
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Automation and Control Systems Journal, 2015, 7, 353-357 353

 1874-4443/15 2015 Bentham Open

Open Access
Design of a Python-Based Wireless Network Optimization and Testing
System

Hongxue Yang*

Beijing Polytechnic, Beijing, 100176, P.R. China

Abstract: As an object-oriented dynamic scripting language, Python has been widely applied in scientific computation,
image processing and network communication fields, etc. However, there is no enough attention paid to it in automated
test. A Python-based client/server auto-dial testing mode, which is successfully applied in actual wireless network optimi-
zation testing, is introduced. The actual application shows that this mode brings flexible and high-efficiency features of
Python programming into full play and significantly improves the efficiency of testing system.

Keywords: Automated testing, Python technology, Wireless network.

1. INTRODUCTION

Developing from 3G to 4G is the trend of communication
industry, and large-scale construction of CMCC’s TD-LTE
base station and other network equipment has already begun.
According to the calculations, investment put by CMCC in
4GLTE base station equipment has increased from 4.65 bil-
lion yuan in 2012 to 27.5 billion yuan in 2013. With success-
ful development of TD-LTE, the communication technolo-
gies which are dominant in China, will be developed and
evolved continuously [1]. In addition, the large-scale con-
struction of TD wireless network contributes to the increas-
ing demand on the auto-dial testing software corresponding
with it. A method for design and realization of this Python-
based wireless network automated testing system is present-
ed in this paper. The application shows that this kind of
structure may bring into full play the flexible simple Python
programming and high VC implementation efficiency fea-
tures, improve the testing efficiency markedly and save the
manpower cost.

2. CHARACTERISTICS OF PYTHON LANGUAGE

The predominant characteristic of Python lies in rapid
development function. Compared with any other program-
ming languages, Python enables software designers to pay
more attention to the problem itself, rather than implementa-
tion of details. Its main features are listed as follows:

(1) Object-oriented: Python supports both process-
oriented and object-oriented programming. In the “process-
oriented [2]” language, the program is constructed by either
processes or only functions of reusable codes. However, in
the “object-oriented” language, the program is constructed
by objects which are composed of both data and functions.

*Address correspondence to this author at the College of Telecommunica-
tion Engineering, Beijing Polytechnic, Beijing Chaoyang District Road No.
2,100016, P.R. China; Tel: +86 10 13641042169; Fax: +86 10 64316740;
E-mail: yhxzxb@sina.com

(2) Expandability: if you want to run a section of key
code faster or keep some algorithms private, write part of
programs with C or C++ and then apply them in Python pro-
gram.

(3) Embeddability: Python can be embedded into a
C/C++ program to provide scripting features for program
users. Fast speed: running speed is very fast as the underlay
of Python and most of standard libraries and the third-party
libraries are all written with C programming language.

(4) Transferability: owning to its nature of open sourcing,
Python has been transferred to various platforms [3].

(5) Interpretability: inside the computer, Python inter-
preter converts the source code into an intermediate form of
byte code and then interprets and runs it in the form of ma-
chine language that can be identified by the computer, which
makes Python simpler and easier to be transferred.

In wireless network auto-dial testing system, just like
building blocks, the testers can write scripts by means of
Python interface functions of open test service, and flexible
configuration of test service can be realized with a limited
programming knowledge.

3. APPLICATION OF PYTHON TECHNOLOGY IN
WIRELESS NETWORK AUTOMATED TESTING
SYSTEM

3.1. System Structure

The system consists of two major parts: CMP (Central
Management Platform) and MSP (Mobile Server Probe), as
shown in Fig. (1).

Where, CMP software, mainly used as the client for us-
ers, incorporates monitoring and management of terminal
status, analyzing, compiling and executing of Python scripts,
and centralized display of terminal data and network testing
information, etc. As shown in Fig. (2), the MSP software
takes charge of communication with CMP, real service exe-

354 The Open Automation and Control Systems Journal, 2015, Volume 7 Hongxue Yang

cution of control terminal, automatic identification of termi-
nals provided by different manufacturers and acquisition of
terminal information, etc.

3.2. Design of Python-Based Auto-dial Testing Operation
Mode

For purpose of convenient expansion and flexibility in use
of auto-dial testing system, Python scripting language is now
introduced and serves as the writing and running space for use
cases. In order to ensure that testers will not be affected by in-

troduction of Python scripts, client/server operation mode is
adopted between the testing script and the auto-dial testing sys-
tem. The auto-dial testing system serves as a server while the
scripts constitute the client. A UDP interface is added in Python
operand, in order to execute the function to send corresponding
control commands to PythonSERVER; it is necessary to add a
PythonSERVER to the auto-dial testing system side and com-
plete corresponding sorting and abstraction of original ATP
functions, so as to form an API interface and make preparations
for calling of scripts (as shown in Fig. 3).

Fig. (1). Overall System Framework Diagram.

Fig. (2). Function Block Diagram of CMP and MSP.

Design of a Python-based Wireless Network Optimization The Open Automation and Control Systems Journal, 2015, Volume 7 355

Python client completes interpretation and assembly of vari-
ous commands sent by use cases and handles various responses
of PythonServer. When designing client, take thin client as the
principle, and attach importance to process (rather than pro-
cessing) during use of client.

PythonServer completes interpretation and assembly of
various commands sent by the client and handles various
responses from Python client. When designing Server side,
abstraction and induction of basic functions shall be en-
hanced, so as to ensure that codes can be kept at certain scale
and will not be extended when functions of auto-dial system
are expanded continuously.

In order to ensure smooth execution of control process
between the client and the server and clear consistency in
user usage, it is agreed as follows:

(1) UDP communication is adopted between the client
and the server and all contents of communications are writ-

ten by plaintext character strings, in order to facilitate usage
and testing;

(2) A request/response mode is adopted in communica-
tion mechanism; the time required for response of requests
shall not be longer than human reaction time and the re-
sponse shall be accompanied with results for the commands
whose results can be obtained immediately. For example, for
PS service requests under normal circumstances, the com-
mands whose response results cannot be obtained immedi-
ately can be divided into different processes, in order to en-
sure real-time performance of response.

3.3. Design of Python Interface of Auto-dial Testing Sys-
tem

Network data acquisition interface, terminal information
acquisition interface, service testing and terminal control
interface are Python scripting interfaces. Design of key inter-
faces is described in Table 1.

Fig. (3). Operation mode of auto-dial testing system’s client/server.

Table 1. Design of auto-dial testing system’s Python interface.

Interface Name Function Description Parameter Description

MultiAdtOpenCom(Adt_Id，nPort，strType) Open COM port
[Adt_Id, Id number of MSP], [nPort, port of number], [strType, type of

UE]

MultiAdtCloseCom(Adt_Id，nPort) Close COM port [Adt_Id, Id number of MSP], [nPort, port number]

MultiAdtDialConnect(Adt_Id，strNumber，
strConnectName，nPort，strUeType)

Connect to a network
[Adt_Id, Id number of MSP], [strConnectName, name of network

card],[nPort, opened port], [strType, type of UE]

MultiAdtDisConnect(Adt_Id，
strDisConnectName，nport，strUeType)

Disconnect from net-
work

[Adt_Id, Id number of MSP], [strConnectName, name of network card]

MultiAdtDownLoad(Adt_Id，strIP，strUseId，
strPassword，strDownLoadFileName，

strInterFaceName，strUeType)
Download service

[Adt_Id，id number of MSP]， [strIP，FTP Server IP] [strUseId，FTP
ServerName][strPassword，FTP Server password] [strDownLoadFile-

Name，DownLoadFileName] [strInterFaceName，InterFaceName]
[strType，UeType]

MultiAdtUpLoad(Adt_Id，strIP，strUseId，
strPassword，strUpLoadFileName，

strInterFaceName，strUeType)
Upload service

[Adt_Id，id number of MSP][strIP，FTP Server IP][strUseId，FTP
ServerName][strPassword，FTP Server password]

[strUpLoadFileName，UpLoadFileName]

[strInterFaceName，InterFaceName][strType，UeType]

MultiAdtAddRouteMetric(Adt_Id Add routing table [Adt_Id, id number of MSP]

ATPCommand(CommandName，*Parameter) General client interface [CommandName, name of commands][Parameter, parameters]

SendData(strData)
Send data and receive

response
[strData, data content]

356 The Open Automation and Control Systems Journal, 2015, Volume 7 Hongxue Yang

3.4. Python Script Processing Flow

Testers write the testing scripts with Python script editor
or graphic interface script editor provided by CMP [4]. After
writing of Python scripts is completed, CMP software loads
the use cases and activates the executing processes to ana-
lyze Python scripts, as shown in Fig. (4).

Control module, communication module, service module,
Python module and test results generation module would be
involved in execution of typical testing tasks.

Taking the typical download service as an example, con-
trol module activates Python editor to execute scripts and the
script command message is sent to communication module
in the form of UDP after Python scripts have been down-
loaded to MSP. Being in real-time monitoring state, the
communication module will notify Python interface module
to analyze the received UDP messages. Then, the Python
interface module figures out the type of service to be execut-

ed and sends it to the control module. The control module
will activate the thread and calls the service module to be
tested. The service module executes specific services and
records desired testing results in a real-time way. After the
service execution is completed, return to the control module
and exit the thread. In this way, a new thread will be activat-
ed to execute corresponding testing tasks every time differ-
ent messages are received. After Python interface module
has resolved scripting finalization message, control module
closes testing results file and be ready to execute test report
uploading process.

4. SYSTEM PERFORMANCE TEST

After the Python-based LTE automatic testing system is
applied, the number of newly increased testing use cases in
testing of wireless network decreases from the original 1,442
to 89 (as shown in Fig. 5) and the time spent in testing a use

Fig. (4). Python script processing flow.

Fig. (5). Trend of newly increased use cases.

Design of a Python-based Wireless Network Optimization The Open Automation and Control Systems Journal, 2015, Volume 7 357

case suite on a regression ergodicity basis decreases from 30
days (manual test) to 12 hours now. Moreover, the number
of lines of script codes written by the testers decreases from
the original highest 28,525 to 5,460 as shown in Fig. (6).

CONCLUSION

Wireless network testing is complex and characterized by
multiple scenarios and scattered indicators. As a scripting
language for automatic testing, Python is simple and flexible
and testers are enabled to expand their own test cases arbi-
trarily. Only a few simple functions need to be called with-
out paying attention to the specific service flow. The wire-
less network automatic testing system as described in this
paper is based on the scripts written with Python language
and thus improves the testing efficiency greatly.

CONFLICT OF INTEREST

The author confirms that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES
[1] l. Ferrigno, A. Pietrosanto, and V. Paciello, A Bluetooth- based

proposal of instrument wireless interface”, IEEE Transactions on
Instrumentation and Measurement, vol. 54, no. 1, pp. 163-170,
Dec. 2005.

[2] H. Shim, I. Joe, and J. Lee, "SMS spam filtering system using
SVM", RNIS, vol. 7, pp. 5-6, 2011.

[3] J. Luo, and M. H. Yang, "An e-mail authentication and disposable
addressing scheme for filtering spam", Journal of Cases on Infor-
mation Technology, vol. 6, no. 2, pp. 161-171, 2011.

[4] Y. Wang, and J. Cai, “Research and implementation of API test-
based distributed test framework”, Computer Engineering and De-
sign, vol. 68, pp. 1299-1301, Jan. 2008.

Received: December 15, 2014 Revised: January 04, 2015 Accepted: February 25, 2015

© Hongxue Yang; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

Fig. (6). Trend of lines of script code.

