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Abstract: A method for the setting and evaluation of TCAS (Traffic Alert and Collision Avoidance System) alerting 
threshold is proposed in this paper. Firstly, by analyzing the error and uncertainty of the flight path, a stochastic differen-
tial equation is introduced to model the random aircraft motion. Then a pilot model according to ICAO standards is given 
to simulate the TCAS alert event. And then five kinds of alarm outputs are summed up by analyzing the principle of 
TCAS alerting function. Finally, the evaluation system with multiple variables is established on System Operating Char-
acteristic (SOC) curve. The validation of the Encounter model is performed under different parameters. Through the simu-
lation under different threshold values, the optimal alerting threshold values are obtained. The experiments show the ra-
tionality of the TCAS threshold and verify the validity of our threshold-setting method. 
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1. INTRODUCTION 

Currently, air traffic collision avoidance system mainly 
includes Air Traffic Control system (ATC) based on the 
ground radar equipments and autonomous airborne Traffic 
Alert and Collision Avoidance System (TCAS). Different 
from ATC for the long distance conflict detection, TCAS 
focuses on the short-term conflict detection. TCAS can pro-
vide Traffic Advisory (TA) and Result Advisory (RA) de-
pending on the circumstances surrounding the aircraft in 
order to avoid the collision of aircrafts and ensure the avia-
tion safety. TA gives the traffic situation to the pilots for 
reference and does not force them to take some actions. 
While RA gives “Climb” or “Descend” instructions, and 
force the pilots to take evasive actions according to the in-
structions.  

The existing conflict detection of TCAS is based on the 
deterministic model which uses the remaining safe time τ  
as the alarming measure. !  is defined as estimated time 
when two airplanes meet at the closest point of ap-
proach( CPA), which unit is second. The horizontal τ  
equals to the horizontal distance between the two airplanes 
divided by the horizontal approaching velocity. The vertical 
τ  is with respect to vertical distance and velocity. Only 
when both the horizontal and vertical approaching times are 
reached at the threshold ! , TCAS will give the correspond-
ing TA or RA alarm [1]. Herein we discuss the RA warning 
alarm. 
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Many researchers have studied on the conflict detection 
algorithms of TCAS. Kuchar and Lee Y [2, 3] made much 
statistical analysis on a large number of simulation data and 
gave the safety assessment of the TCAS versions 
(TCAS6.04a, TCAS7.0, and TCAS7.1). Hu Jianghai, Maria 
Prandini and John Lygeros [4, 5] focused on the long dis-
tance conflict detection algorithms of ATC, including the 
flight path modelling based on Markov chain and hazard 
detection used on Brownian motion. In recent years, 
Kochenderfer conducted the extensive research on the 
TCAS. They built the encounter model of TCAS based on 
Bayesian network [6], and analyzed the collision probability 
[7]. They introduced the uncertainty of the flight into the 
collision model [8] which effectively improved the flight 
safety. Kwok-On Tong made the in-depth study [9] on the 
parallel approaching of TCAS. Selim Temizery [10], Evan 
Maki [11], Hyunjin Choi [12], Lin, C.E. [13] focused on the 
modeling and conflict detection for UAV. Cui Deguang [14], 
Lin Yunsong [15, 16] and Feng Ziliang [17] proposed a vari-
ety of conflict detection methods and collision avoidance 
model based on geometric theory for ATC and TCAS. 

The work presented in this paper includes the following 
contents. Based on the analysis of TCAS alert deterministic 
algorithm, we consider the uncertainty of the flight path and 
the pilot’s reaction to build the avoidance model. Then we 
simulate the TCAS alerting events to get the optimal thresh-
old. 

2. MODELING OF TCAS ALERTING EVENTS  

In this section we first analyze the error of the flight path 
together with the uncertainty of the flight path. Comprehen-
sively considering the uncertainty, we use difference equa-
tion and proper parameters of the transfer matrix to build the  
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random flight path generating model, which is approximately 
practical and required by the simulation. Based on the model, 
we take the reaction delay of the pilot into account and build 
the after-alert avoidance model based on the standard opera-
tion, and then we take advantage of the random path generat-
ing model and the avoidance model to simulate the TCAS 
alerting.  

In a TCAS alerting simulation, we first extrapolate the 
path according to the current state of the aircraft and the ran-
dom path generating model. If there are conflicts between 
paths, and the estimated conflict time reaches the safe time 
τ  of TCAS, the alert is given. After the alert, we simulate 
the avoidance of the aircraft according to the after-alert 
avoidance model, and compare the avoidance path with the 
former. If the avoidance path still has confliction, a collision 
accident might happen, and vice versa. 

2.1. Analysis of Flight Path’ Error 

When an airplane is flying, it is affected by aircraft per-
formance parameters, flight intentions, flight plan and spatial 
environment. So the flight path is uncertainty. In short-term 
path forecast, spatial environment is the main factor, includ-
ing wind, temperature, and cloud. Theoretically, according to 
the central limit theorem, a variable composed by a large 
number of small and independent random factors can be 
considered as a normal distribution. Erzberger [18] made 
experiments to verify this point through analyzing more than 
4000 real airplane’s path datum. 

Fig. (1) shows the coordinate diagram of the flight path. 
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2.2 Random Trajectory Generating Model Based on 
Gaussian Difference Equation 

Discreting the continuous trajectory with sampling cycle 
1 second, we build the difference equation. With proper pa-
rameters, the equation can generate the trajectory that ap-
proximately satisfies the actual error rules. 
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The position variance matrix of the aircraft in the world 
coordinate is: 

  
V (t) = R(! )V (t)R(! )T

 (6) 

We describe the path of the aircraft using random differ-
ence equation: 

   
!! (t) = A! (t)+"(t)  (7) 
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Fig. (1). Coordinate of flight path. 
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A is the transfer matrix of the difference matrix, and is 
time-invariant. 

  
!(t)  represents the random perturbation of 

the flight path in the flight path coordinate 
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veals the uncertainty of the difference equation. Let 
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the initial position coordinate of the aircraft in the flight path 
coordinate. 
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Because the initial position of the aircraft is not revelant 
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We can see that the random path generating model uses 
Gaussian difference equation to describe and generate the 
path, and Gaussian distribution represents the uncertainty of 
the path. 

(11), (12) and (1), (2) are approximately the same, which 
indicates that the path generated by the model is close to the 
practical situation. 

2.3. Model of the Avoidance Process  

After the TCAS warning is given out, the avoidance pro-
cess can be divided into three phases: delay stage, pull-up 
stage, and steady climbing stage. The first stage is deter-
mined by the pilot's delay time delayt . And the uncertainty of 

delayt  can be described by the random probability models. 
Through a lot of statistic analysis based on the actual datum, 
the gamma distribution could be approximately used as the 
models of delayt  [2, 6].  

 

In the pull-up and steady climbing stages, the models 
should be in accordance with the avoidance actions recom-
mended by ICAO (International Civil Aviation Organiza-
tion ). At first, the airplane will be pulled up with accelera-
tion of 0.25g till the vertical speed attains 1500ft/min, then 
keep the vertical speed and enter into the last stage. Only 
when the vertical distance between two airplane reaches to 
600Ft, no alarm of TCAS will be sent out.  

During the avoidance process, assume that the two con-
flicting airplanes take cooperative actions. That means they 
take avoidance actions in the opposite vertical direction 
while holding their horizontal speed unchanged. Define 
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as the time used in the pull-up and steady climbing stage till 
no alarm is given out. So to successfully alarm, the safety 
threshold time !  should be bigger than the sum of 

 
t

delay  
and 
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avoid
.  

3. EVALUATION METHODS FOR TCAS SYSTEM  

Based on the deterministic analysis about TCAS alert, 
five alarm outputs can be summarized. System operating 
characteristic curve can be used to give an evaluation on 
TCAS warning system  

3.1. TCAS Output  

Consider the three factors, flight path state, an alert 
whether to be sent out and the effect of the alert, there are 
five outputs of TCAS system: 

(1)Insuccessful Alarm (IA): TCAS sends out a warning 
in a dangerous situation, but is too late to avoid the conflict.  

(2)Successful Alarm (SA): TCAS sends out a warning in 
a dangerous situation, and succeeds to avoid the conflict. 

(3) Missing Alarm (MA): TCAS doesn’t send out a warn-
ing in a dangerous situation.  

(4) Failure Alarm (FA): TCAS send out a warning in a 
safe situation. 

(5) Correct Depress (CD): TCAS doesn’t send out a 
warning in a safe situation 

TCAS system is ideal when in a dangerous situation 
TCAS sends out a warning and succeeds to avoid the conflict, 
and when in a safe situation TCAS doesn’t send out a warn-
ing. But in fact due to the uncertainty of the fight path and 
the pilot’ delay mentioned above, insuccessful and missing 
alarm still exit in a dangerous situation, and maybe there are 
failure alarms in a safe situation.  

 It is critical how to select the safety threshold time !  for 
TCAS. If !  is given too large, this can ensure the safety to 
some extent, but meantime lead to many failure alarms and 
influence the pilot greatly. If !  is given too small, failure 
alarm will be reduced effectively, but the polit’s delay and 
avoidance time (

 
t

delay  
and 

 
t

avoid
) may be close to or greater  
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than ! , which will increase the insuccessful Alarm. So the 
selection of !  needs to balance these two aspects.  

3.2. Evaluation Method Based on SOC(System Operating 
Characteristic) Curve  

As a typical alarm system, TCAS gives out the alert de-
pending on the current situation. When an alert is sent out, 
there are three possibilities mentioned above: Insuccessful 
Alarm(IA), Successful Alarm(SA) and Failure Alarm(FA). 
Let their probability as 

  
P(IA) , 

  
P(SA) ,

  
P(FA)  irrespectively. 

So we have 
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Define system benefits ( SB ) as: 
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As a reasonable alert system, it should be minimized 
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get the optimal  SB . We can use SOC method to obtain the 
threshold and ensure  SB  in the acceptable range. 

Fig. (2) shows the SOC method. Fig. (2a) calls as  PM

(Performance Metric) curve. The x-axis stands for the alert-
ing threshold, and the y-axis is the probability of accident. 
The upper is the accident probability curve without alerts, 
and the lower is the accident probability curve with alerts. 
Assume A, B and C are different alerting thresholds shown 
in Fig. (2a). A point corresponds to an earlier alert threshold, 
so 

  
P(SA)  is greater but 

  
P(FA)  is greater too. While B point 

corresponds to a later alert one, 
  
P(SA)  is smaller and 

  
P(FA)  is also smaller. So the system benefits ( SB ) of A 
and B are not ideal. We see C point lies between A and B, 

  
P(SA)  is relatively larger and meanwhile 
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which can maximize the system benefits ( SB ).  

With 
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the SOC(system operational performance) curve as shown in 
Fig. (2b). Any point on the SOC curve corresponds to an 
alarm threshold. So we can obtain satisfactory thresholds 
under different needs [2].  

4. EXPERIMENTS 
We conduct the Monte Carlo simulation according the 

random trajectory generating model based on the Gaussian 
difference equation, and get the accident rate curves under 
different initial conditions. The results are consistent with 
the expected solution, and verify the validity of the model. 
Based on the model, we set different alerting thresholds, and 
use Monte Carlo simulations of TCAS alerting by 10000 
times according to the pilot reaction model. Finally we get 
the accident rate and the false alart rate of TCAS under dif-
ferent thresholds, and evaluate the values using SOC method 

4.1. Experiments for Verifying the Trajectory Model 

In a collision accident, the two aircraft are in the same al-
titude level, and the dangerous zone can be defined as a cir-
cle with center of the aircraft itself and radius !  of accident 
threshold [16]. When the distance between the two aircraft is 
smaller than ! , we regard the situation as occurrence of 
NMAC. 

Suppose A is the native aircraft equipped with TCAS and 
B is the intruding aircraft. The collision initial condition in-
cludes the time 
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Fig. (3). Encounter model. 
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We set different initials of the collision model, conduct 
10000 Monte Carlo simulations and get the accident rate 
curve 

  
P(IA) . We refer to the analysis of the civil aviation 

trajectory by NASA Ames Research Center, and set the pa-
rameters of the random trajectory generating model !
=0.3nmi，

  
v

1
= 480kot ，

  
v

2
= 500kot . The accident rate 

curves under different 
 
t
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 and 
 
d
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 are shown in Fig. (4). 

The results show that the 0.3 nmi is a turning point, and 
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rate 
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the increase in tCPA, accidents rate 
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simulation !  equals 0.3nmi, and with the increase in 
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, 
the uncertainty of the trajectory that reaches CPA becomes 
larger. If the originally set 
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< !  such that the aircraft 

reaches CPA as planned, the accident will occur, and in such 
case when the uncertainty becomes larger, the accident rate 
will be lower. Whereas if the originally set 

 
d

CPA
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that the aircraft reaches CPA as planned, then the accident 
will not occur, and therefore the uncertainty becomes larger, 
the accident rate will be lower. If we examine every single 
curve with the same 

 
t
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, when 
 
d

CPA
 increases, the accident 

rate get smaller, which shows that when the uncertainty of 
the flight trajectory remains the same, the larger the distance 
from the CPA, the lower the accident rate. 

The simulation results are consistent with the practical 
situation, and we further verify the validity of the model 
generated by the random trajectory based on the Gaussian 
difference equation. 

 
 

4.2. Analysis of TCAS Alerting Threshold Simulation 

The simulation is made on the basis of the collision mod-
el, the pilot reaction model, and the standard avoidance oper-
ation. The parameters of the random trajectory generating 
model are 
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situation of the civil aviation, we determine the parameters 
of the collision model according to the typical collision acci-
dent. Let the arrival time for the two aircraft to reach the 
desired closest point 
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threshold  ranging from 5s to 280s. We make the simula-
tion for every possible !  with Monte Carlo by 10000 times, 
and get the statistics curves such as 

  
P(IA)  and 

  
P(FA)  with 

different thresholds. The PM curve is shown as below. 
Fig. (6) is the SOC performance curve with different 

TCAS thresholds based on Fig. (5). 

From the PM curve, we can see that with the increase in 
the alarm threshold τ, 

  
P(IA)  becomes small. When τ reaches 

35s, 
  
P(IA)  = 0, then remains zero. 

  
P(FA)  decreases too as 

the alarm threshold τ increases. When τ is greater than or 
equal to 35s, TCAS can ensure the safety of flight, and with 
the increase in τ, the false alarm rate P (FA) drops down 
slowly. When the alarm threshold τ equals to 35s, the system 
gained  SB  reaches the maximum.  

Because of the extreme importance of the safety in the 
aviation industry, the reasonable threshold of TCAS should 
optimize

  
P(SA) , and based on this, make 

  
P(FA)  smaller  
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and  SB  bigger. Therefore the optimal alarm threshold in the 
simulation environment is 35s, which is consistent with the 
threshold in use. 

CONCLUSION 
Setting threshold is one of the crucial issues in TCAS re-

searches. A reasonable threshold can optimize the perfor-
mance alarm warning system. In this paper, we compare the 
alarm performance with different alarms alarm thresholds by 
Monte Carlo simulation and SOC method. The optimal 
alarm threshold in the simulation environment is calculated, 
and the value is consistent with the threshold in use. The 
paper evaluates the rationality of the TCAS threshold, and 
meantime verifies the validity of the threshold-setting mode, 

so the analysis can be generalized to analyzing the alerting 
performance of all kinds of TCAS systems. 
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Fig. (5). PM curves under different TCAS alerting threshold value. 

 

 
Fig. (6). SOC curve under different TCAS alerting threshold value. 
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