
Send Orders for Reprints to reprints@benthamscience.ae 

792 The Open Automation and Control Systems Journal, 2015, 7, 792-799  

 
 1874-4443/15 2015 Bentham Open 

Open Access 
Improved Cat Swarm Optimization Algorithm for Assembly Sequence 
Planning 

Jianwen Guo1,*, Zhenzhong Sun1, Hong Tang2, Ling Yin1 and Zhicong Zhang1 

1School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China 
2Dongguan Neutron Science Center, Dongguan 523890, China 

Abstract: Assembly sequence planning (ASP) is a combinatorial optimization problem in which the order for each part 
and subassembly is determined. This order is then incorporated into an incrementally expanding subassembly and eventu-
ally results in a final assembly. To address this problem, we propose an improved cat swarm optimization (CSO) algo-
rithm and redefine some basic CSO concepts and operations according to ASP characteristics. The feasibility and the sta-
bility of this improved CSO are verified through an assembly experiment. The improved CSO is also compared with par-
ticle swarm optimization. Experimental results show that the proposed algorithm effectively solves the ASP problem; 
thus, the application of the proposed algorithm should enhance ASP level. 
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1. INTRODUCTION 

Assembly sequence planning (ASP) involves the plan-
ning of the order of parts in the assembly process under cer-
tain constraint conditions. ASP considers many assembly 
factors, including geometric feasibility, tool and direction 
changes. Solving the ASP problem is crucial in manufactur-
ing because it generates an optimal sequence to minimize 
manufacturing time and cost [1]. 

Several assembly sequences are feasible in complex pro-
duction with many parts. Therefore, the determination of an 
optimal assembly sequence to satisfy time, cost, and reliabil-
ity requirements is a combinatorial problem. The complexity 
of this problem is proportional to the number of parts, and 
the number of feasible assembly sequences increases with 
equipment complexity [2]. 

This problem is difficult and impractical to solve with 
human involvement because of the issue of combinatorial 
explosion. The amount of research in intelligence assembly 
sequencing has increased rapidly in recent years, and the 
intelligence ASP problem is regarded as a discrete search 
and optimization problem. In line with this research boom, 
different artificial intelligence approaches have been pro-
posed recently, including graph theory [3], subassembly de-
tection [4], motion planning [5], and evolution algorithms 
[6]. 

Evolution algorithms provide new solutions to various 
complex optimization problems by imitating the self-  
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organization mechanism of natural biological communities 
and the adaptability of evolution [7-9]. The evolution algo-
rithms that have been investigated for ASP include the ge-
netic algorithms [10], ant colony [11], and particle swarm 
optimization [12]. 

The cat swarm optimization (CSO) algorithm was pro-
posed by Chu and Tsai in 2007 [13] and imitates the natural 
behavior of cats. This algorithm is categorized under the 
group of swarm intelligence. It effectively determines global 
solutions. Many optimization problems have been resolved 
successfully using this algorithm, such as linear antenna ar-
ray synthesis [14], infinite impulse response system identifi-
cation [15], and travelling salesman problem [16]. The 
aforementioned studies suggest that CSO is a simple, robust, 
and fast algorithm for solving combinatorial optimization 
problems.  

However, few studies have applied CSO as an effective 
method to solve the ASP problem. This paper presents an 
improved CSO algorithm to solve the ASP problem. Several 
basic concepts and operations of CSO are redefined accord-
ing to ASP characteristics. The feasibility and stability of 
this improved CSO are then verified through an assembly 
experiment. The improved CSO is also compared with parti-
cle swarm optimization (PSO). The experimental results 
show that the proposed algorithm effectively solves the ASP 
problem. Therefore, the application of the proposed algo-
rithm should enhance ASP level. 

The remainder of the paper is organized as follows. Sec-
tion 2 introduces related works. Section 2 describes CSO. 
Section 3 describes fitness function. Section 4 discusses the 
improved CSO for ASP. Section 5 describes the experiments 
and analyses. Finally, Section 6 concludes the study. 
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2. CSO 

CSO is a new evolutionary algorithm inspired by cat be-
havior. Two models simulate the strong curiosity of cats in 
moving objects and their hunting skills, namely, the seeking 
model (SM) and the tracing model (TM). The SM simulates 
alertness and very slow movement, whereas the TM simu-
lates high-speed chasing behavior. The two models are 
mathematically modeled to solve optimization problems. 

In CSO, the position of a cat corresponds to a solution to 
the problem for optimization. The final solution is the ideal 
position of one of the cats. A cat is characterized by the fol-
lowing properties: (1) a position composed of n dimensions; 
(2) velocities for each dimension; (3) a fitness value that 
represents the accommodation of the cat to the fitness func-
tion; and (4) a flag that indicates whether a cat is in the TM 
or the SM.  

2.1. Algorithm 

The optimal solution to the CSO algorithm is determined 
by using two groups of cats. One group contains cats in SM, 
whereas the other group contains cats in TM. Each cat be-
longs to one mode. Moreover, this study introduces a mix-
ture ratio (MR) that defines the ratio of the number of cats in 
TM to that of the number of cats in SM. Most cats in the 
algorithm are in the SM while the rest are in the TM, which 
is consistent with the real-life behavior of cats. 

 
 

Global and local search processes are performed in SM 
and TM, respectively. In the process, local and global 
searches can be combined in CSO to accelerate convergence 
and to enhance the quality of optimization problem solu-
tions.  

The flowchart of the CSO algorithm is shown as in  
Fig. (1). The steps followed by the algorithm are as follows. 
(1) A population with M cats is generated as the solution in n 
dimensions. (2) CSO algorithm parameters are selected. (3) 
The fitness function of each individual is calculated, and the 
ideal position of the cat is determined. This position is rec-
orded as gbest. (4) Cats are selected at random from the pop-
ulation according to the MR. Their flags are set to either SM 
or TM. (5) The cats in the SM undergo the SM process, 
whereas the cats in the TM are subject to the TM process. (6) 
The new fitness function value of each cat is calculated. If 
this value is lower than that of gbest, then the former replac-
es the latter. (7) If the above condition is unsatisfied, then 
steps (5) to (7) are repeated to determine whether the end 
condition is met. Otherwise, the program is ended and the 
global optimal solution is saved. 

2.2. SM  

SM simulates a cat in a state of rest and determining its 
next move. Three parameters are introduced. Seeking 
memory pool (SMP): the size of the seeking memory of a 
cat as denoted by the number of copies of a cat captured in  
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Set the parameters of CSO
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Fig. (1). Flowchart of CSO Algorithm. 
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seeking mode. Seeking range of a selected dimension 
(SRD): the maximum difference between the new and old 
values in the selected dimension. If a dimension is selected 
for mutation, this difference may remain within the SRD 
range. Counts of dimension to change (CDC): the number 
of dimensions for mutation that indicates how many dimen-
sions are to be altered. 

Cats in the SM are inputted into the memory pool by 
copying their positions. Each individual in the memory pool 
is subject to a mutation operator to generate a new position. 
The position is updated by calculating the fitness of all of the 
cats in the memory pool and by selecting a candidate point 
with the highest fitness value as the position to which the 
cats will move. 

The SM process is performed as follows: 
 (1) An N copy of the jth cat is produced. The copies are 

inputted into the SMP, whose size is represented by N. 
 (2) The mutation operator is utilized. The individuals in 

the SMP are distributed at random based on the SRD and 
CDC values. 

 (3) The fitness value of each cat in the SMP is calculat-
ed. 

(4) The executive selection operator selects the best cat 
from the SMP to replace the original cat. 

2.3. TM 

TM simulates the tracking of a target by a cat. Once a cat 
goes into TM, it moves according to its own velocities in 
each dimension. As with PSO, the global optimum position 
replaces the current position of the cat, and the cat approach-
es the optimal solution step by step. The TM can be de-
scribed by the following steps. 

(1) The best position of the whole cat swarm is denoted 
by 

  
gBest (d ) (t) . Each cat has a velocity represented by 
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where 
  
v

k

(d ) (t +1)  is the velocity of the kth cat in dth dimen-

sion;  L  is the total dimension length; 
  
gBest (d ) (t)  is the dth 

dimension of the position of the cat 
  
gBest (t) with the high-

est fitness; 
  
x

k

(d ) (t)  represents the dth dimension of the posi-

tion of cat
  
x

k
(t) ; c represents a constant, which is set accord-

ing to a specific scene; and rand represents a random number 
between [0, 1]. 

 

 

(2) Each cat in the TM updates its position using Formula 
(2): 

  
x
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where 
  
x

k

(d ) (t +1)  is the dth dimension of the position of a cat 
after updating.  

3. FITNESS FUNCTION 

Four evaluation indicators are introduced to analyze the 
assembly sequence, namely, assembly stability, the changing 
times of the assembly tool, and the changing times of assem-
bly direction.  

(1) Geometric feasibility. The first step in solving ASP 
problems involves the geometric feasibility of assembly se-
quences. This factor represents the uninterrupted assembly 
operation process. 

(2) Assembly stabilities. In the actual assembly process, 
parts may be rendered unstable by gravity. In this case, sev-
eral assembly operations known as stable operations must 
maintain stability using a jig or auxiliary tool. A stable as-
sembly sequence operation results in inefficient assembly; 
therefore, the stability of the assembly sequence should be 
evaluated. 

(3) Changing times of the assembly tool. Changing the 
assembly tool during assembly increases assembly time and 
costs. Therefore, the changing times of the assembly tool 
should be as short as possible.  

(4) Changing times of the assembly direction. The re-
duced changing times of the assembly direction shortens 
assembly time and enhance assembly efficiency.  

This study introduces 
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 to quantify the 

influence of the factors above on assembly sequence. 

 
n

f
is the overall period of geometric feasibility for an as-

sembly sequence.  

 
n

s
is the period of stable assembly sequence operation. A 

small value indicates a stable assembly sequence.  

 
n

t
 is the changing times of an assembly tool for an as-

sembly sequence.  

 
n

d
 is the changing times of assembly direction for an as-

sembly sequence.  
The values of the parameters above are based on our pre-

vious research work [17]. 
In a real assembly problem, the geometrically infeasible 

assembly sequence should be eliminated first. A penalty 
function ff nc  is then applied to accelerate the algorithm 
convergence rate during assembly sequence generation. The 
weighted fitness function is expressed as follows: 
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this study, a small fitness function value indicates a good 
frog position and a good assembly sequence. 

4. IMPROVED CSO FOR ASP  

The ASP is a combinatorial optimization problem in 
which every solution dimension is discrete. The CSO algo-
rithm is suitable for continuous optimization. Relevant algo-
rithm operations and concepts must be redefined when ap-
plied to ASP, which can be treated as a discrete search and 
optimization problem as mentioned previously. Therefore, 
this paper proposes an improved cat swarm algorithm for 
ASP. The relevant operations and concepts in assembly se-
quence planning are redefined as follows. 

(1) Position of cat i 
The position of a cat is an n-dimension vector that repre-

sents an assembly sequence. To maintain the diversity of the 
cat swarm, the initial position of each cat is randomly initial-
ized as an n-dimension vector as follows. 
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where n represents the number of parts and each component 
of 

  
x

i, j
 varies in the location vector of the same cat. 

 

 

(2) Permutation factor 

The permutation factor 
  
vo(s,k)  in the location vector of cat i 

indicates that the positions of the s and k components in the 
vectors have switched (

   
s,k !{1,2,!,n} ). If  s = k , the func-

tion of the permutation factor on the position vector does not 
change and the permutation factor is invalid. 

(3) Velocity of cat i  
In assembly planning given n parts, the velocity of cat i is 

defined as the ordered sequence with n˗1 permutation fac-
tors:  

   
V

i
= (vo

i,1
,vo

i,2
,!,vo

i, j
,!,vo

i,n!1
)T

 
(5) 

(4) Position subtraction. The final output of position sub-
traction is a velocity vector. 

 
X

a
! X

b
=V

ab  (6) 

Its operational rules are as shown in Fig. (2). 
(5) Scalar multiplication of velocity 
The output of the scalar multiplication of velocity re-

mains a velocity vector. 
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where 
  
c !(0,1)  is a fixed value, and  rand  is a random se-

quence of n dimensions. Each element 
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(6) Addition of position and velocity 
The output of the addition of position and velocity is a 

position vector. Its corresponding rule acts on the position 
vectors according to the ordered sequence of permutation 
factors in the velocity vector. Nonetheless, the addition of 
position and velocity cannot satisfy the commutative law. 

 (7) The number of genes changed by an individual in the 
search model. 

A permutation factor is defined as a gene in the assembly 
sequence and is represented by a uniformly distributed ran-
dom integer between 0 and n˗1. 

(8) Modification range of each gene 
The modification range of each gene is defined as a per-

mutation factor that participates in an operation with a cer-
tain probability. When the random number is greater than 
this probability, this permutation factor is invalid and does 
not participate in the operation. 

 
 

 

Fig. (2). Operational rules for position subtraction. 
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Based on the redefinition above, the update formula for 
cat velocity and position in the TM can be modified into the 
following: 
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Specifically, we first update the position of the cat before 
its velocity. The value of constant c in Formula (10) is set to 
0.5. 

5. EXPERIMENTS AND ANALYSIS  

A plunger pump that consists of 14 parts is used for the 
ASP experiment. Fig. (3) displays a detailed view of this 
pump.  

5.1. Algorithm Test  

 Following an orthogonal experiment on plunger pump 
assembly, the algorithm quickly identifies an optimal assem-
bly sequence when the weighting factors of the evaluation 
indicator in the fitness function are denoted by 

  
cf = 4  , 

  cs = 0.5 ,   ct = 0.3 ,  ct = 0.3 , and   cd = 0.2 . Based on multiple 
comparison experiments, the algorithm optimization capabil-
ity is optimized when MR is 0.04, SMP is 5, and SRD is 0.2. 

The ASP experiment is conducted with population sizes 
of 25, 50, 75, and 100. The value of each parameter of the 
improved CSO and the weighting factors of the evaluation 
indicators in the fitness function are constant. The optimal 
assembly sequence was determined according to the distribu-
tion of fitness function value and the results of the ASP ex-
periment. The analysis results show that the number of algo-
rithm iterations is 200 and that of reiterated operation times 
is 50, as shown in Fig. (4) and Table 1. 

 

Fig. (3). Detailed View of the Plunger Pump. 

 

 
Fig. (4). Distribution of Local Optimal Fitness. 
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The results of many experiments indicate that the fitness 
value of the global optimal assembly sequence F is 1.9. Ta-
ble 2 suggests that the CSO algorithm can determine an op-
timal assembly sequence in a small population scale; there-
fore, its optimizing capacity is strong. Fig. (4) shows that the 
distribution of the local optimal fitness value at 50 times is 
within the following ranges: 1.9 to 2.2, 2.3 to 2.6, 2.7 to 3.0, 
3.1 to 3.4, and >= 3.5. Thus, an increase in population scale 
can effectively improve the planning effect of the algorithm. 

Fig. (5) presents the changes in the mean and optimal av-
erage fitness values with the increase in iteration times when 
the population scale is 75. The average optimal fitness value 
steadily decreases as algorithm iteration increases; this find-
ing indicates the capability of the algorithm to optimize sta-
bility. Moreover, the mean fitness value remains high in cur-
rent iteration periods. This occurrence is attributed to the fact  
 

 

that the MR is small, in accordance with real-life cat behav-
ior. Most cats are in the SM and utilize mutation operators, 
which can enhance population diversity and reduce the con-
vergence rate of the algorithm. 

5.2. Experimental Comparison 

The performance of the improved CSO algorithm is 
compared with PSO for verification. Many experimental 
results suggest that the performance of PSO is superior when 
the inertia weight of PSO is 0.6. Table 2 presents the plan-
ning results with different population scales. 

This table indicates that in a small population scale, the 
improved CSO algorithm can obtain an optimal assembly 
sequence with a fitness function value of 1.9. Therefore, its 
optimizing capacity is strong. Furthermore, the improved  
 

 

Table 1. Comparison of the 50 Optimal Asp Results Given Different Population Sizes. 

Population Size 
25 50  75 100 

S D T S D T S D T S D T 

Information Related to  
Assembly Sequence 

 

1 ˗Y T1 1 +Y T1 1 ˗Z T1 1 ˗Z T1 

3  ˗Y T2 4 +Y T2 5 ˗Z T2 5 ˗Z T2 

2 ˗Y T2 11 +X T2 6 ˗Z T2 6 ˗Z T2 

5 ˗Z T2 12 +X T2 7 ˗Z T2 7 ˗Z T2 

6 ˗Z T2 5 ˗Z T2 8 ˗Z T2 8 ˗Z T2 

7 ˗Z T2 6 ˗Z T2 11 +Y T2 11 +X T2 

8 ˗Z T2 7 ˗Z T2 12 +X T2 12 +X T2 

4 +Y T2 8 ˗Z T2  13 +X T1 13 +X T1 

11 +X T2 9 ˗Z T1  9 +X T1 9 ˗Z T1 

12 +X T2 13 +X T1  10 ˗Z T3 10 ˗Z T3 

13 +X T1 14 +X T3  14 ˗Z T3 14 +X T3 

9 ˗Z T1 3 ˗Y T3  3 ˗Y T3 3 ˗Y T3 

10 ˗Z T3 2 ˗Y T3  2 ˗Y T3 2 ˗Y T3 

14 +X T3 10 ˗Z T3  4 +X T3 4 +Y T3 

Changing Times of  
Assembly Direction 

5 5 5 5 

Changing Times of the  
Assembly Tool 

3 3 3 3 

Unstable Operation Times 0 0 0 0 

Single Execution Time/s 6.21 12.13 18.18 23.97 

Fitness 1.9 1.9 1.9 1.9 

Note: S represents the assembly sequence; D represents the assembly direction; and T represents the assembly tool. 
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CSO identifies more feasible assembly sequences than PSO 
in the same population scale. The mean fitness function val-
ue of the final planning result is also lower than that of PSO. 
These results are attributed to the fact that PSO cannot easily 
jump out of local optimization, whereas the cat in the SM 
can copy and mutate in the improved CSO; hence, it does not 
slip into local optimization easily. The mean single-run time 
of the improved CSO is longer than that of PSO. Its opera-
tion efficiency is slightly lower but remains within an ac-
ceptable range. 

CONCLUSION 

Assembly process optimization significantly reduces 
manufacturing time and cost and is widely applicable in 
complex production manufacturing. This study introduces 
ASP as a component of assembly process optimization. 
Moreover, the evolution algorithm is a useful tool for ASP, 
which is considered a combinatorial optimization problem. 
To address the ASP issue, this study develops an advanced 
evolution algorithm called the improved CSO. CSO is an 
evolution algorithm that is used to calculate the global opti-
ma of several combinatorial problems. It effectively deter-
mines solutions. Several concepts and operations are rede-
fined with respect to the discreteness characteristic of ASP, 
and the conclusions of this study are as follows: 

(1) Algorithm tests show that the optimizing capacity of 
the algorithm and the quality of sequence planning results 
improve with the increase in population scale. 

(2) A small MR value can ensure population diversity. 
However, it also reduces the convergence speed of the algo-
rithm. 

(3) Experiment results indicate that the improved CSO is 
effective when used for ASP. Furthermore, it generates a 
better assembly sequence than PSO. Thus, the application of 
the proposed algorithm should enhance ASP level. 

Nonetheless, the experimental results also suggest that 
the mean single-run time of the improved CSO is longer than 
that of PSO. Therefore, additional studies should be con-
ducted to improve the proposed algorithm and to enhance its 
efficiency. 
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Fig. (5). Mean Fitness and Optimal Fitness. 
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