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Abstract: A traditional least squares has negatively a clear physical significance in the process of strip flatness pattern 
recognition and it is too complex in calculation to be suitable for industrial controller to realize. In this paper we deduced 
the basic model of strip flatness pattern recognition based on Legendre polynomial. Under this mode, there are three out-
standing advantages: The integral value along the width direction of strip shape is 0, which satisfies the condition of equi-
librium in the residual stress. Each component of polynomial corresponds to steer roller, bending roller and step cooling 
control respectively, which makes the physical meaning clear. Operational calculation is suitable for industrial controller. 
The simulation shows that calculation time-consuming dropped from average 0.012 s to average 0.002 s. Also practice in 
the real world had proved that this method is effective and applicable.  
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1. INTRODUCTION 

Flatness quality is an important index of plate and strip 
products. Under the condition that the thickness control 
technology is almost mature, flatness control has already 
become the key part of process on high quality plate and 
strip. Fine flatness can not only improve coating thickness 
and uniformity, but also ensure the plate and strip deep 
drawing performance and the follow-up processes. Further-
more, it can reduce the probability of roller change and belt 
broken, and increase run speed and production efficiency. 
However，there are many factors which can influence the 
flatness, so the strip flatness control is the core and hard 
technology in the wide strip mill. 

The basic principle of flatness control is to ensure the 
similarity between the section shape of entrance and delivery 
[1]. The basic control methods are steer roller, bending roller 
and step cooling control [2]. Steer is used to adjust first order 
of strip section shape, and bending is used to adjust the se-
cond order of strip section shape. The rest of high orders are 
performed by step cooling control [3]. In these components, 
first order and second order which are weighted heavily are 
the foundation of the strip shape quality. Though the weight 
of high orders is smaller, it is important for high precision 
control on strip shape. Therefore, we need to perform pattern 
recognition based on the features of strip shape control de-
vices to decompose each order precisely, so that we can get 
high quality strip shape. 

Currently, the widely used method of flatness pattern 
recognition and flatness signal processing is polynomial re-
gression analysis based on least squares [4]. This method  
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uses the simplest least-squares method, which regresses the 
deviation detected by flatness gauge into the form of a poly-
nomial. The algorithm is simpler, yet there are a lot of de-
fects. The main disadvantage is that the algorithm is complex 
in calculation, and the physical meaning is not clear. Besides, 
the polynomial model cannot be converted to the regulating 
variables of the flatness control device, which makes it diffi-
cult to be used for control directly. In addition, in order to 
enhance the accuracy, the orders of polynomial have to be 
increased, which will produce more polynomials, further 
weakening the physical meaning. The extra parameters go 
against the analysis and control [5, 6]. Recent years, people 
have put forward to use Legendre polynomial as the basic 
model of pattern recognition to fit several common strip 
shapes in the industry. The orthogonal Legendre polynomial 
model overcomes the defects of complex computing and 
unclear physical meaning [7]. 

In this paper, we mainly discuss the following problem: 
(1) Deduce the basic model of flatness pattern recognition 
based on Legendre polynomial. (2) Analysis of shape control 
algorithm by means of Legendre polynomial. (3) Discuss the 
comparison results between least squares and modified least 
squares method based on Legendre polynomial. 

2. DERIVATION OF LEGENDRE POLYNOMIALS 

 Legendre equation as well as its solution function is 
named by the French mathematician Adrien-Marie Legendre. 
Legendre equation is a kind of ordinary differential equation 
which physics and other technical fields often encounter [8, 
9]. When trying to solve three-dimensional Laplace equa-
tions in spherical coordinates (or related partial differen-
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tial equations), the problems will be down to solve Legendre 
equation. 

Legendre equation is as follows: 
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Among them, n is any real number. 
Set solution as the form of series, we get: 
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Then we can come to the conclusion: 
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Separate the items before k=0 and the items after k=1 in 
(4), after finishing reduction we get the following formula: 
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Then we can get recursive formula: 
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Therefore, we can represent Legendre polynomi-
al solutions with the lowest terms. 
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Obviously, the solution is composed of odd and even 
number terms. 

 After finishing recursive formula, we get: 
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Through equation (7), when K = n - 2 as the first item, 
bring it into the recursive formula 
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Then, according to the general term formula, we can 
solve the Legendre polynomial. 

3. THE MODIFIED ALGORITHM METHOD 

There are six kinds of common engineering strip shapes. 
They are left waves, right waves, middle waves, bilat-
eral waves, quartered waves and edge waves. When estab-
lishing the mathematical model, we need to satisfy the condi-
tion of equilibrium in the residual stress. The so-called equi-
librium in the residual stress is that the integral value along 
the width direction of strip shape is 0 after rolling. The for-
mula is as follows. 
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The Legendre polynomial will converge to infinite series 
when the integral is from -1 to 1. In order to make some cer-
tain items of Legendre polynomial become the basic model 
of flatness pattern recognition, we choose the first, second 
and fourth as the basic model, they are: 
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The stress distribution curve of strip flatness is shown be-

low in Fig. (1). Both X-axis and Y-axis units are non-
 unitized.  

X-axis expresses  
(length from center to edge)/ (total length) 
Y-axis expresses 
 (center thickness - edge thickness)/ (center thickness) 
The linear combination of flatness basic model is: 
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Based on the least squares method, we can get the fol-

lowing formula: 
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Differentiate the above formula: 
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Calculate the coefficients of matrix C and matrix B. 
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Using Matlab, We can calculate the results directly by 
left except. 

   

(a) Left waves         (b) Right waves 

   
(c) Middle waves       (d) Bilateral waves 

   
(e) Quartered waves       (f) Edge waves 

Fig. (1). The stress distribution curve of strip flatness. 
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  A = C \ B  (15) 

We can get dispensable mold, quadratic form, biquadratic 
form so as to achieve the purpose of controlling strip shape. 

4. SIMULATION 

In this section, we discuss the comparison results be-
tween least squares and modified least squares method based 
on Legendre polynomial. The modified LS can reflect the 
physical meaning of the control variables better and it  
 
has faster computing speed in theory. So we compare the 
two algorithms through some data obtained from industrial 
production. We mainly complete the following tasks: (1) 

Test accuracy of the modified method. (2) Compare opera-
tion speed of these two kinds of algorithms. 

The simulation platform we used is Intel Core-2 due 
2.2GHz CPU and Matlab 7.14. 

Two groups of data are obtained from the real world. The 
first group of data are shown in the Table 1, a total of 33 
group detection units. 

Comparison of the actual shape and the least squares fit-
ting curve are shown in Fig. (2). Comparison of the actual 
shape and the modified least squares fitting curve are shown  
 

 
in Fig. (3). Comparison of the least squares fitting curve and 
the modified least squares fitting curve are shown in Fig. (4). 

Table 1. The first group of test data (unit: mm). 

1 2 3 4 5 

-0.31 -0.25 -0.197 -0.147 -0.101 

6 7 8 9 10 

-0.06 -0.02 0.012 -0.042 0.069 

11 12 13 14 15 

0.091 0.111 0.126 0.138 0.147 

16 17 18 19 20 

0.152 0.153 0.151 0.146 0.137 

21 22 23 24 25 

0.124 0.108 0.088 0.133 0.065 

26 27 28 29 30 

0.038 0.007 -0.028 -0.066 -0.109 

31 32 33 

 -0.155 -0.206 -0.32 

 

 

Fig. (2). Comparison of the actual shape curve and the least squares fitting curve (Table 1). 
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The second group of data are shown in the following  
Table 2, a total of 33 group detection units.  

Comparison of the actual shape and the least squares fit-
ting curve are shown in Fig. (5). Comparison of the actual 
shape and the modified least squares fitting curve are shown 
in Fig. (6). Comparison of the least squares fitting curve and 
the modified least squares fitting curve are shown in Fig. (7). 

From the results of these two groups’ data, we can come 
to a conclusion that the modified least squares curve fits 
more closely to the actual shape. Accuracy is similar to the 
least squares. 
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Fig. (3). Comparison of the actual shape and the modified least squares fitting curve (Table 1). 

 

 
Fig. (4). Comparison of the least squares fitting curve and the modified least squares fitting curve (Table 1). 

 
Table 2. The second set of test data (unit: mm). 

1 2 3 4 5 
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Table 2. contd… 

1 2 3 4 5 

0.026 0.056 0.086 0.117 0.149 

31 32 33 

 0.181 0.211 0.241 

 

 
Fig. (5). Comparison of the actual shape and the least squares fitting curve (Table 2). 

 
Fig. (6). Comparison of the actual shape and the modified least squares fitting curve (Table 2). 

Table 3. The performance comparison of two kinds of algorithm. 

  

Run time(s) Mean Square Error 

LS 

Group 1 0.013 0.0094 

Group 2 0.011 0.0042 

average 0.012 0.0068 

Modified LS 

Group 1 0.002 0.0185 

Group 2 0.004 0.0089 

average 0.003 0.0137 
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Fig. (7). Comparison of the least squares fitting curve and the modified least squares fitting curve (Table 2). 

 

 
Fig. (8). Flatness detection and control results. 
 

The performance comparison of two kinds of algorithms 
is shown in Table 3.  

Through the above simulation results, we can see, the 
modified LS improves a lot in speed and avoids complex 
calculation effectively. Although the mean square error 
compared with the ordinary method is a little poor, it has 
little impact in engineering application. 

The research results have been successfully applied in an 
1850mm production line in an aluminum foil factory, 
achieving fine control effect. Its flatness detection and con-
trol results are shown in Fig. (8). 

Fig. (8) is a real control interface. The continuous curve 
expressed setting flatness, which is decided by supplied strip. 
Each bar is value of flatness detecting roller. 

If every bar’s summit is coincidence on curve, it means 
entrance section shape is the same with delivery section 
shape. Fine flatness will be gotten. 

CONCLUSIONS 

(1) The modified least squares method based on Legen-
dre polynomial satisfies the condition of equilibrium in the 
residual stress, so it is more suitable than LS as the basic 
model of flatness pattern recognition. 

(2) The modified least squares method based on Legen-
dre polynomial has obvious improvement in speed, and 
avoids complex calculation effectively, which is more suita-
ble in industrial field. Although Mean square error compared  
 

with the ordinary method is a little poor, the step cooling 
method is generally used to eliminate the high order error, so 
it doesn't affect the final control results. 

(3) The modified least squares method based on Legen-
dre polynomial can obtain three kinds of control quantity of 
strip shapes directly, and the physical meaning is clear. This 
is the most prominent place compared to LS. LS can only 
stay on the theoretical level; however, modified LS can 
be used in industrial production. 
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