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Abstract: In this paper, we presented a way for railway bearing fault diagnosis with the use of FIR-wavelet packet and 
LVQ neural network. First, the original vibration signal of trains’ rolling bearing is denoised based on FIR. Then, the sig-
nals after de-noised are preprocessed by wavelet packet and the wavelet packet energy eigenvector is reconstructed. Those 
kinds of wavelet packet energy eigenvectors are used to train LVQ neural network. Finally, the intelligent fault diagnosis 
is realized. The result shows that this approach is effective to distinguish this kind of rolling bearing faults. This method 
has important practical value. 
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1. INTRODUCTION 

Roller bearings are key components in the railway sector. 
Therefore, fault diagnosis aimed at bearings has been the 
most important subject for extensive research. 

There are many diagnosis methods for the roller bearing 
faults based on the vibration analysis, which have been suc-
cessfully applied in some fields [1-3]. 

There are differences between other time frequency anal-
ysis method and wavelet packet analysis, the latter are ad-
vantageous over traditional methods in analyzing transient 
signals. With the help of wavelet transformation, the signal 
processing effect is similar to filtering through a band pass 
filter. As a result, it is possible to distinguish between the 
high frequency noise components, low frequency fault char-
acteristic and resonance modulation components [4]. 

Lately, it is popular to use neural networks in non-
parametric function learning because of their ability to learn 
complicated functions. It has been proved that multilayer 
back propagation networks can be used to approximate any 
continuous function [5]. 
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2. FIR 

FIR filter is used in signal processing due to its inherent 
advantages. FIR filter is straightforward to design and im-
plement. It is always stable, and can correct the magnitude 
and phase responses, if desired [6]. 

Suppose the digital filter's input is
  
x(n)，impulse re-

sponse is 
  
h(n) ,output is

  
y(n)，then the mathematical ex-

pression is: 
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Generally, the digital filter's frequency response may be 
represented as: 
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FIR digital filter is the impulse response function for a 
finite number of values of the filter. Its frequency response 
can be expressed as: 
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Where
  
H

g
(! )  is amplitude; 

 
!(" ) is phase. 
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3. WAVELET PACKET ANALYSIS 

Applying the wavelet transform to the original signal di-
vides the signal into different frequency subbands so that 
each subband may be analyzed individually. A series of ap-
proximations is able to be obtained by reiterating such de-
compositions. The difference of the approximations between 
two successive decompositions is named after the details. 
The multi-resolution analysis (MRA) is a kind of algorithm 
which is based on the reiterative decomposition of the low-
frequency parts only. Also the peeling-off process in MRA is 
defined as decomposing of the approximation space

 
V

j
 into a 

subsequent approximation subspace 
  
V

j+1
and the correspond-

ing detailed subspace 
  
W

j+1
. The detailed space 

 
W

j is 
related 

to the approximation space 
 
V

j
, however, it is still under 

composed [7]. 

Wavelet packet transform is an extension of wavelet 
transformation achieved by approach of generalizing the link 
between multi-resolution approximation and wavelets. In 
wavelet packet transform, all the approximation space 

 
V

j
and 

the detailed space 
 
W

j  
are decomposed even further. The 

transformation of the input sequence at scale
 
j  can be de-

scribed by: 
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where 
  
h

0
and 

  
h

1
represent low pass and high pass respective-

ly having a finite-impulse response of size K . 
When we aimed at the first level, we can decompose the 

signal into two subbands: low frequency sub-bands and high 
frequency sub-bands. When we turn to the next level, we can  
 

decompose the low frequency sub-bands into two parts, low-
er and higher frequency sub-bands. At the same time, the 
high frequency sub-bands are also decomposed into two 
parts, lower and higher frequency sub-bands (Fig. 1). The 
same decomposition goes on continually. 

4. WAVELET PACKET ENERGY VECTOR ALGO-
RITHM 

(1) First, the signal was processed by three—layer wave-
let packet. Fig. 1 shows the diagram result of wavelet de-
composition, where S is used to represent original signal, 

  
a

1
 

is used to represent the 1st low frequency coefficient 

  
X

10
,which uses wavelet packet to decompose, 

  
d

1
 represents 

the 1st low frequency coefficient 
  
X

11
, others is so on. 

(2) The wavelet packet coefficient was constructed, then 
we take the signal characteristics of each band. 

  
S

30
repre-

sents the restructuring signal of 
  
X

30
, 
  
S

31
represents the re-

structuring signal of 
  
X

31
, others is so on, so the original sig-

nal S can be expressed: 

   
S = S

30
+ S

31
+!+ S

37  (8) 

(3) The total energy of each band 
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Where, 
 
x

jk
represents amplitude of the restructuring signal. 

(4) The wavelet packet energy eigenvector was con-
structed 

The definition of all the energy of signal: 

  

E = E
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(10) 
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Fig. (1). Signal diagram of wavelet packet decomposition. 
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A band of relative wavelet packet energy: 

  
p

3 j
=

E
3 j

E  
(11) 

The definition of relative wavelet packet energy feature 
vector [8]: 

   
K

i
= ( p
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)  (12) 

5. LVQ NEURAL NETWORK MODEL 

Learning vector quantization is also seemed as a nearest-
neighbor pattern classifier based on competitive learning [9-
10]. A LVQ network is composed of input layer, a Kohonen 
layer, which can be used to learn and perform the classifica-
tion, and an output layer. The input layer is composed of one 
node for each input feature, the output layer is composed of 
one node for each class. Fig. (2) illustrates the structure of 
LVQ neural network. 

When the LVQ processes the training, the Euclidean dis-
tance form a training vector, x , to each node’s weight vector, 

iw , in the Kohonen layer could be calculated according to 
the formula: 
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The nearest node is treated as the winner, and its weight 
vector is adjusted depending on whether the winning node is 
in the class of the training vector: 

If the winner belongs to the correct class, then 

  
w

i+1
= w
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+! (x " w
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If the winner does not belong to the correct class, then 
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(15) 

 

where 1+iw  is used to represent the weight vector after ad-

justment, iw  the vector before adjustment, ! and !  are 
learning parameters. The algorithm is briefly described as 
below: 

For each input sample, the two closet weights vectors iw  

and jw  are first found by using the Euclidean distance crite-

rion. Assume the distances from 
 
w

i
 and 

 
w

j
 to  x  are 

 
d

i
 and 

jd , respectively. If the two closest weight vectors belong to 

different classes, one of them is correct, say, x  and iw  rep-
resent different classes. Furthermore, when the input sample 
x be found in the windows between the two closest weight 
vectors, then [11]: 
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Let t  represent the number of training set iterations. The 
window could be also defined in terms of relative distances 

 
d

i
 and 

 
d

j  
from 

 
w

i
 and 

 
w

j
 to  x , respectively, having a con-

stant ratio s . Then the input vector  x  is defined to be con-
tained the windows if min (

 
d

i
/
 
d

j
,
 
d

j
/
 
d

i
) >  s , with 

  
s = (1! w) / (1+ w) . 

6. EXPERIMENTAL AND ANALYSIS 

6.1. The Process of Wavelet Packet 

Experiments were conducted in order to validate the ap-
proach, which is developed in this article. Figs. (3, 6, 9 and 
12) show time domain signals of the railway rolling bearing. 
Fig. (4, 7, 10 and 13) show the de-nosing signal. Fig. (5, 8, 
11 and 14) show the de-nosing signal decomposed with 
wavelet packet.   

 

Fig. (2). LVQ structure. 



306    The Open Automation and Control Systems Journal, 2015, Volume 7 Jianwei et al. 

 

 
Fig. (3). Vibration signal of a normal roller bearing. 

 

 
Fig. (4). The de-nosing signal of normal roller bearing. 
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Fig. (5). The de-nosing normal signal decomposed with wavelet packet. 

 

 
Fig. (6). Vibration signal of a roller bearing with rolling fault. 
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Fig. (7). The de-nosing signal of rolling fault bearing. 

 

 
Fig. (8). The de-nosing rolling fault signal decomposed with wavelet packet. 
 

 
Three-layer wavelet packet is adopted to decompose the 

signal of railway rolling bearings, and then the wavelet 
packet energy eigenvector was constructed. Next, energy of 
each band is got, so part of the normalized training data is 
listed in Table 1. Part of the testing data is listed in Table 2. 

 
 

6.2. The Process of Neural Network 

The fault diagnosis process of railway rolling bearing 
based on LVQ neural network is as follows: 

(1) Determining the input vector of the LVQ neural net-
work. Making 8 extracted feature parameters as the fault 
feature vectors and making them as the input vectors of the 
LVQ neural network. 
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Fig. (9). Vibration signal of a roller bearing with outer ring fault. 

 

 
Fig. (10). The de-nosing signal of outer ring fault bearing. 
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Fig. (11). The de-nosing outer ring fault signal decomposed with wavelet packet. 

 

 
Fig. (12). Vibration signal of a roller bearing with inner ring fault. 
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Fig. (13). The de-nosing signal of inner ring fault bearing. 

 

 
Fig. (14). The de-nosing inner ring fault signal decomposed with wavelet packet. 
 

(2) Coding the fault types of railway rolling bearing. The 
output of LVQ neural network corresponds to different fault 
types of the roller bearing, the expected output for normal  
 

 

bearing is 1, the expected output for outer circle fault bearing 
is 2, the expected output for inner circle fault bearing is 3, 
the expected output for rolling body fault bearing is 4. 
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(3) Determining the relative parameters of LVQ neural 
network. The network architecture is usually used for fault 
diagnosis containing 8 inputs corresponding to the 8 differ-
ent ranges of the frequency spectrum of a fault signal, 4 out-
puts corresponding to 4 respective signals, such as normal 
signal, rolling fault signal, outer ring fault signal and inner 
ring fault signal and. 

(4) Testing network 
After training the network, the testing group is used to 

examine the trained LVQ network. 
The results of the examination sample are: 
yc_test =1 2 3 4 

CONCLUSION 

In this paper, the method of FIR-wavelet packet trans-
form and LVQ neural network is presented to diagnose rail-
way rolling bearings faults based on feature extracting of 
fault bearing. The proposed technique is robust to practical  
 

application. The results show that this method can diagnose 
the fault of railway rolling bearings. It provides the theoreti-
cal foundation for machine fault diagnosis. 
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