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Abstract: In this paper, we present new definitions of stability of singular systems with delay based on the works of 
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1. INTRODUCTION 

 From a modeling point of view, it is perhaps more 
realistic to model a phenomenon by a singular such as de-
scriptor systems, semi-state space systems, and differential-
algebraic systems, use of which arise frequently in many 
fields such as optimal control problems, electrical circuits, 
neutral network, and some population growth models. 
Some applicable example and basic results can be found in 
[1, 2]. 

Singular systems correspond to normal systems. They 
have both internal logic and essential difference. But the 
study of singular systems had mostly referred to the given 
normal systems theories, which had been generalized and 
transplanted into singular systems so far. The methods of 
study for singular system are mostly geometric approach, 
frequency domain method and state-space techniques. And 
people still have different views related to the questions of 
singular systems, thus the research achievement of singular 
systems appears extremely fragmentary. The stability and 
asymptomatical stability still haven't have uniform distinct 
definitions, thus there exists confusions for some concepts as 
well as inconsistencies between the concept and the theorem. 
The consistency of the initial conditions still has two differ-
ent views. On the other hand, there often happen impulses 
and jumps in the solutions. So, the existence and uniqueness 
of solutions in singular systems haven't been resolved, be-
cause the complexity of singular systems and their stability 
haven't achieved mutual recognition. Therefore, the research 
for singular systems not only has a widespread practical sig-
nificance, but also its theoretical value has broad prospects 
for development. 

As one of the major research subjects in nonlinear singu-
lar systems, the problem of stability attracts many research-
ers attention, for example [3-5] discussed the stability of 
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singular systems. Since delay often occurs in singular sys-
tems such as discussed [6], therefore the research on stability 
of nonlinear singular systems with delay is given much im-
portance in practice and theory. However, few studies have 
been done on the stability of nonlinear singular systems with 
delay. Therefore, in this paper we concentrate on this. The 
discussion on stability of singular systems, compared with 
that of nonsingular systems, came up with three main new 
difficulties: the first is that it isn't easy to satisfy the exist-
ence and uniqueness of solutions, since the initial conditions 
may not be consistent; the second is that it is difficult to cal-
culate the derivatives of Lyapunov functions; the third is that 
there often happen impulses and jumps in the solutions. In 
order to overcome these difficulties, this paper presents new 
definitions of stability of nonlinear singular systems with 
delay based on the previous studies by [7, 8]. Furthermore, 
the stability theorem of solutions for the following nonlinear 
singular systems with delay has been established:  
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where A  is an n n×  constant singular matrix, and  B ,  C  
are  n! n  constant matrices. 0τ > ,  

  
f (t,! )"C([0,+#)$C([%& ,0], Rn ), Rn ) ,  

  
f (t,0) = 0 , for any 

  
t ! t

0
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x
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0
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of (1), where 
  
! "C([#$ ,0], R
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2. PRELIMINARIES  

In this paper, we assume that the solution of initial value 
problems for system (1) exists which is called non-
perturbation solution, written as 0( , , )ux t t ϕ , sometimes 
( )ux t  for short. 

At first, we introduce the following notations: 
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Definition 2.2 1) If 0( , , )ux t t ϕ  is stable in { ( , ), }kq t x T , 
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Remarks 

1. 
 
t

k
 may take +! , also it is possible to take a limited 

number; so, the application scope of stable concept expands. 

 

 

2. It is difficult to calculate the derivatives of Lyapunov 
functions. We introduced 

  
q(t,x)  to avoid the difficulty. 

3. In the above notations, the initial condition is con-
sistent and the existence of solution is satisfied in 0[ , )kt t . But 
it is not required that the uniqueness of solution is satisfied, 
this is different for the nonsingular systems. It is however, 
difficult to satisfy the uniqueness of solution for singular 
systems. 

4. If 
  
q(t,x) = x , 

 
t

k
= +!  and 

  
S

k
(t

0
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k
) = C([!" ,0], R

n ) , 
then the above definitions become the definitions of Lya-
punov stability of traditional significance. 

5. If A  in (1) is a symmetric matrix, then we take 
(( , ) Tq t x x Ax= , otherwise, we take 

(( , ) ( )T Tq t x x A H t Ax=   

where ( )H t  is a matrix function. 

3. MAIN RESULT 

Now we propose theorem on the stability of solutions to 
(1) by using the Lyapunov function. 

Theorem 1 Suppose that there exist two K -class wedge 
functions 1Φ , 2Φ  and continuous V  function: 

  
V (t,q(t,x)) : J ! R

n
" R

+ ,  V (t,q(t,x))# $C (J ! R
n ) , 

such that 

i) 1 0( ( , ) ( , ( , , )) )uq t x q t x t t ϕΦ −‖ ‖  

2 0 0( , ( , )) ( ( , , ) ), [ , );u kV t q t x x x t t t t tϕ≤ ≤Φ − ∀ ∈‖ ‖  

ii) 
   
!" #S

k
(t

0
,t

k
),  !V (t,q(t,x(t,t

0
," ))) $ 0  

Then 
  
x

u
(t,t

0
,! )  is uniformly stable in 

  
{q(t,x),T

k
}. 

Proof For 
  
t
0
![0,t

k
) ,  !" > 0 , there exists 

 
! (" ) > 0 , 

which is only related to ε , such that 
  
!" #B($ ,% ) ,

2 2 1( ) ( ) ( )ψ ϕ δ εΦ − <Φ ≤Φ‖ ‖ . 

1 0

0 0 0 0 0

2 0 0 0 0

2 1

( ( , ) ( , ( , , )) )
( , ( , ( , , ))) ( , ( , ( , , )))
( ( , , ) ( , , ) )
( ) ( ).

u

u

u

q t x q t x t t
V t q t x t t V t q t x t t

x t t x t t

ϕ
ψ ϕ

ψ ϕ
ψ ϕ ε

Φ −
≤ ≤
≤ Φ −
=Φ − <Φ

‖ ‖

‖ ‖

‖ ‖

 

Thus 0( , ) ( , ( , , ))uq t x q t x t t ϕ ε− <‖ ‖ ,
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Theorem 2 Suppose that there exist two  K -class wedge 
functions
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Now that we discussed the stability of solutions for non-
linear singular systems with delay by using Theorem 1 
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Theorem 3: For initial value problems (2), if matrix 
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21 21( , ( )) (( ), ( )) .B q t x t C q t x tτ τ ε+ − − <‖ ‖ ‖ ‖  (9) 

And we also have 

2 2

0 0 0

( ) ( ) ,    
[ , ) [ , ).

u

k

X t X t
t t t t t

τ τ ψ ϕ δ ε
τ

− − − ≤ − < <
∀ ∈ + ∩
‖ ‖‖ ‖

 

So from (8) and (9), we have  

2 2 22( ) ( )uX t X t Cε ε− ≤ +‖ ‖ ‖ ‖ . 

Suppose that for 
  
!t "[t

0
+ (l #1)$ ,t

0
+ l$ ]%[t

0
,t

k
) , then 

2 2 22 22( ) ( ) ... .l
uX t X t C Cε ε ε− ≤ + + +‖ ‖ ‖ ‖ ‖ ‖  

Thus when  

  
t ![t

0
+ l" ,t

0
+ (l +1)" ]#[t

0
,t

k
) , 

and 

  
t !" #[t

0
+ (l !1)" ,t

0
+ l" ]$[t

0
,t

k
) , 

by inductive supposition and (8), (9), we get that: 

2 2

22 2 2
1

22 22

( ) ( )
( ) ( )

... .

u

u
l

X t X t
C X t X t
C C

ε τ τ
ε ε ε−

−
≤ + − − −

≤ + + +

‖ ‖

‖ ‖‖ ‖

‖ ‖ ‖ ‖

 

If 22 1C <‖ ‖ , from induction, 
  
!t "[t

0
,t

k
)  

2 2

22 22

22

( ) ( )

... ...

.
1

u
l

X t X t
C C

C

ε ε ε
ε

−

≤ + + + +

≤
−

‖ ‖

‖ ‖ ‖ ‖

‖ ‖  

(10) 

Thus 

1 1 2 2

2 2

( ) ( )
( ) ( ) ( ) ( )

( , ( )) ( , ( )) ( ) ( )

u

u u

u u

x t x t
X t X t X t X t

q t x t q t x t X t X t

−
≤ − + −

= − + −

‖ ‖

‖ ‖ ‖ ‖

‖ ‖‖ ‖.  

(11) 

from (10), (11) and 
  
x

u
(t,t

0
,! )  is uniformly stable in 

  
{q(t,x),T

k
} and  

22

( ) ( )
1ux t x t

C
εε− ≤ +

−
‖ ‖

‖ ‖
.  

Therefore, we see that if 22 1C <‖ ‖ , 0( , , )ux t t ϕ  is uni-
formly stable in { , }kx T . The proof is completed. 

 

 

 

EXAMPLE 

Example 3.3 Let us discuss the following nonlinear sin-
gular system with delay 

  

X
1

˙

(t) =
!1 0

0 1

"

#$
%

&'
X

1
(t)+

1 0

0 2

"

#$
%

&'
X

2
(t)

          +
1 1

0 2

"

#$
%

&'
X

1
(t !( )

1 0

0 1

"

#$
%

&'
X

2
(t !( )+ 3(t !( )

  0 =
1 0

0 1

"

#$
%

&'
X

1
(t)+ X

2
(t)+

1 1

0 1

"

#$
%

&'
X

1
(t !( )  

      +

1 0

0
1

2

"

#

$
$
$

%

&

'
'
'

X
2
(t !( )+ (t !( )3    

)

*

+
+
+
+
+
++

,

+
+
+
+
+
+
+  

(12) 

The initial condition of system (10) is 

  
x

t
0

= ! ,    ! "C([#$ ,0], R
6 ),    t

0
% 0.   (13) 

Where 

11

1 0
0 1

B
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 12

1 0
0 2

B ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 21

1 0
0 1

B ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 11

1 1
0 2

C ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 

12

1 0
0 1

C ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 21

1 1
0 1

C ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 22

1 0
10
2

C
⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠

.  

the matrix 

11 12 21 12 12 22

11 12 21

12 12 22

( ) 0 0
( ) 0 0

4 0 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

T

T

C B C C B C
C B C
C B C

U − −⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−⎝ ⎠

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

 

is semi-negative definite, and 22
1 1
2

C = <‖ ‖ . By Theorem 

3, 
  
x

u
(t,t

0
,! )  is uniformly stable in 

  
{x(t)! x

u
(t),[0,+")} . 

CONCLUSION 

It is difficult to discuss the stability of nonlinear singular 
systems with delay, because of impulse and delay. In this 
paper, the stability is considered by using new definitions 
and Lyapunov function. Some stable criteria are  
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proposed. These criteria are algebraic that’s why they are 
convenient to use. Using these criteria the stable problem for 
a class of nonlinear singular systems with delay can be 
solved easily. Moreover, further studies on stability of solu-
tion for nonlinear singular systems with delay will be sum-
marized in our next study. 
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