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Abstract: The tire-road friction coefficient is critical to the performance of mobile robots working outdoors. However, it 
is difficult to measure using commercially available technology sensors. This paper presents a method of estimating the 
tire-road friction coefficient using a disturbance observer (DO) with compensator; the chassis speed is not needed. In this 
paper, the torque produced by the tire-road friction is considered to be the disturbance. The DO with compensator is de-
signed to estimate the tire-road friction coefficient using the dynamic behavior of the vehicle model, the traction torque 
and the wheel velocity. The simulation result shows that the proposed method can estimate the tire-road friction coeffi-
cient accurately under different road conditions and has strong robustness on modeling mismatch and vehicle load chang-
ing. 
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1. INTRODUCTION 

When a wheeled mobile robot works in various compli-
cated road environments, the tires are the only contact be-
tween the robot and the road. Therefore, the friction between 
the tire and the road is critical to the automatic control of 
robot’s stability. And not only that, intelligent vehicles are 
equipped with an electronic stability control (ESC) system 
and anti-lock braking system (ABS) to improve the stability, 
security and handling performance. In fact, these systems 
can not work properly without tire-road friction. However, 
the tire-road friction is influenced by un-controllable envi-
ronmental characteristics, such as temperature, wear, normal 
force, tire pressure, and other factors. So it is very difficult to 
measure directly [1].  

In recent years many researches have been focusing on 
the estimation of tire-road friction coefficient. The approach-
es can be categorized into cause-based and effect-based 
methods [2-4]. Cause-based methods detect materials cover-
ing road surfaces directly by using such sensors as laser, 
ultrasonic, microwave and so on. The effect-based methods 
utilize vehicle and tire dynamic models and other relation-
ships between them to estimate the tire-road friction. 

The methods in the first category can estimate the friction 
coefficient of the road ahead of time which can be beneficial. 
However, they usually do not measure other factors affecting 
friction, such as tire conditions; the cost of these sensors do  
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not allow an industrial implementation. So many approaches 
using vehicle and tire dynamic models have already been 
presented to estimate the friction coefficient. Ray [5] uses an 
Extended Kalman Filter (EKF) to estimate the tire-road forc-
es based on a nine degree of freedom vehicle model. Gerard 
[6] uses an EKF and an Unscented Kalman Filter (UKF) to 
estimate tire-road forces and friction coefficient. Belgacem 
et al. [7] present a method to estimate the longitudinal tire-
road force of the vehicle using FOSMO (First Order Slide 
Model Observer) & SOSMO(Second Order Slide Model 
Observer). Liu and Peng [8] use the Luenberger Observer for 
a 2 DOF (Degree Of Freedom) vehicle model to estimate the 
friction coefficient. C. Ahn et al. [9] presents a method to 
estimate road friction coefficient by using robust nonlinear 
observer. K. Li In [10], three different observers are devel-
oped for the estimation of tire forces. 

In this paper, we combine the quarter vehicle model and 
the Magic Formula [11] together to get the model of the sys-
tem. In order to estimate the tire-road friction coefficient, we 
consider the torque produced by tire-road friction as interfer-
ence torque and design a new disturbance observer to esti-
mate it. After we estimate the torque produced by tire-road 
friction, we can get tire-road friction coefficient easily. The 
main idea of this approach is to estimate the tire-road friction 
using observer with compensator not using sensors to meas-
ure the chassis speed. In fact, it is very difficult to measure 
the chassis speed accurately even if it can be measured by 
using GPS (Global Positioning System). Compared with 
traditional observer, this new method can decrease the esti-
mating error caused by the error between the model and the 
actual controlled object.  
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2. THE SIMPLIFIED VEHICLE MODEL 

2.1. The Quarter Vehicle Model 

Many studies deal with vehicle modeling in the literature 
[12, 13]. These are complex and nonlinear systems and some 
of the models are difficult to obtain and use in practice. In 
this paper, we utilize the simplified quarter car model [14] 
[15] widely reported in the literature. This model retains the 
main characteristics of the longitudinal dynamics. Assuming 
the road surface is horizontal, ignoring the rotating re-
sistance, air resistance and lateral motion, the simplified 
quarter vehicle model is shown as Fig. (1). 

According to Newton's law, the mathematical model of 
the quarter vehicle can be described by 
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Where 
 
T

m
is the motor torque, N !m  , 

 
F

x  is the longitudinal tire-road friction, N  , 

 R  is the wheel radius,  m , 

 J  is the wheel rotational inertia,
 
kg  ·  m

2 , 

!  is the wheel angular velocity,   rad / s , 

µ  is the tire-road friction coefficient, 

 m  is the vehicle mass, kg, 

 
g  is the gravitational acceleration constant,   m / s

2 , 

v  is the longitudinal velocity of the vehicle,  m / s . 

2.2. The Tire Model 

A tire model describes the relationship between tire pa-
rameters, tire dynamic states and tire forces. Many tire mod-
els have been proposed; the Dugoff Tire Model [16, 17], the 
Brush Model [18] and the Magic Formula [19] are three 
widely used tire models. In this paper, the Magic Formula is 
selected as the tire model. The major drawback of the 
Dugoff and Brush models is that they both use separate  
 

equations for the linear and non-linear regions. However, the 
size of these regions is a function of ! . Therefore the algo-
rithm cannot be sure which equation to use when the goal is 
to estimate ! . The major advantage of the Magic Formula is 
that it is a single equation and can achieve high accuracy. 

 The basic form of Magic Formula for slip ratio and fric-
tion coefficient is: 

  
µ = Dsin(C tan!1(B" ! E(B" ! tan!1(B")))  (2) 

Where µ  is the tire-road friction coefficient, !  is the 
longitudinal slip ratio defined as  

 

! =
R" # v

R"  
(3) 

It can be seen that equation (2) contains a set of parame-
ters: B, C, D and E . These parameters are dependent on the 
physical properties of the tire and the dynamic state of the 
vehicle. In equation (2), D represents the peak coefficient, C 
represents the shape coefficient and influences the shape of 
the curve, B is the stiffness coefficient, E is the coefficient of 
curvature.  

Fig. (2) shows the µ ! "  curves for various road condi-
tions, dry asphalt, wet asphalt and ice. 

2.3. The Simplified Model with Magic Formula 

Combine the two model, we can have the simplified 
model with Magic Formula as shown in Fig. (3).  

In this model, 
 
T

d
= F

x
R is considered to be the external 

interference torque and is estimated from the observed dis-
turbance. Then according the simplified model with Magic 
Formula, we can estimate the tire-road friction coefficient. 

 

 
Fig. (1). Simplified quarter vehicle model. 

. 

Fig. (2). Relationship of friction coefficient µ  and slip ratio !  in 
different road conditions. 
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3. ESTIMATING THE TIRE-ROAD FRICTION CO-
EFFICIENT BASED ON DISTURBANCE OBSERVER 

3.1. Design of Disturbance Observer 

Generally in motion control systems, the disturbance ob-
server is used to estimate the equivalent disturbance caused 
by external interference torque and a parametric variation of 
the model for compensating the influence of the disturbance. 
The basic structure is shown as Fig. (4). 

Where  !s  represents the error between the model and 
the actual controlled object. 

According Fig. (3), we can easily obtain  
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Using equation (4), the disturbance observer can estimate 
the external interference torque sufficiently if

  
!s " 0 . 

However, there must be modeling error between the model 

  
G

p
(s)  and the actual controlled object. That means 
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if 
  
G

p
(s)  is replaced by the actual controlled object. And the 

estimation accuracy of the observer will be influenced by the 
modeling error.  

In order to decrease the influence caused by the modeling 
error, a new structure of the disturbance observer with mod-
eling error compensation is presented. The main idea is 
shown as Fig. (5). 

According Fig. (4), we can obtain 
 
 

 

Fig. (3). The simplified model with Magic Formula. 

 

 
Fig. (4). The basic structure of the disturbance observer. 

 

 

Fig. (5). Block of the disturbance observer with compensator. 
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In equation (5),
  
C(s)  is the compensator. 

Equation (5) can be written 
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 If 
  
!s " 0 , equation (5) can be written 
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Equation (6) can be written 
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Consider equation (7): if 
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we still have 
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d
! T

d
 even if 

  
!s " 0

 
(there must be model-

ing error). 
 Moreover, equation (7) can be reconstructed into a com-

pensation problem. It is obvious that the compensator C(s) 
offers a mechanism to minimize the modeling error caused 
by  !s . 

 In order to minimize the estimation error of 
 
T

d
, C(s) 

should meet inequality (8). 
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In practice, C(s) should meet inequality (9) at least. 

  
1+C(s) >10 (T
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(9) 

Obviously, this disturbance observer has stronger robust-
ness to modeling error than the first one and the robustness is 
mainly reliant on the compensator. In this paper, we use the 
classical PID (Proportion Integration Differentiation) com-
pensator. Of course, other advanced compensators can be 
used.  

4. SIMULATIONS 
In order to verify the validity of the disturbance observer, 

a simulated traction control system was designed. Fig. (6) 

shows the basic structure of the simulated traction control 
system. 

The main parameters of the quarter vehicle simulation 
are shown in Table 1. The compensator is 

  
C(s) = 20+5 / s . 

Where C(s) can meet inequality (9). 

Table 1. Specification of the quarter vehicle. 

Total Mass  
  
240kg  

Wheel Inertia 
  
0.5kg !m2  

Wheel Radius   
0.2m  

Initial Chassis Velocity    
36km / h  

Gravitational Acceleration  
  
9.8m / s

2  

4.1. Simulation Based on Standard Road Conditions 

As we all know, the tire-road friction coefficient is close-
ly related to the slip ratio. In order to ensure the tire-road 
friction, the slip ratio is regarded as the given input in this 
traction control system.  

In fact, the slip ratio is one of the very important indica-
tors in vehicle stability control process. Where the given slip 
ratio 

  
!

s
= 0.12 , the initial slip ratio 

 
!

0
= 0 , the parameters 

in different standard road conditions are shown as Table 2 
[8]. And the simulation result is shown as Fig. (7). 

Table 2. The parameters in different standard road conditions. 

  E B C D 

Dry Asphalt 0.6 19.25 1.65 0.92 

Wet Asphalt 0.6 15.8 1.6 0.62 

Ice 0.6 9.8 1.45 0.1 

 
The simulation result shows there is little difference be-

tween the estimated coefficient and the actual coefficient and 
the DO with compensator can estimate the tire-road friction 
coefficient accurately and quickly. 

 

Fig. (6). Block of the traction control system for one wheel. 
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4.2. Simulation When Some of the System Parameters 
Changing  

 In fact, we cannot ensure the model can match the dis-
turbance observer completely, that means

  
!s " 0 . And load 

of the vehicle must be changed in practice. That is to say the 
total mass will be changed. In order to test the robustness of 
this observer, we simulate the system by changing the model 
and total mass of this vehicle randomly. 

 Consider the standard proportionality coefficient as  k , 
and total mass of the vehicle as m . In the process of simulat-
ing, these two parameters will change as follows: 

  
k

'
= k{1+ 0.1[rand(1)! 0.5]}  (10) 

  
m

'
= m{1+ 0.1[rand(1)! 0.5]}  (11) 

The simulation result is shown as Fig. (8).  
The simulation shows that the observer can still estimate 

the tire-road friction coefficient accurately and quickly and  
 

 

the robustness to model mismatching is better with the load 
changing. In the process of simulation, k is the proportionali-
ty coefficient of the simplified vehicle model and m is the 
total mass of the vehicle. These two parameters are constant 
when the vehicle is specified. 

4.3 Simulation when Given Slip Ratio Changing 

In practice, the given slip ratio must change. Fig. (9) 
shows the simulation result. 

The simulation result shows whether or not the road con-
dition, the model parameters and the total mass of the vehi-
cle change, the disturbance observer can still work well, even 
if the slip ratio can not track the given curve. 

CONCLUSION 

 This paper proposes a method of estimating the tire-road 
friction coefficient. This method is based on the quarter ve-
hicle dynamic model, the Magic Formula and the disturb-
ance observer with compensator. The simulation results  
 

   
Fig. (7). Simulation result with different road conditions. 

 

    
Fig. (8). Simulation result when model parameters and total mass changing. 
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show this method works well and has strong robustness to 
model parameter mismatching and load changing. The 
choice of the parameters of the compensator is very im-
portant. Because it is very difficult to get the models of the 
vehicle, the choice of the parameters of the compensator is 
difficult too. For future work, experiments will be performed 
on real vehicle in different conditions to verify the validity of 
the disturbance observer and try to find better ways to chose 
the parameters of the compensator. 
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