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Abstract: The brushless excitation system of aircraft AC generator is a strong coupled and nonlinearity dynamic system 
which is often being subjected to disturbances. Therefore, the conventional PID controller is unable to meet the brushless 
excitation system control requirements of More Electric Aircraft (MEA) or All Electric Aircraft (AEA). A new brushless 
excitation compound control controller (RBFPID) is proposed in this paper based on radical basis function (RBF) neural 
networks and the conventional PID control. Because the new brushless excitation compound controller (RBFPID) has a 
number of mutually coupled parameters that needs to be set, the improved adaptive particle swarm optimization (APSO) 
algorithm is used to optimize mutually coupled PID parameters  Kp ,  Ki ,  Kd  and RBF parameters ! ,! , m ,  n  on 
line. In order to validate performances of the new brushless excitation compound controller based on multi-parameter op-
timization by the improved APSO, the simulation model of the aircraft brushless excitation system is implemented in 
MATLAB/SIMULINK according to differential equations of each component of brushless excitation system. The simula-
tion results show that the optimized adaptive compound excitation controller (APSORBFPID) exhibits quick response 
speed, short adjustment time and high steady state accuracy. 

Keywords: Aircraft generator, brushless excitation system, modeling and optimiztion control, PSO, RBF neural network. 

1. INTRODUCTION 

With the rapid development of More Electric Aircraft 
(MEA) and All Electric Aircraft (AEA) technology, the 
structure and control function of aircraft electrical system 
has become much more complex. The brushless excitation 
control system is a critical component of the aircraft electric 
power system, and its performance directly affects the whole 
aircraft power system stability and reliability. Thus it is very 
important and necessary to design a stable and reliable exci-
tation controller for aircraft AC generator. 

The traditional Proportional Integral Derivative (PID) 
controller has been widely applied to the excitation control 
of synchronous generator [1, 2], because it has the ad-
vantages of simple structure, good robustness, easy to im-
plement, no steady state error. However, it is hard to build 
the accurate mathematical model for complex MEA/AEA 
excitation control system due to the challenge of nonlinearity, 
multi-variable, strong coupling and time-varying. Therefore, 
it is difficult to obtain satisfactory control effectiveness in 
complex MEA/AEA power system by using the traditional 
PID control strategy based on mathematical model. In recent 
years, many scholars have studied some new excitation con-
trol strategies and parameter optimization for complex power 
system, such as fuzzy control [3], genetic algorithm (GA) [4], 
particle swarm optimization (PSO) [5]. But fuzzy control 
effectiveness depends largely on membership function and  
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fuzzy rules; Genetic algorithm or particle swarm optimiza-
tion is prone to local optimum, premature convergence.  

Neural network technology has made great progress in 
recent years and has been widely applied in control field, 
especially radical basis function (RBF) [6, 7], which is a 
neural network based on local learning. RBF neural network 
has many attractive characters such as adaptability, non-
linear approximation ability, easy to realize and so on. It is 
more suitable for nonlinear real-time complex control system. 
RBF and PID compound controllers have the characteristics 
of high precision, good real-time and robustness, but too 
many parameters need to be adjusted in control process. It is 
difficult to tune because of coupling among the parameters. 
If improper selection of parameters will obtain bad control 
effectiveness, and even cause the system to be unstable. The 
literature [8] demonstrated that fixed gain PI controller can 
achieve locally finite stability when the system has RBF es-
timation bias or random disturbance. The literature [9] uses 
IPSO for PID controller optimal design. The GA is used for 
PID controller optimization in literature [10]. The literature 
[11] has put forward a hierarchical learning rate factor, 
which is introduced into RBF learning. The above literatures 
obtained some good results, but they did not consider the 
coupling and coordinative optimization of different control 
parameters among RBF and PID. In order to overcoming the 
afore mentioned shortcomings, an innovative multi-
parameter coordinative optimization scheme for PID and 
RBF compound excitation control is proposed in this paper, 
which is based on adaptive particle swarm optimization algo-
rithm. 

This paper is organized as follows. Brushless excitation 
system model for aircraft AC generator is established in Sec-
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tion 2. In Section 3, the new RBF and PID compound excita-
tion controller is designed based on APSO multi-parameter 
optimization. Then simulation experiment and result are 
demonstrated in Section 4. Finally, the paper is concluded in 
Section 5. 

2. EXCITATION SYSTEMN MODEL 

2.1. Aircraft Generator Brushless Excitation System  

At present, three-stage AC synchronous generator brush-
less excitation system is used in large and medium-sized 
aircraft, which includes the auxiliary exciter, main AC excit-
er and main generator [12]. The main generator is a rotating 
magnetic pole synchronous generator. The main generator 
field current is provided by the output of the rotating rectifier, 
which is set in the same rotating spindle with rotating arma-
ture of the AC exciter. The auxiliary exciter is a permanent 
magnet synchronous motor (PMSM) that is a rotating mag-
netic pole synchronous generator. The structure of three-
stage aircraft AC generator brushless excitation system is 
shown in Fig. (1). The main exciter and excitation controller 
are provided with DC power supply, which is the rectifica-
tion output voltage of permanent magnet synchronous gener-
ator. The excitation controller adjusts main AC exciter exci-
tation current with some control algorithm. Therefore, the 
main generator terminal voltage is controlled indirectly.  

This paper focuses on the control optimization algorithm 
for aircraft AC generator brushless excitation system, so the 
permanent magnet synchronous generator (auxiliary exciter) 
and its rectifier are replaced by DC power supply [13].  

2.2. Main Synchronous Generator Model 

The aircraft main generator of three-stage brushless AC 
excitation system is a wound rotor salient pole synchronous 
generator with damper windings. According to adopting the  
 

 

generator convention, the voltage equations of each phase 
windings of the stator, rotor and the flux linkage equations in 
ABC frame are acquired without considering the synchro-
nous generator saturation, hysteresis and other factors. The 
model of main synchronous generator in dq0 frame is estab-
lished as follows through the Park's transformation [14]. 
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Where, u , i , R , L , M  are voltage, current, resistance, 
self-inductance, mutual inductance of the main generator in 
dq0 frame, respectively; The subscript symbol s denotes the 
main generator stator windings;  dm ,  qm  denote the direct 
and quadrature axis of stator windings, respectively; Sub-
script symbol  f  denotes the excitation windings; D ,Q  de-
note the direct and quadrature axis of the excitation windings, 
respectively. 

2.3. Main Exciter Model 

The main exciter is a salient pole synchronous generator 
that does not have two damper windings in d-q axis as com-
pared to the main synchronous generator. According to 
adopting the generator convention, the model in dq0 frame 
of main exciter is established as follows: 

 
 
 

 

Fig. (1). PID and RBF adaptive controller based on PSO. 
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Where, u ,  i ,  R ,  L ,  M  denote voltage, current, re-
sistance, self inductance, mutual inductance of the main ex-
citer in dq0 frame, respectively; Subscript symbols se , ex  
denote the main exciter stator windings, excitation windings, 
respectively; de , qe  denote the direct and quadrature axis of 
the stator windings, respectively. 

3. DESIGN OF ADAPTIVE CONTTOLLER BASED 
ON MULTI-PARAMETER OPTIMIZATION 

3.1. Improved Adaptive Particle Swarm Optimization 
Algorithm 

Particle swarm optimization (PSO) is the stochastic op-
timization algorithm based on bionic swarm intelligence 
which was proposed by Kennedy and Eberhart in 1995. The 
solution space of the problem is analogous to a flock of birds 
foraging over certain areas, and each bird is modeled as a 
particle without mass or volume. Each particle represents a 
candidate solution to the problem with its own position and 
velocity. PSO can rapidly find the solution of the problem 
through the mutual cooperation among the bionic swarm 
intelligence particles. PSO is very suitable for solving non-
linear optimization problem in high-dimensional space, be-
cause it has an inherent parallel computational structure, and 
it does not require the derivative of the object function. PSO 
is preferred to other optimization algorithms for it has rapid 
convergence speed, easy implementation and fewer parame-
ters to be adjusted.  

In PSO, a swarm of particles are represented as potential 
solutions, and each particle i is associated with the velocity 
vector 

   
Vi = [vi,1,vi,2 ,!vi,d ]  and the position vector

   
Xi = [xi,1,xi,2 ,!xi,d ] , where  d  denotes the dimension of the 

solution space. The velocity and the position of each particle 
are initialized by random vectors within the corresponding 
ranges. During the evolutionary process, the velocity and 
position of the i  particle on  jth  dimension are updated as: 

vi , j (t +1) =!vi , j (t) + c1r1[ pi , j ! xi , j (t)] + c2r2[ pg , j ! xi , j (t)]  (3) 

xi , j (t +1) = xi , j (t) + vi , j (t +1) j =1,2,.....,d  (4) 

Where, ω  is the inertia weight;  c1 ,   c2  denote positive 

acceleration coefficients,   r1 r2 ![0,1] are random numbers;  d  
 

 

 

denotes the dimension of the solution space; In order to pre-
vent the optimal solution out of the optimization range, the 
general assumption is  v ![vmin vmax ] ,  x ![xmin xmax ] . 

The inertia weight (! ) of PSO is an important parameter 
that influences the convergence speed of PSO algorithm and 
decides the particle global search ability. Therefore, the 
proper selection of !  is crucial to the optimization quality 
of the PSO algorithm. The constant between [0.2, 1.2] or a 
linearly decreasing weight !  is adopted in many literatures. 

  ! =!max " (!max "!min )# g / Gmax  (5) 

However, the PSO algorithm is used in a nonlinear dy-
namic process to search solution space in this paper. There-
fore, the adaptive inertia weight is adopted, so that it is only 
related to current particle objective function value. 
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Where,  !max and  !min  are the maximum and minimum 

inertia weight, respectively; J is the current particle objec-
tive function value; 

 
Javg and   Jmin  are average and minimum 

objective function values of all particles, respectively. 
The adaptive weight is introduced into PSO algorithm, 

which can produce good global search ability, improve the 
effectiveness of rapid algorithm. Meanwhile, the optimal 
preservation strategy is adopted to ensure the algorithm con-
verging quickly. During the process of optimizations, the 
worst individual in the current population is replaced by the 
best individual so far.  

3.2. Design of RBFPID Controller Based on Multi-
parameter Optimization 

The Radial Basis Function (RBF) neural network is a 
kind of local approximation of the neural networks. It is 
more suitable for nonlinear real-time complex control system. 

Considering the nonlinearity, strong coupling and time-
varying characters of brushless excitation control system of 
aircraft AC generator, it is difficult for traditional Propor-
tional Integral Derivative (PID) control to get good control 
performance. A compound excitation control strategy based 
on RBF and PID is designed in this section. To overcome the 
problem that the parameters of PID and RBF compound con-
troller are difficult to be set, a new kind of multi-parameter 
adaptive optimization scheme is put forward based on adap-
tive particle swarm optimization (APSO) algorithm. The 
structure of RBFPID adaptive excitation controller is as 
shown in Fig. (2). 

As you can see in Fig. (2), PID acts as a feedback con-
troller which can suppress the interference and ensure the  
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stability of the control system. RBF neural network is a feed-
forward controller which can improve system response speed. 
The improved adaptive particle swarm algorithm is used to 
optimize multiple and mutual coupling control parameters of 
the compound RBFPID excitation controller, including 
learning rate (! ), inertia weight (! ), center vector ( m ), 
Gauss function width ( n ) of RBF neural network, and the 
proportional coefficient ( Kp ), integral coefficient (  Ki ), 
differential coefficient (  Kd ) of PID. Adaptive multi-
parameter optimization enhances the control system dynamic 
stability, self-adaptive operation. The compound controller 
of RBFPID can adapt well to the change of control system 
conditions and uncertain factors, so as to improve the control 
quality of the excitation system. 

In control stage, the adaptive excitation controller of 
RBFPID real-time detects the output voltage of main genera-
tor, and calculates and changes the control signal )(kUc  
(proportional to the duty ratio of PWM) according to the 
voltage error. The enlarged PWM signal controls the excita-
tion current of main generator, and regulates generator out-
put voltage. The control output of RBF neural network is 
expressed as follows. 

  
hj = exp[!

x(k)! cj

2

2" j
2 ] j = 1,2,.....p  (7) 

  
Un(k) = ! jhj

j=1

n

" j = 1,2,....p  (8) 

Where, x  is  p  dimension of input vector, x !Rn . jc  is 

the  jth  central point of the radial basis function; 
 
! j  

is the 
first of neurons in the hidden layer radial basis function 
width; 

The total output   Uc (k)  of the compound controller is the 

sum of the RBF controller output   Un(k)  and PID controller 

output 
  
U p (k)  which are optimized by APSO. 

  
Uc (k) =Un(k)+U p (k)  (9) 

At the end of each control cycle, the control system en-
ters the learning stage, in which connect weights are adjusted 
according to the system error. The weights adjustment for-
mula of RBF network is as follows: 

  
E(k) = 1

2
(uc (k)! un(k))2  (10) 

  
!" (k) = #$ %E(k)

%" j (k)
=$(un(k)# uc (k))hj (k)  (11) 

  ! (k) =! (k "1)+ #! (k)+$ (! (k)"! (k "1))  (12) 

Where η is the learning rate of RBF neural network, E(k) 
is tracking error of the control system, the purpose of learn-
ing minimizes the system error E(k). 

3.3. Algorithm Implementation Steps 

Assume tP  represents the t th generation of the popula-
tion. tBest  is the best individual among   P0 ,   P1 , ... ,  Pt ; 

  LBestt  is the best individual in tP . The flow chart of multi-
parameter optimization based on APSO is as shown in Fig. 
(3). 

STEP 1: According to the general experience, the ranges 

 [min,max]  of seven optimized parameters are to be deter-
mined. Other parameters such as the number of maximum 
iteration Gmax, population size N are to be set in the same 
time; 

 

 

 

 

Fig. (2). PID and RBF adaptive controller based on PSO. 
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Fig. (3). Multi-parameter optimization based on APSO flow chart. 

 

STEP 2: It randomly generates N individual particles to 
form the initial population  P0 . Each of actual parameter is 
initialized as formula (13). 

  K = min+ (max! min)" rand  (13) 

Where, rand! 0,1( ) is a random number; the seven pa-

rameters form (
 
K p , Ki  , Kd ,!  ,!  , m  , n ) individual; 

STEP 3: Each individual is decoded into the correspond-
ing control parameters. The result of system error   e(t)  is 
obtained under the control of each set of decoded parameters; 

STEP 4: According to the formula (14), the value J of 
the cost function is calculated for each individual, the fitness 
value is defined as 1/J. If  e(t) ! 0 , the cost function J is de-
fined as the formula (15). 

J = w1 e t( )
2!

"
#
$0

%

&  dt  (14) 

  
J = (w1 e(t)

2
+ w2 e(t) )dt

0

!
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Where,  e(t)  is the system error;   w1, w2  are the weights 
value, and, )1()()( −−= tytyte ,  y(t)  is the system output; 
the formula (15) is a penalty function which is used to avoid 
an overshoot; 

STEP 5: According to the fitness value of each individu-
al, the best and worst individuals are selected and saved to 

  LBestt and  LWorstt , respectively; 

STEP 6: tBest  and tLBest  are compared, if  LBestt !Bestt , 

then   Bestt ! LBestt and   LWorstt ! Bestt  

STEP 7: Adjust the adaptive control parameters of PSO 
algorithm according to the formula (5) or formula (6); 

STEP 8: Update particle velocity and position according 
to the formula (3) and formula (4), respectively and obtain 

1+tP ; 

STEP 9: Judging whether the iterations times reaches the 
preset value Gmax or not. If so, end of program, else returns 
to step 3. 

STEP 10: The best individual tBest after many genera-
tions of evolution is decoded as optimal control parameters. 

4. SYSTEM SIMULATION ANALYSIS 

According to the mathematical model of main exciter and 
main generator in section 2, the simplified excitation system 
simulation model of aircraft AC generator is established in 
SIMULINK as shown in Fig. (4) (upper part), in which the 
auxiliary exciter is replaced by DC voltage source. 

The PID and RBF controller model based on APSO mul-
ti-parameter optimization for brushless excitation system of 
aircraft AC generators is shown in Fig. (4) (lower part). RBF 
and PID controllers are implemented through the two 
MATLAB functions, respectively. The system given voltage 
Uref is 115V; Uout stands for the voltage effective value 
(RMS) of aircraft AC generator three-phase output voltage; 
The simulation parameters:   Ts = 1e!5s ,   nN = 12000 rpm, 

VUDC 60= ,  p = 2 . The ranges of adaptive parameters are 
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m = [80 120] ,   n = [0 10] ,   Kp ![50,650] ,  Ki ![0,10]  , 
]30,0[∈Kd , ]5.0,0.0[∈η ,  ! "[0.0,0.5] , respectively. 

4.1. Simulation of Raising Voltage From Zero 
The simulation experiment of raising voltage from zero is 

used to validate reliability and rapidity of the proposed exci-
tation control scheme for aircraft AC generator. The simula-
tion time is 0.2s. Fig. (5) is the aircraft AC generator termi-
nal voltage of raising voltage from zero simulation under the 
control of APSORBFPID., The simulation results under the 
adaptive PSOPID controller (APSOPID) is also given in Fig. 
(6) for comparison. Compared Fig. (5) with Fig. (6), it can 
be seen that the proposed APSORBFPID controller has the 
faster control speed than the APSOPID controller at the 
same experimental conditions. 

The simulation RMS voltage curves of the raising volt-
age from zero experiment are shown in Fig. (7) (the red  
 

curve represents the terminal RMS voltage under the pro-
posed algorithm of APSORBFPID, the green one is the ter-
minal RMS voltage under the APSOPID controller, the dot-
ted line is the given voltage 115V). As can be seen from the 
Fig. (7), the rise time of the PSOPIDRBF controller is short-
ened obviously, only 21.5ms. Meanwhile the rise time of the 
PSOPID controller is 31.8ms. The control accuracy of the 
former is higher than that of the latter. 

The control parameters and control performance of two 
excitation controllers are given in Table 1. From the Table 1, 
it can be seen that the terminal voltage error of aircraft AC 
generator is only 0.0035V under the control of 
APSORBFPID, and it is far less the error 0.0815V under the 
control of APSOPID. It also can be seen from the Table 1, 
the overshoot of the system voltage is only 0.17% under the 
control of APSORBFPID. Comparative analysis indicates 
that the GAPIDRBF controller achieves better performance. 

 

 

Fig. (4). Brushless excitation simulation control model for aircraft generator. 

 
Fig. (5). Excitation simulation step response. 
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4.2. Simulation of Plus/Minus Load  
In order to validate anti-interference capability of the 

proposed excitation control scheme, the 20% rated load is 
suddenly connected to the system model at the time 0.25s. At 
the time 0.35s, the 20% rated load is suddenly disconnected 
to the system model. The AC voltage curves are given in Fig. 
(8), Fig. (9) under the control of PID controller and 
APSORBFPID controller, respectively. 

In Fig. (8), when 20% rated load is suddenly added at 
time 0.25s, the terminal AC voltage experiences an obvious 
decrease. While 20% load is shaded at the time 0.35s, the 
terminal AC voltage increases quickly. Comparing with  
 

Fig. (8), From Fig. (9), it can be seen that the terminal AC 
voltage change is very small under the control of 
APSORBFPID, whether 20% rated load is suddenly con-
nected at the time 0.25s, or disconnected at the time 0.35s. 

The RMS voltage curves are given in Fig. (10) under the 
control of two controllers. From Fig. (10), the proposed 
APSORBFPID control scheme not only has more rapid the 
response speed and also has higher control precision. The 
terminal voltage error under the APSORBFPID control is 
smaller than that of APSOPID. 

The output control signals of APSORBFPID and AP-
SOPID controllers are given in Fig. (11). From Fig. (11), the  
  

 

Fig. (6). Excitation simulation step response. 

 
Fig. (7). Excitation simulation step response. 

Table 1. Comparison of the step response results of two excitation controllers. 

Control Parameters and Performance Parameters 

Controller Kp Ki Kd !  !  m n J E (V) M% Tr/ms 

APSOPID 371.2897 0.10 0.100 / / / / 160.6700 0.0815 0.00 31.8 

APSORBFPID 634.9522 0.0 0.100 0. 3000 0.020 114.9522 1.000 109.8333 0.0035 0.17 21.5 
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Fig. (8). Output control signal under the model uncertain. 

 

 
Fig. (9). Output control signal under the model uncertain. 

 

 
Fig. (10). Output control signal under the model uncertain. 
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Fig. (11). Output voltages under the model uncertain. 
 

control signal output of APSORBFPID controller is always 
more quickly tracking any change of the system load than 
that of APSOPID controller. 

CONCLUSION 

This paper presents an effective multi-parameter optimi-
zation scheme to design a new RBF and PID excitation con-
troller (APSORBFPID) for three-stage aircraft AC generator 
based on adaptive particle swarm optimization (APSO). The 
new control strategy combines all advantages of adaptive 
particle swarm optimization, RBF neural network and PID 
controller. The simulation results show the proposed com-
pound APSORBFPID excitation controller for aircraft AC 
generator has smaller voltage error, shorter adjusting time, 
and faster response than the conventional PID excitation 
controller. Meanwhile, the novel multi-parameter optimiza-
tion based on APSO overcomes the problem that multiple 
parameters are difficult to tune because of mutual coupling 
in conventional compound controller.  
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