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Abstract: The two purposes of solving the multi-objective optimization problems are to get solutions close to the true Pa-
reto front as much as possible and to obtain promising diversity. To meet these two demands, a new method is proposed in 
this paper, which has these characteristics: 1) it adopts the orthogonal design method with quantization technology to gen-
erate initial population whose individuals are scattered uniformly over the target search space. 2) it is based on an adaptive 
ε concept to obtain a good distribution along the true Pareto-optimal solutions. Experiments on five benchmark problems 
with different features indicate that the proposed method works well not only in diversity, but also in convergence when 
compared to other evolutionary algorithms. 
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1. INTRODUCTION 

In the natural sciences and social sciences, we hope to 
maximize efficiency and minimize costs, which is essentially 
a multi-objective optimization problem [1]. As each objec-
tive restricts each other through decision variables in multi-
objective optimization problems, it will result in the loss of 
other target's performance to over-optimize one objective. 
Therefore, it is difficult to evaluate the pros and cons of the 
solutions of multi-objective optimization problem. There is 
no unique global optimal solution in multi-objective problem, 
instead, it is a collection of the optimal solution which is 
commonly known as the Pareto optimal solution set. It is 
different from single objective optimization problem which 
is clearly defined and has just single optimal solution. Ele-
ments in the Pareto optimal solution set are non-domination 
and not comparable, that is to say, when considering all tar-
gets, there does not exist a solution which is better than these 
solutions. The main task of the multi-objective algorithm is 
to find solutions with good convergence and diversity which 
meet the requirements of the representative. 

In last decades, a lot of algorithms were introduced to 
address multi-objective optimization problem, for instance, 
aggregation approaches, VEGA algorithm [2], the lexico-
graphic ordering, ε-constrains method, the target-vector 
method, NSGA [3], MOGA [4], and NPGA [5]. In the late 
1990s, some improved algorithms were come out, such as: 
PAES [6], SPEA [7], NSGA-II [8] and NPGA [9]. Research-
es on multi-objective genetic algorithm design and theoreti-
cal in domestic also showed the situation to go out in the 
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ascendant. Yuping Wang [10] and Sanyou Zeng [11] give a 
new method for solving multi-objective optimization respec-
tively by combining orthogonal design with uniform design 
into genetic algorithm, which accelerate the convergence 
speed. Shihua Guan [12] introduces an Augmented Lagran-
gian multi-objective collaborative algorithm based on the ε-
constraint method. Chuan Shi [13] proposes a quick multi-
objective evolution algorithm based on domination tree, it 
assigns fitness through domination tree which results in a 
less comparison among individuals. Gong etc. [14] apply 
two-level orthogonal crossover operator to DE and select 
optimal individuals using statistical optimization which lead 
to a better robust. Maoguo Gong [15] generalizes the current 
trend of research on multi-objective optimization and then 
put forward their own views on the further development of 
multi-objective optimization. 

Although there have been many evolution algorithms to 
solve multi-objective optimization problems, it is still a chal-
lenge to design an efficient and robust algorithm. To this end, 
the authors introduce a differential evolution algorithm asso-
ciating with ε domination to solve multi-objective optimiza-
tion, which is termed Paε-ODEMO. The algorithm has fol-
lowing characteristics: 

(1) applying orthogonal design method to generate the in-
itial population, which not only decreases the time consump-
tion, but also makes the initial population of points scattered 
uniformly over the feasible solution space. 

(2) using an Archive population to retain the obtained 
non-dominated solutions. What's more, an adaptive ε way is 
adopted to maintain the diversity and distribution of the ar-
chive population dynamically. 
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Finally, experiments on five benchmark problems of di-
verse complexities have shown that the new approach is able 
to achieve comparable result in terms of convergence and 
diversity metrics when compared with several other state-of-
the-art evolutionary algorithms. 

The paper is organized in the following manner. Section 
2 introduces some basic knowledge about multi-objective 
optimization and differential evolution algorithm. Section 3 
presents the core idea of our algorithm Paε-ODEMO. Sec-
tion 4 summarizes some experimental results on continuous 
benchmark functions and analyzes the results. Section 5 pro-
vides some brief conclusion. 

2. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTIO-
NARY ALGORITHM 

In this section, we mainly focus on introducing some pre-
requisite knowledge about multi-objective optimization and 
differential evolution algorithm. They are the foundation of 
Paε-ODEMO. 

2.1. Relative Description on Multi-objective Optimization 

Definition 1: (multi-objective optimization problem): 
without loss of the generality, a MOP with a set of n decision 
variables, a set of m constrains and a set of k objective func-
tions can be described as follows: 
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where x is the decision vector, y is the objective vector. X 
denotes as the decision space, while Y means the objective 
space. Generally, for each decision vector, it satisfies the 
constrain functions. 

Definition 2: (Pareto dominance) assuming objective 
vectors ),( k1 xx ……=x and ),( k1 yy ……=y  are two 
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Definition 3: (ε dominance) a given objective vector 
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Definition 4:( Pareto optimal)given a solution x which is 
Pareto optimal, if and only if 

    ¬!  x "X           makes         x ! x
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Definition 5:( Pareto front) the Pareto font is the appear-
ance formed by all Pareto-optimal solutions when mapped to 

the objective vector space. Its mathematical description is as 
follows: 

   
POF ={ f (x) = ( f

1
(x),……, f

k
(x) | x !X}  (5) 

2.2. Differential Evolution Algorithm 

DE is a random-based heuristic search algorithm, it is a 
kind of evolution algorithm based on real-coding which is 
proven to be an effective technique to solve complex optimi-
zation problems. It has been developed to be a mature algo-
rithm and its framework can be described as follows: (1) 
Parameter assignment and generating the initial evolution 
population, set the evolution generation t=0; 

(2) Calculate the fitness of the initial population; 
(3) Stopping the algorithm and output the result if the 

stopping condition is met, else jump to step (4); 
(4) Apply crossover operator, mutation operator and se-

lection operator to the population, and then generate the next 
generation; 

(5) Calculate the fitness of the population; 
(6) Let the generations t=t+1, then jump to step (3); 
What is necessary to point out is that our algorithm em-

ploys a hybrid selection mechanism in which a random se-
lection and an elitist selection are interleaved. To be specific, 
in the early evolution, individuals in Archive population 
have big difference with the Pareto optimal solutions, so they 
do little help to guide the evolution. At this moment, the al-
gorithm selects individuals from evolution population direct-
ly. However, with the progression of evolution, individuals 
in Archive population will be closer and closer to the Pareto 
optimal set. At this time, individuals are chosen from Ar-
chive population randomly, namely: 

  
individual =   

elitist,otherwise

random       eval<(!"Max_eval){  (6) 

3. PAε-ODEMO AND ITS CHARACTERISTICS 

In this section, we will present the proposed algorithm 
Paε-ODEMO in detail. Compared with traditional evolution 
algorithm for multi-object, it has many improvements and 
characteristic. 

3.1. Initial Population with Orthogonal Design 

In traditional DE, the initial population is generated ran-
domly, which often leads to an uneven distribution, and then, 
decreases the algorithm’s ability to use the initial population. 
While the initial population generated by orthogonal design 
method [16] can have a better distribution and diversity 
along the decision vector space. Orthogonal initial popula-
tion can not only improve utilization capacity of the initial 
population, but also accelerate the convergence speed. There 
are two main steps to generate the initial orthogonal popula-
tion: 

(1) Generating orthogonal array [17], which is a kind of 
Latin array, using 

  
L

R
(QC )  to represent an array with Q level; 
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(2) Quantization of the search space [18]. assuming a 
variable xi has a boundary of [l;u], and then quantize it into 
Q level as follows: 

  
a

i
= l + (i !1)(u !1) / (Q !1)        i = 1,2,……Q  (7) 

3.2. Adaptive ε  to Maintain Diversity of the Archive 

In the procedure of updating population in this algorithm, 
whenever a new offspring is produced, it should be com-
pared not only with its parents, but also with the individuals 
in archive population. If the new offspring is better than 
some individuals in archive, then just delete those individu-
als who are dominated; if the new offspring and all individu-
als in archive are not dominated mutually, then add it to the 
archive; if it is dominated by someone individual in archive, 
then discard the new one. In this case, as the running of evo-
lution, the size of archive population will be larger and larger, 
which will make it hard to store, meanwhile, the distribution 
of archive will be getting worse and worse (individuals with-
in a region have a high density, but other regions, a small 
density). In order to obtain not only a better distribution, but 
also reducing the storage space, the algorithm uses adaptive 
ε grid to maintain the diversity of archive. When the size of 
archive population reaches a predefined value, we need to 
generate the grid and map all individuals in archive popula-
tion to the grid, and then use grid method to update the ar-
chive population. In order to store these mapped individuals, 
we assign an identity array to each individual, where r repre-
sents the number of objectives. The formula to calculate the 
B is shown as follows: 

  
B
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Where 
  
f

i

min  represents the minimum of the ith objective, 
the individual with the minimum fitness is from archive, and 
it varies as the running of evolution. The iε  means the tol-

erance of the i th objective, with iε  we can map each indi-
vidual into the grid easily. 

In order to generate the grid we need to calculate the cor-
responding iε . Without loss of generality, assume that one 

objective function has a range of
  
1! f

i
! K , then for an op-

timization problem with r objective, it will produce a number 
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solutions. For an evolution population with NP size, the al-
gorithm hopes to produce NP non-dominated solutions, so it 
will be met;  

  
NP = (

K !1

"
)r!1

 (9) 

And for this reason, we can calculate each iε easily. The 

reason why the iε  is adaptive is that in most multi-objective  
 

optimization problems, the range of an objective is unknown 
at the beginning, but it is essential to know its range when 
calculate iε . Here, the maximum and minimum for a certain 
objective function are obtained from the archive population, 
because the algorithm thinks that individuals in archive are 
optimal, although they are just temporary optimals. As the 
evolution progresses, the maximum and minimum of a cer-
tain objective function may change, so that we can adjust the 

iε  through the changing of its range, thereby adjusting the 
location of individual mapped to the grid. 

Algorithm 1 shows the procedure of our algorithm update 
archive population. When a new offspring is generated, we 
use (8) to calculate its identity array Ba. Obviously, if Ba[i] 
<0, the minimum of ith objective will change and the off-
spring is out of the original grid. And then, we should adjust 
the grid to accommodate it. However, to avoid adjusting gird 
too frequently, we just regenerate grid when Ba[i] < 3, and 
then readjust the position of each individual in the grid. 

4. SIMULATION RESULT 

In this section, we present some benchmark functions and 
then conduct some simulations to verify the convergence and 
diversity of our algorithm. What’s more, we also analyze the 
results. 

4.1. Test Case 

In order to test the Pareto front of the multi-objective 
problems with various features, for instance convex, concave, 
discrete, uniform distribution, we have adopted some stand-
ard test functions below: 

Case 1: 
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In ZDT1, the size of decision vector n is 30, for each var-
iable

  
x

i
![0,1]  , it has a convex Pareto optimal front. 

Case 2: 

  

ZDT 2      

f
1
(x) = x

1

f
2
(x) = g(x)[1! (1! (x

1
) / g(x))2]

g(x) = 1+ 9( x
i

n=2

n

" ) / (n!1)

#

$

%
%%

&

%
%
%

 

In ZDT2, the size of decision maker n is 30, for each var-
iable 

  
x

i
![0,1] , it has a concave Pareto optimal front. 
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Case 3: 
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In ZDT3, the size of decision maker n is 30, for each varia-
ble

  
x

i
![0,1] , its Pareto optimal front is discrete and concave. 

Case 4: 
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In ZDT6, the size of decision maker n is 10, for each var-
iable 

  
x

i
![0,1] , it has a concave non-uniform distribution of 

Pareto optimal front. 
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In ZDT6, the size of decision maker n is 12, for each var-
iable 

  
x

i
![0,1] , it is a three objective optimization problem. 

4.2. Evaluation Indicators 

(1) Convergence γ , denotes as . It was proposed by Van 
Veldhuizen and Lamont in 1998, used to represent approxi-

mation degree of the obtained optimal set Q and the real Pa-
reto front PF, which is calculated as follows: 

  

! = d
i
/ (| Q |)
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Where 
 
d

i
 means the smallest Euclidean distance be-

tween individual i in Q and individuals in PF, the smaller the 
value of γ , the better the algorithm performs. It’s one of 
principle indicators. 

(2) Δmetric. Deb etc., proposed the indicator in 2002, 
which is used to evaluate the distribution along the Pareto 
front, its formula is described as follows: 
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In the formula above, 
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means the Euclidean distance 

between two neighboring individuals in Q, −
d is the average  
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l
 represents the distance between the 

boundary solutions of Q and Pareto front which are mainly 
used in evaluating bi-objective optimization problem. The 
smaller theΔ value, the better the algorithm performs, espe-
cially when 

−
d = id ,Δ =0, at this time the solution obtained 

by this algorithm is distributed uniformly along the Pareto 
front. 

However, this indicator has shown defects through analy-
sis. For instance, it is mainly used to evaluate bi-objective 
optimization which has limitation to a certain extent. What’s 
more, if there are only two boundary solutions in Q, at this 
time, Δ = 0, but it doesn’t mean the algorithm is good. This 
indicator prefers to evaluate uniformity rather than distribu-
tion. Nevertheless, it is a valid indicator to evaluate perfor-
mance of most algorithms. 

Table 1. Comparison of convergence of each algorithm in five benchmark functions (bestsolutionifbolded). 

Algorithm ZDT1 ZDT2 ZDT3 ZDT6 DTLZ1 

NSGA-II 0.000894 0.000824 0.043411 7.80680 3.75997 

INSGA-II 0.00057 0.00027 0.00330   

SPEA2 0.023285 0.16762 0.18409 0.23255 3.235731 

AEPSO 0.00100 0.00078 0.00462   

DEMO 0.00554 0.14345 0.07951 0.57403 0.06361 

NPCA* 0.000236 0.0004428 0.000231 0.001752 0.004036 

PBFO 0.0170 0.0058 0.0058 0.0014 NA 

ε-DEMO 0.00476 0.01682 0.0086 0.61489 0.02364 

Paε-ODEMO 0.000187 0.000195 0.000226 0.001237 0.001911 
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4.3. Experiment Results and Analysis 

The experiment is based on VC++6.0 platform, each al-
gorithm runs 20 times independently, and then computes its 
average. In this algorithm, evolution parameters are set as 
follows: the size of population NP=100, the max fitness 
evaluations Maxeval=25000, scale factor F=0.5, selection 
control parameter λ=0.1, the index of orthogonal design J=2. 
For ZDT1, ZDT2, ZDT3, Q=29; for ZDT6 and DTLZ1, 
Q=21, the size of archive size NF=100 and crossover proba-
bility CR=0.9. In this paper, Paε-ODEMO is compared with 
several other state-of-the-art evolution algorithms: NSGA-II, 
SPEA2, INSGA-II [19], AEPSO [20], NPCA* [21], PBFO 
[22], DEMO [23], ε-DEMO [24], to verify its performance. 

Seen from Table 1, the Paε-ODEMO does well in con-
vergence. It has the best convergence value in all test cases. 
On ZDT6 and DTLZ1, NSGA-II and SPEA2 are inclined to  
 

local Pareto front. NSGA-II uses crowd distance to sort pop-
ulations, while INSGA-II is based on a loop crowd distance 
concept which improves the convergence compared to 
NSGA-II. DEMO performs badly in convergence, but its 
convergence improves obviously after adopting εdominance 
method. Nevertheless, its performance in convergence is far 
from that of Paε-ODEMO in all cases. The experimental 
results show that the algorithm can approach the true Pareto 
front well. 

Seen from Table 2, the algorithm also achieves good re-
sult in diversity. On ZDT1, it ranks only second only to 
INSGA-II and on DTLZ1, its result is intermediate. Apart 
from this, the algorithm performs best in the rest cases. In 
aspect of maintaining diversity, equal intervals grid is adopt-
ed in our algorithm which makes sure that the distance of 
any two neighbor points is fixed in a small range. As a result,  
  

Table 2. Comparison of diversity of each algorithm in five benchmark functions (bestsolutionifbolded). 

Algorithm ZDT1 ZDT2  ZDT3  ZDT6  DTLZ1 

NSGA-II  0.463293 0.435112 0.575606 0.644477  0.95023 

INSGA-II 0.24073 0.40057 0.56963   

SPEA2  0.472254 0.473808  0.606826 0.670549 0.8507665 

AEPSO 0.55743 0.51901 0.55182   

DEMO  0.33648  0.68299  0.70669 0.8625  0.46383 

NPCA* 0.402266 0.511157 0.580019 0.463253 NA 

ε-DEMO 0.32187  0.36593  0.48575  0.51863 0.43465 

Paε- ODEMO 0.288694 0.304138 0.484418 0.248236  0.520197 

 

 

Fig. (1). Search trace to minimize 30-D ZDT1,it can get two boundary solutions easily. 
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Fig. (2). Search trace to minimize 30-D ZDT2,it can get two boundary solutions easily. 

 
Fig. (3). Search trace to minimize 30-D ZDT3,it is discrete. 

 

Fig. (4). Search trace to minimize 10-D ZDT6. 
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Fig. (5). Search trace to minimize 12-D DTLZ1,it is a three objective optimization problem. 
 

all non-dominance solutions are scattered uniformly along 
the Pareto front. However, for some discontinuous problems, 
for example ZDT3, it decomposes the solution space into 
several parts, at this time, the equal interval grid can just 
make sure a good distribution in its continuous part. To this 
end, if the algorithm enlarges its ε value, it will result in a 
smaller value. Experiments show that if doubling the ε value, 
it can reach to 0.4. Obviously, the algorithm achieves a good 
result both in convergence and diversity. However, Zitzler 
etc. [25] point out that an algorithm’s performance can’t just 
be evaluated by numeric indicator. Therefore, in this paper, 
Figs. (1-5) of solutions run on the Matlab platform are 
shown to give a visual representation. Figs. (1-5) show the 
result of Paε-ODEMO run for once. 

CONCLUSION 

An adaptive ε dominance based orthogonal differential 
evolution algorithm for multi-objective optimization is pro-
posed in this paper. The main improvement of this new ap-
proach is that it introduces an adaptive ε dominance method 
to update the archive population which can maintain the di-
versity and distribution of population in an adaptive way.  

Experiments on five benchmark functions and compari-
son with several classical algorithm, such as NSGA-II, 
SPEA2, INSGA-II, AEPSO, NPCA and ε-DEMO indicate 
that the new algorithm Paε-ODEMO does well in both con-
vergence and diversity. What’s more, it’s robust. However, 
seen from the figures above, it is obvious when the slop of 
tangent tends to 0 or 1, the points are few and scattered. Our 
later work will be devoted to adjusting the density of εgrid 
adaptively, that is to say, when the slop of tangent tends to 0 
or 1, the value of ε is small which is expressed as a higher 
density of grid while the ε grid will be few and scattered at 
other parts. 
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