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Abstract: This paper presents an Optimization for Route Selection based on Simulated Annealing Gene Expression Pro-
gramming (ORS-SAGEP) algorithm. When optimizing multiple objective functions with the Gene Expression Program-
ming (GEP) algorithm, the ORS-SAGEP algorithm performs simulated annealing for every individual in the initial popu-
lation, and then performs a series of other genetic manipulation and fitness function evaluations. Because it is easy for the 
simulated annealing (SA) algorithm to jump out of local optimal solutions, to solve this problem, this paper presents the 
ORS-SAGEP algorithm accordingly, which can better solve single GEP’s problems of poor optimization accuracy and 
easily falling into local optimum. 
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1. INTRODUCTION 

As a direct carrier of Internet service, network traffic can 
directly reflect the network performance. A highly stable 
network should be capable of carrying any burst network 
traffic, until exceeding the maximum throughput of the net-
work. If the network traffic exceeds the network’s inherent 
load capacity for a long time, it is inevitable to lead to net-
work congestion caused by excessive network traffic, and a 
serious decline in the overall performance of the network. 
Therefore, as the Internet service becomes increasingly di-
verse and complex, it becomes more and more important to 
control network traffic intelligently. However, because In-
ternet is a complex nonlinear system, there are still a large 
number of questions about its dynamic characteristics that 
remain to be answered. Due to the complexity of network 
traffic, the control of it can’t be as convenient as other linear 
and nonlinear systems. Therefore, there are still many diffi-
culties in the research on network traffic control technology. 
Under most circumstances, when using optimized routing 
strategies, the external load may also exceed the Internet’s 
own capacity. In such cases, if no measures taken to effec-
tively control network traffic, the queue of the bottlenecked 
link will become longer, and at the same time, the delay time 
of network data packets will also increase to exceed the 
maximum delay limit for network data packet forwarding. 
Meanwhile, the ever-increasing length of network link 
queues will also deplete the buffer space on some nodes, so 
that network data packets arriving at these nodes will be dis-
carded and resent, thus causing a huge waste of network re-
sources. 
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The main goal of network traffic control is to deploy rea-
sonable congestion control mechanisms in the network for 
effective control of the overload traffic’s flow through the 
network, limiting data delay and buffer overflow, finally 
realize efficient network operation, optimize the use of net-
work resources, minimize or avoid Internet congestion, and 
improve network performance and QoS service quality. 

In recent years, the research on complex network traffic 
control has attracted widespread attention of scholars in the 
field. For example, it was pointed out in Literature [1] that 
network traffic control plays a very important role in sup-
porting the use of buffer space and bandwidth in various 
services. Effective traffic control is not only the foundation 
for the stable and efficient operation of the Internet, but also 
the foundation and precondition of various QoS service 
models and technologies. The network traffic control method 
is divided into macro layer control and micro layer control. 
The former focuses on the utilization ratio and operating 
efficiency of the entire Internet resources from an overall 
perspective, including such control methods as traffic engi-
neering, and QoS routing; while the latter focuses on the 
control of the data stream layer, mainly including the follow-
ing control methods: data packet scheduling, data packet 
discarding, data packet blocking, and data traffic allocation. 

2. OPTIMIZATION FOR ROUTE SELECTION BASED 
ON GENE EXPRESSION PROGRAMMING (ORS-
GEP) ALGORITHM 

2.1. Overview of Major Technologies 

Network traffic allocation is one of the effective means 
of network traffic control, while route optimization is the key 
technology to realize network traffic allocation. Reasonable 
route optimization can improve both the utilization ratio of 
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network resources and the network performance. Ideal ORS 
(Optimization for Route Selection) strategies, reasonable 
network link capacity and traffic allocation can greatly facili-
tate the reduction of network operating costs and average 
delay, the improvement of network service quality, and the 
effective use of network resources. At present, the interior 
gateway protocol OSPF [2] (Open Shortest Path First) used 
on the Internet uses SPF (Shortest Path First) algorithm to 
select routes. In this algorithm, each link in the network cor-
responds to a manageable weight, and the SPF algorithm can 
pick out the path with minimum weight sum. 

Route quality is directly related to network performance. 
In the industry, there are mainly two ways for QoS route 
selection optimization: control through nodes, and control 
through local or entire network. The former mainly opti-
mizes through single node or single link, and uses such con-
trol strategies as service scheduling and service flow shaping 
to realize the service’s management of the use of node 
shared resources (e.g., the consumption of resources such as 
cache, and processor); the latter realizes the direct control of 
service connection/service flow in the network generally 
through route and signaling management. At present, the 
difficulties in QoS route research mainly include: 

(1) NP-Complete problem: This is a non-deterministic 
problem of polynomial complexity. When more than two 
independent parameters are required at the same time, it is a 
NP-Complete problem. For example, a multimedia video-on-
demand service will request both parameters of delay and 
delay jitter at the same time. However, other parameters in-
volved in the network at the same time also include jitter, 
bandwidth, loss rate, service cost and other considerations, 
and these parameters are independent. How to choose a route 
strategy that satisfies multiple parameter constraints is a 
typical NP-Complete problem [3]. The NP-Complete prob-
lem has a direct and crucial impact on the realizability of the 
routing algorithm. 

(2) The problem of multi-service coexistence: As a net-
work with strong “diversity and heterogeneity”, while carry-
ing many kinds of services, Internet also needs to meet dif-
ferent QoS requirements from different services. Therefore, 
how to realize the optimization of network performance and 
the expansion of network scale is a question that has to be 
thought deeply. It is difficult to determine optimal operating 
points, especially when best-effort is coexisting with QoS. 

(3) The problem of large storage of status information: 
After the introduction of QoS in the system, the data volume 
of the status parameters that need to be recorded by nodes 
will increase greatly compared to that of traditional routes. If 
the storage of status parameters and the number of nodes in 
the network increase exponentially, the expansion of net-
work scale will be limited. 

(4) The problem of inaccurate information: The factors 
such as the jitter of the link in the transmission process and 
the joining/migration/exit of nodes may have some influence 
on the network status, and at the same time, these changes 
may also affect the accuracy of status information transmis-
sion and the performance of the algorithm. 

At present, researchers at home and abroad has paid close 
attention to the network traffic allocation and ORS method. 

In Literature [4], H.Pirkul and others improved the tradi-
tional Lagrangian algorithm. Experiments demonstrate that 
the improved algorithm can better optimize the route selec-
tion scheme. However, the problem of ORS and traffic allo-
cation itself belongs to the problem of NP-Hard complete in 
the combinatorial optimization. When using a single mathe-
matical method to work out this problem, the result is often 
unsatisfactory. Therefore, some researchers have proposed in 
recent years the use of heuristic algorithms in solving the 
problem of ORS. For example, in Literature [5], the author 
proposed a Multiple Objective Optimization based Chaotic 
Simulated Annealing (MOOCSA) traffic allocation method. 
Simulation experiments demonstrate that this method can 
effectively improve the utilization ratio of network resources 
and reduce the occurrence of network congestion, so as to 
improve the network performance. 

In Literature [6], the author put forward a Tabu Search 
Algorithm (TSA) based optimization algorithm for the ca-
pacity and traffic allocation in computer communication 
networks. Simulation experiments demonstrate that this al-
gorithm can effectively work out the problem of route selec-
tion and traffic allocation. Compared with traditional algo-
rithms, the quality of solution is greatly improved, especially 
when compared with large-scale networks or networks under 
heavy loads, this algorithm is more advantageous. Ye Daz-
hen and Wu Xinyu [7] also used the Genetic Algorithm (GA) 
to work out the problem of network traffic allocation. After 
performing computer simulation toward small networks, 
they proved the feasibility of this algorithm. 

GEP was proposed in 2001 by Candida, a Portuguese bi-
ologist [8]. GEP combines the advantages of GA and genetic 
programming, and uses simple coding to solve complex 
problems. As an efficient self-adaptive evolutionary search 
algorithm, GEP algorithm has been successfully applied in 
many fields, especially in recent years, many authors have 
applied GEP algorithm to the optimization of multiple objec-
tive functions. For example, in Literature [9], through de-
signing new coding and GA, the author proposed a multiple 
objective optimization algorithm based on gene expression 
programming. Simulation experiments on standard test func-
tions demonstrated the effectiveness of this algorithm. 

In view of the advantage of the GEP algorithm in the 
field of function optimization, and because it is easy for the 
SA algorithm to jump out of local optimal solutions, this 
paper presents the ORS-SAGEP algorithm. 

2.2. Problem Description 

The essence of network traffic allocation is to determine 
the appropriate route selection by the given network topol-
ogy and the actual capacity of each transmission link in the 
network, and then allocate corresponding bandwidth re-
sources according to the traffic distribution of various serv-
ices between the source and the destination host. Generally, 
the best bandwidth allocation scheme is to minimize the 
network delay and network congestion across the network. 

When researching the problem of route selection, a net-
work is usually expressed by a weighted graph G(N,E),  
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Fig.(1). ARPA Network Topology 
 
Wherein N denotes the set of routing nodes, and E de-

notes the set of communication links that connect routing 
nodes. |N| and |E| denote the number of routing nodes and the 
number of links in the network respectively. ijC  denotes the 
network transmission cost of the communication link ( , )i j  
(can be expressed as network transmission delay, and band-
width size, etc.). When using S and D to denote the source 
routing node and the destination routing node respectively, 
and using ijI  to denote the network connection of each link, 
it can be defined as follows: 

1, Path exists routing node i 

to the routing node j

0, Path does not exist routing 

node i to the routing node j

ijI =
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；  
Obviously, all the elements on the diagonal of ijI  are 0, 

and meet the conditions: If ijI  = 1 and jkI  = 1, then ikI  = 1. 
The problem of the shortest routing path optimization can be 
transformed into the problem of solving the minimum value 
optimization, and the objective function can be expressed as: 
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Wherein }{0,1ijI !
. Formula 2 guarantees the shortest 

path between the source routing node and the destination 
routing node, which also means the smallest network trans-
mission delay. 

2.3. ORS-GEP Algorithm 

ORS itself is a NP problem, and in combination of the 
advantage of the GEP algorithm in combinatorial optimiza-
tion, this paper presents the ORS-GEP algorithm. 

 

2.3.1. Coding 

The coding method largely determines how to perform 
such operations as genetic evolution of groups as well as the 
efficiency of these operations, so it is a critical step in the 
process of mining. To facilitate the description of the prob-
lem below, let’s introduce a classical ARPA network topol-
ogy first, as shown in Fig.(1). In this Fig, the letters from a to 
u denote nodes, while in actual network routes, they denote 
network routers. The values between nodes are called 
weights, while in actual network, they denote the time re-
quired to pass through this line, i.e. cost. 

To better describe the ORS problem with the GEP algo-
rithm, let’s introduce several definitions: 

Definition 1: (route optimization gene): }{ 1 2, ,..., nG X X X=  
denote ORS genes, wherein ( ), ,iX i i n!  denotes any routing 
node in the network, iX  denotes the route starting point, and 

nX  denotes the route end point. 
Definition 2: (route optimization individual): The route 

optimization individual is composed of one or more route 
optimization genes, and defined as: 

}{ 1 2, ,..., nD G G G=          (3) 
The number of genes in the whole route optimization in-

dividual is determined by GEP initial parameters. 
Definition 3: (route selection population): The route se-

lection population is composed of one or more route optimi-
zation individuals, and defined as: 

{ }1 2, ,..., mP D D D=             (4) 
To facilitate the description, take the following as an ex-

ample: 
Given }{ , , , , , , ,R a b c d e f g j= , wherein every letter denotes one 

routing node, and it will be coded as a route optimization 
individual, as shown below: 

1

2

3

:
:
:

C achge
C cbag
C cdfag  

Fig. (2) shows the spatial structure composed of the ex-
pressions of route optimization individuals 1C  and 2C , and 
expresses a specific route for the shortest path ORS problem 
wherein c is the route starting point, and g is the route end 
point. While 3C  denotes invalid route optimization individu-
als, because it doesn’t exist in the actual routing paths. 
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Fig.(2). Expression of Route Optimization Individual 
 
When performing shortest path route selection with the 

GEP, the source and destination nodes of route optimization 
genes are set according to initial parameters, and at the same 
time, with only one identical routing node kept, so that the 
length of the route optimization individual designed is dy-
namic, which both conforms to the characteristics of route 
selection, and can reduce the amount of calculation when 
doing fitness function calculation. 

2.3.2. Genetic Manipulation 

During the process of optimization for route selection 
based on gene expression programming, main genetic opera-
tors include selection operators, mutation operators and 
crossover operators [10]. 

(1) Selection operators 
The selection operation is to select a certain number of 

route optimization individuals from the route selection popu-
lation through certain strategies, and meanwhile, retain them 
to the next generation to participate in the mutation, cross-
over and other genetic manipulations between route optimi-
zation individuals. The operation used in this algorithm is the 
commonly used roulette and best retention strategy, in 
which, the fitness function value of each route optimization 
individual in the route selection population is calculated first, 
and then the fitness function values are used for sorting. 
Generally, there are two processes: Firstly, calculation of 
fitness function values; secondly, sorting by the fitness func-
tion values in descending order. The route optimization indi-
vidual with the largest fitness function value is uncondition-
ally retained to the next generation, while other route optimi-
zation individuals are selected according to the roulette strat-
egy, until the generation of the next generation population. 

(2) Mutation operators 
Mutation is the most important genetic way to maintain 

the advancement and innovation of species, and also an ef-
fective genetic manipulation capable of optimizing the 
global optimal solution. Based on the characteristics of route 
optimization genes, and to ensure that the genes obtained are 
valid, the entire mutation operation can only be carried out 
between the head and tail of the route optimization gene, and 
the value range of the mutation is limited to other routing 
nodes except the head and tail of genes. 

To facilitate the description, take the following as an ex-
ample: Given }{ , , , , , , ,R a b c d e f g j= , the gene head is a, the gene tail 
is e, the gene length is 5, a randomly generated route optimi-

zation individual is 1 :C achge , and the mutation probability is 
0.001, then the mutated route optimization individual is: 
1 :C adcfe . 

(3) Crossover operators 
In view of the characteristics of network route selection, 

the entire crossover operator can only use the one point 
crossover. To ensure the validity of the route optimization 
gene, the crossover operator is only between the head and 
tail of genes. 

To facilitate the description, take the following as an ex-

ample: Given }{ , , , , , , ,R a b c d e f g j= , the gene head is a, the gene 

tail is e, the gene length is 5, two randomly generated route 

optimization individuals are respectively 
D D

ij ij
i S j S

j

min C I
= =
!!

, the cross-

over probability is 0.33, and the crossover locations are 2, 

then the two mutated route optimization individuals are re-

spectively: 1 2: , :C achfe C adcge . 

2.3.3. Algorithm Description 

The entire ORS-GEP algorithm is described as follows: 
Algorithm 1: ORS-GEP 
Input: GEP basic parameters; 
Output: BestRoute, the routing path corresponding to the 

optimal route optimization individual. 
Begin { 
(1) i=0; // Initialize the evolution algebra 
(2) Init(Pop); // Initialize the population 
(3) Calculate the optimal route optimization individual in 

the current population; 
(4) while(i<MaxGen){ 
(5) Mutate( ); // Perform the mutation operation 
(6) Select( ); // Perform the selection operation 
(7) CrossOver( ); // Perform the crossover operation 
(8) Calculate the optimal route optimization individual in 

the current population; 
(9) i++;} 
(10) The routing path set corresponding to the finally ob-

tained optimal route optimization individuals. 
} 

3. ORS-SAGEP ALGORITHM 

Although the traditional single GEP algorithm has better 
search capability in optimizing multiple objective functions, 
as a member of the evolutionary algorithm family, it is also 
inevitably to have such defects as “precocity”. To better 
solve the single algorithm’s problem of easily falling into 
local optimum, and in combination of the advantage of the 
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SA in local optimization, this section presents the ORS-
SAGEP algorithm. 

The genetic manipulation itself is especially important 
for the global convergence of the entire GEP algorithm. In 
the ORS-SAGEP algorithm, the characteristics of the SA 
algorithm in local optimization have been fully used to avoid 
the utmost GEP algorithm falling into local optimum. The 
SA algorithm enables every individual in every generation of 
population of GEP to become local optimum, which can 
largely accelerate evolution, and make the entire algorithm 
run in the direction of global optimum. 

3.1. Overview of SA 

The SA algorithm [11] was proposed, by Kirkpatrick et 
al. in IBM, based on the similarity between the physical an-
nealing process and the general combinatorial optimization. 
It is an effective approximation algorithm proposed by intro-
ducing the annealing thought into the combinatorial optimi-
zation field for solving the large scale combinatorial optimi-
zation problem, especially the NP-Complete combinatorial 
optimization problem. It solves the combinatorial optimiza-
tion problem using the Monte Carlo strategies. The SA algo-
rithm is derived from the simulation of annealing process in 
thermodynamics. The algorithm is enabled to give an ap-
proximate optimal solution in the polynomial time, by 
slowly decreasing temperature parameters, at a given initial 
temperature. Annealing is similar to the “annealing” of met-
allurgy, while significantly different from the quenching of 
metallurgy. The former is a slow drop in temperature, while 
the latter is a rapid drop in temperature. 

The simulation process of Kirkpatrick [12] algorithm is 
very simple, and is widely used in many real environments. 
Improved methods after that (such as thermal annealing, 
tempering annealing, chaotic annealing combined with neu-
ral networks, and other algorithms) have improved some 
performance of the SA algorithm from different perspec-
tives. However, the improvement of network performance 
brought about by these algorithms is at the expense of time 
and space complexity. The monitoring nodes in network 
traffic monitoring models are often limited by factors such as 
computing power and storage space, so it’s more appropriate 
to choose concise and practical algorithms to solve complex 
Internet traffic optimization problems. Based on the above 
considerations, this paper chooses the Kirkpatrick annealing 
algorithm. The basic thought and flow of the algorithm are 
described below: 

Begin { 

(1) Initialization: the initial temperature is T (should be 
large enough), the initial solution state is S (the starting point 
of the algorithm iteration), and the number of iteration for 
each initial temperature T is L; 

(2) for (k=1;k<=L;k++) { 
(3) Generate a new solution S’; 
(4) Calculate the incremental ( ) ( )SCSCt !=" '' , of which ( )SC  

is evaluation function; 

(5) if ( 0' >!t ) {then accept S’ as the new current solu-
tion}; else {with the probability ( )Tt 'exp ! } accept S’ as the new 
current solution; 

(6) if a number of successive new solutions are not ac-
cepted, then output the current solution as the optimal solu-
tion, break; 

(7) T decreases gradually, and 0!T  } 

3.2. ORS-SAGEP Algorithm 

When optimizing multiple objective functions with the 
GEP algorithm, the ORS-SAGEP algorithm performs simu-
lated annealing for every individual in the initial population, 
and then performs a series of other genetic manipulation and 
fitness function evaluations. The formal description of the 
entire ORS-SAGEP is as shown in algorithm 2: 

Input: GEP basic parameters; 
Output: BestRoute, the routing path corresponding to the 

optimal route optimization individual. 
Begin { 
(1) Init(P); // Initialize the population 
(2) i=0; // Set up the evolution algebra 
(3) While (i<=MaxGen) { 
(4) Perform SA for every individual in population P, so 

as to produce local optimal individuals to form new popula-
tions; 

(5) Mutate( ); // Perform the mutation operation 
(6) Select( ); // Perform the selection operation 
(7) CrossOver( ); // Perform the crossover operation 
(8) Calculate and retain the optimal individual in the new 

population; 
(9) i++;} 
(10) Return BestRoute, the optimized optimal routing 

path. 
｝ 
The operation of the entire algorithm is mainly controlled 

by the operation algebra i and the total number of iteration N 
of every individual in the population performing SA, so the 
time complexity of the entire algorithm is approximately 
O(i*N). 

4. EXPERIMENTAL ANALYSIS 

To verify the effectiveness of the ORS-SAGEP algo-
rithm, simulation experiments were performed respectively 
in the lab environment for the ORS problems of the classical 
ARPA network and the randomly generated network RAN. 
The results of the ORS-SAGEP algorithm and those of the 
heuristic algorithms such as TSA, GA and SA algorithm 
were compared respectively. The advantages of the above 
algorithms were compared mainly from two aspects, namely 
the optimal fitness function value and the algorithm conver-
gence performance. The whole test platform is Windows 
7+Jdk1.5+Eclipse3.1, and all programs are implemented in 
the Java language. 

In the ARPA network, there are 21 nodes and 26 links in 
total. Its topology is as shown in Fig. (1). The letter in the 
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circle denotes the network node number, and the number on 
the link denotes the transmission delay between the two rout-
ing nodes on the link, expressed in seconds. 

In the randomly generated network RAN, there are 20 
nodes and 44 network links in total. Its topology is as shown 

in Fig. (3). The letter in the circle denotes the routing node, 
and the value on the link denotes the transmission delay be-
tween the two routing nodes on the link, expressed in sec-
onds.

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (3). RAN Network Topology 

Table 1. Main Parameters of the ORS-SAGEP Algorithm 

Parameter Item ARPA Parameter RAN Parameter 

Node Number 21 20 

Maximum Operation Algebra 100 100 

Population Size 500 500 

Selection Probability 0.33 0.33 

Mutation Probability 0.001 0.001 

Crossover Probability 0.33 0.33 

Fitness Function 
D D

ij ij
i S j S

j

min C I
= =
!!

 

D D

ij ij
i S j S

j

min C I
= =
!!

 

Table 2. Shortest Path Routes Obtained by the Four Algorithms 

 
Shortest Path Route 
of ARPA Network 

Minimum Delay 
of ARPA Net-

work (s) 

Shortest Path Route 
of RAN Network 

Minimum Delay 
of RAN Network 

(s) 

ORS-SAGEP 
Algorithm qba !!  

2,096 lcb !!  1.11 

TSA qba !!  
2,096 ljb !!  

1.31 

GA qba !!  
2,096 lcb !!  1.11 

SA Algorithm qba !!  
2,096 lcb !!  1.11 
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According to the ARPA network topology and the RAN 

network topology, the main parameters of the entire ORS-
SAGEP algorithm are as shown in Table 1. For the ARPA 
network, the start routing node of route optimization is a, and 
the end point is q; for the RAN network, the start routing 
node of route optimization is b, and the end point is l. 

Experiment 1: For the ARPA network and the RAN net-
work, run 10 times respectively using the ORS-SAGEP algo-
rithm, TSA, GA and SA algorithm. Table 2 indicates the 
optimal paths and minimum delays corresponding to the 
shortest path routes obtained by the four algorithms. Fig. (4) 
compares the average delays of the above four algorithms in 
obtaining the optimal routing paths. 

You can see from Table 2 that for the ARPA network, all 
of the four algorithms, namely the ORS-SAGEP algorithm, 
TSA, GA and SA algorithm, can work out shortest path 
routes: a b q! ! , with a corresponding minimum delay of 
2,096 seconds. For the RAN network, only the TSA in the 
above four algorithms fails to work out the shortest path 
route, with a corresponding minimum delay of 1.31 seconds; 
while all of the other three algorithms work out shortest path 
routes: lcb !! , with a corresponding minimum delay of 

1.11 seconds. It also shows that the ORS-SAGEP algorithm 
has the same global optimization capability as traditional 
algorithms in working out the shortest path. For the complex 
network architectures of RAN, the minimum delay of the 
ORS-SAGEP algorithm for finding the shortest path route 
reduces, at most, about 18.02%. 

You can see from Fig. (4) and Fig. (5), for the RAN net-
work, the minimum average delay of the ORS-SAGEP algo-
rithm in working out the optimal routing paths is 1.13 sec-
onds, with a maximum decrease of about 3.24% compared 
with the average delays of the other three algorithms; for the 
ARPA network, the minimum average delay of the ORS-
SAGEP algorithm in working out the optimal routing paths 
is 2,096 seconds, with a maximum decrease of about 21.24% 
compared with the average delays of the other three algo-
rithms. That’s because the ORS-SAGEP algorithm has com-
bined the advantage of GEP in working out combinatorial 
optimization and the capability of the SA algorithm in local 
optimization, which has greatly enhanced the global optimi-
zation capability of the ORS-SAGEP algorithm, thus ensur-
ing that the algorithm presented in in this paper can demon-
strate it’s good optimization capability under the same net-
work topology conditions. 

 
Fig. (4). Average Delay in Working out the Optimal Routing Paths of RAN. 

 
Fig. (5). Average Delay in Working out the Optimal Routing Paths of ARPA. 

Experiment 2: For the ARPA network and the RAN net-
work, run 10 times respectively using the ORS-SAGEP algo-
rithm, TSA, GA and SA algorithm. Fig. (6) and Fig. (7) 
compare the times consumed by the four algorithms in work-

ing out the optimal routing paths of the above two network 
topologies. Table 3 indicates the average convergence alge-
bra of the above four algorithms. 
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Fig. (6). Times Consumed by the Four Algorithms in Working out the Optimal Routing Paths of ARPA Network 

 
 
Fig. (7). Times Consumed by the Four Algorithms in Working out the Optimal Routing Paths of RAN Network. 

Table 3. Average Convergence Algebra of the Above Four Algorithms. 

 
Average Convergence Algebra in Working out the 

Shortest Path Route of the ARPA Network 
Average Convergence Algebra in Working out 
the Shortest Path Route of the RAN Network 

ORS-SAGEP 
Algorithm 

25 17 

TSA 44 40 

GA 30 30 

SA Algorithm 37 35 

 
You can see from Fig.(6) and Fig.(7), for the ARPA net-

work, the average time consumed by the ORS-SAGEP algo-
rithm in working out the optimal routing paths decreases by 
13.97% or so, compared with those of the traditional heuris-
tic algorithms; for the RAN network, the average time con-
sumed by the ORS-SAGEP algorithm in working out the 
optimal routing paths decreases by 43.18% or so, compared 
with those of the traditional heuristic algorithms. This is 
mainly because when using the same network topologies and 
running algorithms for the same times, the ORS-SAGEP 
algorithm presented in this paper uses simple coding to solve 
complex problems, and meanwhile, this algorithm uses sim-
ple and practical genetic manipulation, making the algorithm 
fast and effective in working out  the optimal solution. 

Table 3 compares the average convergence algebra of the 
four algorithms, namely ORS-SAGEP algorithm, TSA, GA 
and SA algorithm, in working out the shortest path routes of 
the ARPA network and the RAN network. When using the 
same network topologies and running algorithms for the 
same times, the average convergence algebra of the ORS-
SAGEP algorithm is obviously better than other heuristic 
algorithms. To be specific, when working out the shortest 
path routes of the ARPA network, the average rate of con-
vergence of the ORS-SAGEP algorithm increases up to 1.76 
times or so; when working out the shortest routing paths of 
the RAN network, the average rate of convergence of the 
ORS-SAGEP algorithm increases up to 2.35 times or so. 
This is because the ORS-SAGEP algorithm combines the 
GEP’s advantage in rapid convergence and the SA algo-



322    The Open Automation and Control Systems Journal, 2015, Volume 7 Aiju and Hua 

rithm’s advantage in local optimization, enabling it to find 
the shortest path route with less operation algebra. 

5. SUMMARY 

Route selection is an important method to realize net-
work traffic control. The essence of network traffic control is 
to minimize the delay of transmitting messages in the net-
work and reduce the network congestion as much as possi-
ble, through the optimization of route selection. Studies 
show that the optimization of route selection can be de-
scribed through shortest routing paths. In view of the advan-
tage of the GEP in combinatorial optimization, and in com-
bination of the advantage of the SA algorithm in local opti-
mization, this paper presents the ORS-SAGEP algorithm. 
According to the simulation results, for the ARPA network, 
the average delay of the ORS-SAGEP algorithm in working 
out the optimal routing paths decreases up to 21.24% or so, 
compared with traditional algorithms, and for the RAN net-
work, the figure is 3.24% or so; for the ARPA network, the 
average time consumed by the ORS-SAGEP algorithm in 
working out the shortest routing paths decreases by 13.97% 
or so, and for the RAN network, the figure is 43.18% or so. 
When working out the shortest routing paths of the ARPA 
network, the average rate of convergence of the ORS-
SAGEP algorithm increases by about 76%; when working 
out the shortest routing paths of the RAN network, the aver-
age rate of convergence of the ORS-SAGEP algorithm in-
creases by about 57.5%. 
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