!
Bi
m r( ) =

num d x i( ), x j( )!" #$"r{ }
N %m %1

,1! i ! N "m j ! i( )  (3) 

Thus the density is calculated as follows 
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Bm r( ) =
Bi
m r( )

i=1

N!m

"
N !m

  (4) 

The next step of the process is to increase the dimension 
to m+1 and calculate Bm+1 r( )  

Bm+1 r( ) =
Bi
m+1 r( )

i=1

N!m

"
N !m

  (5) 

Finally, SampEn is estimated by the following formula 

SampEn(m,r,N ) = ! ln B
m+1 r( )
Bm r( )   (6) 

It needs to be noted that the above input parameters m 
and r must be selected to computer SampEn, where m is the 
length of sequences to be compared and r is the tolerance for 
receiving matches. In the present study, M is set by 2 and r 
0.2×SD, where SD is the standard deviation of the original 
time series. Since SampEn avoids counting self-matches and 
is independent of the record length, it is more consistent than 
ApEn. 

3. EXPERIMENTAL 

The experimental data were obtained from a butt welded 
tubular specimen with artificial defects including a slag in-
clusion and a crack defect as shown in Fig. (1), using the 
ACFM method. The specimen was inspected along the weld 
toes by a commercial TSC’s AMIGO crack microgauge and 
a single channel standard weld probe operated at a frequency 
of 5kHz, as shown in Fig. (2). 

 

 
Fig. (1). Butt welded tubular specimen. 
 

 
Fig. (2). ACFM measurement instrument. 
 

The ACFM signals corresponding to different welding 
defects including good quality, slag inclusion and crack de-
fect were recorded in received condition without any clean-

ing by the above ACFM measurement system, respectively. 
Note that the sensor probe was always moved as smoothly 
and uniformly as possible at a velocity of 10-25mm/s. 

4. ACFM SIGNAL ANALYSIS BASED ON SAMPLE 
ENTROPY 

The original ACFM signals detected were displayed in 
Figs. (3-5), from upper to lower graph corresponding to good 
welding quality, slag inclusion and crack defect, respective-
ly. 

 

 

 
Fig. (3). Original ACFM signals corresponding to good welding 
quality. 
 

 

 
Fig. (4). Original ACFM signals corresponding to slag inclusion. 
 

It can be seen clearly from Figs. (3-5) that the lower four 
curves fluctuated more obviously, especially Fig. (5) reveals 
a recognizable signal feature corresponding to crack defect, 
with Bx exhibiting a minimum in field strength and Bz ex-
hibiting a wave crest and trough. Nevertheless, it is still dif-
ficult to distinguish the three types of welding defects among 
good quality, slag inclusion and crack defect only by virtue 
of different wave forms. 
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In order to further analyze and identify different welding 
signals, the wavelet package-based sample entropy method 
was utilized to measure the complexity of signals quantita-
tively. Figs. (6-8) give the wavelet package coefficient dis-
tributions corresponding to the signals in Figs. (3-5), respec-
tively using db4 orthogonal wavelet package. 
 

 

 
Fig. (5). Original ACFM signals corresponding to crack defect. 
 

 

 
Fig. (6). Wavelet packet coefficient distribution of the good welding 
signal. 

 

 
Fig. (7). Wavelet packet coefficient distribution of the slag inclusion 
signal. 
 

 

 
Fig. (8). Wavelet packet coefficient distribution of the crack defect 
signals. 
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Table 1. Sample entropy of different defect signals in each sub frequency band. 

(1-1) 

Signal 
Sample entropy of the original 

signal 

Sample entropy of the frequencies sub-bands decomposed by 
wavelet package 

1 2 

Good welding quality 
Bx signal 1.7325 1.7214 1.6839 

Bz signal 1.7316 1.6956 1.6908 

Slag inclusion 
Bx signal 2.0503 1.9885 1.9124 

Bz signal 2.1070 2.0795 1.9457 

Crack defect 
Bx signal 1.3017 1.1727 1.0800 

Bz signal 1.2989 1.0901 0.9383 
 

(1-2) 

Signal 
Sample entropy of the frequencies sub-bands decomposed by wavelet package 

3 4 

Good welding quality 
Bx signal 1.5843 1.5638 

Bz signal 1.6849 1.5858 

Slag inclusion 
Bx signal 1.8210 1.7523 

Bz signal 1.8122 1.7960 

Crack defect 
Bx signal 0.8855 0.6919 

Bz signal 0.8161 0.6315 

 

 
Fig. (9). Comparison of sample entropy among different signals. 

 
Accordingly, the parameters are set as follows: m=2 and 

r=0.2, and the sample entropy values are calculated as listed 
in Table 1. 

It follows from Table 1 that the sample entropy values 
are different under three different damage states, however, 
they do not increase with increasing damage degree. It is 
interesting that the sample entropy value of the slag inclu-
sion signal is the largest whilst that of the crack defect signal 
is the smallest, i.e., the representative signal response from a 

crack defect is less complex than other two types of signals, 
which is in agreement with the research results in fault diag-
nosis [13]. 

The bar graphs corresponding to the data in Table 1 are 
constructed in Fig. (9) in order to better represent the rela-
tionship among the sample entropy of different signals. 
Since the signal with slag inclusion is more complex than 
that with good welding quality, the former sample entropy 
value exhibits larger. On the other hand, the Bx and Bz sig-
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nals with crack defect display typical abnormal wave charac-
teristics respectively, thus the corresponding sample entropy 
values decrease obviously. It follows from Fig. (9) that the 
sample entropy values of the original signal and each sub 
frequency band corresponding to different welding qualities 
both can be used to characterize the complexity degree of 
signal serials quantitatively, and also the sample entropy is 
sensitive to the slight damage such as slag inclusion, indicat-
ing that the sample entropy has potentials in early diagnosis 
of welding defects. 

CONCLUSION 

This work proposes a novel application of sample entro-
py combined with wavelet package as a quantitative method 
to evaluate the welding defects. Three kinds of signals repre-
senting different welding qualities are first measured using 
ACFM technique, and the corresponding wavelet package 
coefficient distributions are obtained, Through the SampEn 
algorithm, the results show that the SampEn value of the slag 
inclusion signal increases markedly as compared to the sig-
nal with good welding quality, whilst it becomes minimum 
for the crack defect signal, demonstrating that the sample 
entropy methodology is capable to characterize complexity 
features of ACFM defect signals in terms of their irregulari-
ty. Furthermore, the sample entropy is sensitive to the early 
damage, which could be a good dynamical signature to dis-
tinguish different damage degrees, providing a relatively 
simple approach to evaluate welding defects quantitatively. 
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