
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Automation and Control Systems Journal, 2015, 7, 851-862 851

 1874-4443/15 2015 Bentham Open

Open Access
XDebugger: An Elastic Solution to Dynamic Batch In-Circuit Debugging
on FPGA

Fulong Chen1,*, Yunxiang Sun2, Xuemei Qi2, Jie Yang2, Heping Ye2, Junru Zhu2 and Qimei Tang2

1Department of Computer Science & Technology, Anhui Normal University, Wuhu, Anhui 241002, China
2Network and Information Security Engineering Research Center, Anhui Normal University, Wuhu, Anhui 241002,
China

Abstract-In digital system design, Intellectual Property (IP) reuse technology reduces the complexity of System on a Chip
(SoC) design, and improves its design efficiency. However it also brings some testing or verification difficulties. Aiming
at the low efficiency of testing mechanism, the difficulty of real-time signal monitoring and non-reusability of module-
level debugging platform for IP design, we propose an elastic solution to dynamic batch in-circuit emulating on Field Pro-
grammable Gate Array (FPGA) so as to optimize the testing process. Through the simulation debugging kit working in the
computer side, the downloading pathway of stimulus signals and configuration data is created; through the simulation
monitoring kit working in the FPGA side, the uploading pathway of simulation data and feedback signals is created; and
with Universal Asynchronous Receiver/Transmitter (UART), the stimulus signals, configuration data, simulation data and
feedback signals are transmitted between the computer side and the FPGA side. After testing of multiple IP instances, the
results show that the method has strong universality and can improve the efficiency of IP verification.

Keywords: IP testing, In-circuit debugging, Elastic design, FPGA.

1. INTRODUCTION

With the continuous innovation of integrated circuit de-
sign methods and the continuous improvement of chip manu-
facturing technologies, the functions of complex digital sys-
tems made of integrated circuits are becoming more and
more powerful, and the difficulty and complexity in design,
especially with regards to testing, are increasingly signifi-
cant. The integrated circuit design has transformed from Ap-
plication Specific Integrated Circuit (ASIC) to SoC, and SoC
design method based on IP reuse has become the mainstream
of the digital system design [1].

1.1. Related Works

IP reuse technology effectively shortens the design cycle,
improves the design efficiency, and reduces the design com-
plexity, and the functions of real chips can be simulated with
high-level hardware models of IP cores in FPGA. The FPGA
testing not only has higher accuracy, but also the running
speed will not be reduced with the increase of design com-
plexity. However, the FPGA testing need the complete sup-
port of testing platforms to generate stimulating signals and
monitor the port signals. Since the testing is still the most
usefull approach to ensure the reliability and availability of
systems, the stimulating mechanism and the non-reusability

*Address correspondence to this author at the Department of Computer
Science and Technology, Anhui Normal University, 189 Jiuhua East Rd.,
Wuhu, Anhui Province 241002, P. R. China; Tel: (+86-553) 5910757;
E-mail:long005@mail.ahnu.edu.cn

of testing platforms have become the major bottleneck of
improving the efficiency of IP testing [2-4].

In recent years, researchers have carried out extensive re-
searches on software simulation and hardware emulating
platform of IP testing. UC Berkeley developed a software
system named Ptolemy that provided heterogeneous simula-
tion environment [5]. This system can be used in the model-
ing and simulation of embedded system, and customized IP
cores can be added for simulation models [6]. However it is
mainly used for modeling and simulation, effective solution
to FPGA in-circuit verification is not given to improve the
testing efficiency. Chung put forward PROToFLEX [7]
which provided a novel multiprocessor emulation approach
in which the execution of many processor contexts is inter-
leaved onto a shared emulation engine [8]. The point is that
not all systems are composed by processors, especially the
semi-customized digital systems. The Research Accelerator
for Multiple Processors (RAMP) project, which was co-
founded by many colleges and universities in 2005 ISCA
conference, developed a testing platform that supports multi-
processor design, and its goal is to ramp up the rate of inno-
vation in hardware and software multiprocessor research [9-
10]. Like PROToFLEX, the complexity of the RAMP verifi-
cation platform is higher, and cannot verify a variety of IP
cores according to flexible and effective ways. Xilinx Com-
pany also provided an in-circuit logic analyzer ChipScope
[11] which can implant Integrated Logic Analyzer (ILA) and
Integrated Controller (ICON) into FPGA, and the Joint Test
Action Group (JTAG) cable will be used to collect and ob-
serve signal transformation in the chip. The logic analyzers

852 The Open Automation and Control Systems Journal, 2015, Volume 7 Chen et al.

need a special JTAG adapter to work, and have no versatili-
ty. Therefore, more universal communication technology and
computer with monitoring functions [12] helps to simplify
in-circuit debugging and speed the test schedule of IP design.

1.2. Contributions

In this paper, we propose an elastic solution to dynamic
batch in-circuit debugging on FPGA. Using general UART
without special JTAG, the testing process is optimized. It
consists of two parts- one is the FPGA side and another is
the computer side, which communicate with UART. Accord-
ing to different modules under testing with simple configura-
tion, we can effectively save time of testing model reconfig-
uration in this way, and the hardware overhead is small. It
also can take full advantage of the early accumulation to
accelerate the design process and reduce the risk of product
development such as image processing [13], artificial intelli-
gence simulation [14-16], data processing [17], and optimi-
zation [18]. Multiple IP testing instances shows that the
method can effectively improve the efficiency of IP testing
and reduce the working strength of designers.

2. DESIGN SCHEME OF XDEBUGGER

A complete in-circuit emulating platform is mainly com-
posed of a hardware testing environment and a software em-
ulating environment, in which the verification process is
controlled by test vectors and debugging commands.
XDebugger is shown in Fig. (1a), where X means that we
can debug different IP modules including combinational
logic, sequential logic and hierarchical logic.

The software emulating environment is a emulation
module running in the computer side to produce testing se-
quences, send testing sequences, receive feedback signals
and display waveforms. The hardware testing environment is
a testing module working in the FPGA side to stimulate the
Device Under Testing (DUT) with stimulus signals and cap-
ture the stimulus signals. They ensure the completeness and
orderliness of debugging effectively.

Fig. (1b) shows the structure of XDebugger. Firstly, in
the computer side, the generator produces stimulus signals,
and the latter are transmitted to the sequence sender for serial
sending. Secondly, in the FPGA side, the stimulator loads

Comupter FPGA

(a) Platform

Computer

Sequence
Generator

Waveform
Displayer

Sender

Receiver

Simulation Environment
T
X
D

R
X
D

UART

FPGA

Simulator

Monitor

DUT

Testing Environment

T
X
D

R
X
D

Input
Buffer

Output
Buffer

(b) Structure

Fig. (1). Architecture of XDebugger.

XDebugger: An Elastic Solution to Dynamic Batch In-Circuit The Open Automation and Control Systems Journal, 2015, Volume 7 853

stimulus signals from the input buffer, and throws them to
the DUT as input signals. Then the monitor captures the
monitoring signals and sends them to the output buffer
which transmits them to the computer side through serial
transmission. Finally, in the computer side, the receiver re-
ceives the monitoring signals, and the waveforms with the
displayer.

3. IMPLEMENTATIONS OF SOFTWARE EMULAT-
ING ENVIRONMENT

In the traditional ASIC chip design process, software
simulators, e.g. modelsim, Xilinx ISim, etc., are effective
means to verify design results. However, with the increasing
scale of SoC design, the time spent on simulation is also ex-
ponentially increasing. Meanwhile, although software simu-
lators can debug DUTs well, it cannot truly reflect the work-
ing hardware condition of and cannot be connected to real
external devices. FPGA is a very good solution to this prob-
lem. Utilizing the parallel processing ability of FPGA,
XDebugger can better debug DUTs.

We design a software emulating environment in the
computer side. It provides an interface for transmitting the
testing data. We can organize stimulus signals and monitor
feedback signals in computer side. It automatically generate
the Verilog HDL codes of the FPGA side according to the
stimulated port settings, monitored port settings and other
parameter configurations. The stimulus vectors are read into
the sequence generator from the corresponding test vector
file. And the monitored port settings are read into the wave-
form displayer. Then, stimulus vectors are sent to the FPGA
side. The latter will start debugging, and send back the feed-
back vectors to the computer side. Finally the displayer can
draw the waveform for each monitored ports according to he
received feedback vectors.

3.1. Generator

(1) Timer setting
When the testing module in the FPGA side works, it

needs to be triggered by a clock. Therefore we define some
parameters which formats are as follows:

#time_precision = Value Unit; representing the time
precision which specifies the sampling cycle of monitoring
signals.

#time_unit = Value Unit; representing the time unit.
#clock_cycle = Value; representing the clock cycle of

the DUT.
Where Unit may be s, ms, us, ns.
(2) Stimulated port setting
The generator need provide a configuration method so

that designer can set which ports will be stimulated. Each
stimulated port is defined as the following format:

@PortName,Width;

Where PortName gives the name of the stimulated port
and Width gives its width and it must be the port of the top

module. Assuming that we have n stimulated ports, and for
the stimulated port , 1, 2, ..., ip i n= , its width is iw , we
can get the total width

w= w
i

i=1

n

! (1)

(3) Monitored port setting
Finally, the sequence generator also need provide a con-

figuration method so that designer can set which signals will
be monitored. Each monitored port is defined as the follow-
ing format:

[In-
stanceName[.InstanceName[...]].]PortName,Width;

Where PortName gives the name of the monitored port
and Width gives its width. If PortName is not the port of
the top module but one port of one instance, InstanceName
must be explicitly indicated. Assuming that we have N moni-
tored ports, and for the stimulated port

P

i
, i = 1, 2, ..., N , its

width is

W

i
, we can get the total width

W = W
i

i=1

N

! (2)

(4) Stimulus vector
Stimulus vectors are generated by the sequence genera-

tor. Each stimulus vector's format is defined as follows:
#Delay VectorValue;
Where Delay is an integer for representing that the stimu-

lus vector is updated with the new value VectorValue after
Delay time units. The sequence generator reads an ASCII
file including a series of stimulus vectors in the above format
and send them to the sender. Besides the above format, there
is another particular format #Delay Stop;, which also be
encapsulated for Stop command representing that the moni-
toring stops after Delay time units.

3.2. Sender

The Sender is used to converted stimulus vectors from
the generator into serial bits for serial sending with UART.
In this process, the sender is not only to ensure that stimulus
vectors will not be lost, but also to guarantee the transmis-
sion keeping the time sequence on track.

All the stimulus vectors are decomposed into bytes. In
each byte, if the most significant bit (MSB) is 0, the other 7
bits will be used to store bits of stimulus vectors. Assuming
that in each stimulus vector, Delay has 14 bits and Vector-
Value has w bits, they are encoded as shown in Fig. (2a). All
stimulus vectors are generated by the generator and sent by
the sender as shown in Fig. (2b).

3.3. Signal Receiver

As shown in Fig. (3), the receiver is used to get the re-
sponse (feedback) vectors which are transferred from UART,

854 The Open Automation and Control Systems Journal, 2015, Volume 7 Chen et al.

and then store them in the current emulating environment so

that the displayer can draw the correspond waveforms and
designers can verify their correctness. During debugging
process, the receiver may not receive or wait for the response
data regularly; therefore it needs to control the time sequence
as well as the sender.

3.4. Displayer

Finally, the displayer draws the response vectors in
waveform, and designers can conveniently and visually ob-
serve the debugging results.

0 xxx xxxx 0 xxx xxxx 0 x..x

	 VectorValue:w bits

...0 xxx xxxx 0 xxx xxxx

	 Delay:14 bits

1 110 0000 Stop0 xxx xxxx 0 xxx xxxx

	 Delay:14 bits

(a) Encoding

begin

Send stimulus vectors

Sending
completed?

Y

N

OVERFLOW
arrives?

Y

N

end

(b) Work flow

Fig. (2). Sender.

Receive feedback
vector

draw waveforms

FINISHED
arrive?

N

end

Y

begin

Fig. (3). Work flow of Receiver.

XDebugger: An Elastic Solution to Dynamic Batch In-Circuit The Open Automation and Control Systems Journal, 2015, Volume 7 855

4. IMPLEMENTATIONS OF HARDWARE TESTING
ENVIRONMENT

The core work of the entire in-circuit debugging is the
FPGA testing. It has two major functions. One is to control
the ports of the DUT, so that the stimulus vectors are pushed
to the fitting input ports in the given time according to the
timing requirements, and the feedback vectors are sampled
from the monitored ports. The second is to manage data
transmission.

To improve the elasticity of in-circuit debugging, shorten
debugging time, and save system resources, we design the
testing environment on FPGA. Its structure is shown in Fig.
(4). It mainly consists of a CMU (Clock Management Unit),
an input buffer, an output buffer, a stimulator, a monitor and
a DUT. Since the elastic debugging platform will be applied
in different designs, it can be put into use after making some
appropriate adjustments. It need have a certain configurabil-
ity so that designers only modify one part of HDL codes, and
the other part codes are generated automatically by the gen-
erator. For different design, the buffer depth and width are
also different. In addition, buffers extremely consume FPGA
resources. It will waste too much FPGA resources if the
buffer storage is fixed. Therefore, the buffer is elastic and
has the expandable feature to meet large or small design.

4.1. Input Buffer

The input buffer is composed of a Delay buffer, a Vec-
torValue buffer and an input buffer controller as shown in
Fig. (5). The Delay buffer is a table in which each line can
store one Delay in the format of 14 bits. 14 bits indicate that
Delay spans

0, 2

14 !1"
#

$
% . In fact, only [0,999] are used due

to the time unit s, ms, us, ns. The VectorValue buffer is also

a table in which each line can store one VectorValue in the
format of w bits. Both of them are round-robin queues,
which have the maximum lines (=m) depending on the initial
configuration, and are controlled by the input buffer control-
ler. The input buffer controller mainly completes the follow-
ing two operations:

(1) Buffer writing
Before the input buffer starts to work and RST=1, it sets

the initial state for the Delay buffer and the VectorValue
buffer. Then it starts to receive stimulus vectors. Once it re-
ceives a byte Rxd_data, it will check the MSB of Rxd_data
and take the appropriate action. If it is a stimulus vector, i.e.,
Rxd_data[7]=0, it will initialize Delay_width=0 and Vec-
torValue_width=0 so as to start to receive a full stimulus
vector and store it in the Tail pointed line of the Delay buff-
er and the VectorValue buffer. Otherwise, i.e.,
Rxd_data[7]=1, it will start to receive a particular stimulus
vector Stop and send it to the stimulator. In that situation, its
Delay is stored into the Delay buffer and a random Vector-
Value is stored into the VectorValue buffer. Before the in-
put buffer controller stores the received stimulus vector into
the input buffer, it needs to make sure whether the buffer is
full. If it is full, it must stop receiving and send a particular
signal to the output buffer.

(2) Buffer reading
When the buffer is triggered (Buffer_Read=1) by the

stimulator, it will read a test vector from the Head pointed
line of the Delay buffer and the VectorValue buffer, and
send the test vector to the stimulator. Once the last test vec-
tor is read, the buffer will generate a special signal Stop=1
for the monitor so that the latter stops monitoring the re-
sponse signals.

Stimulator

DUT_stimulus
DUT

DUT_monitor

Txd_data

Input buffer Output buffer

CMU

CLK RST

Rxd_data
Delay
VectorValue

ResponseValue

Monitor

Rxd_data_rdy

Txd_busy

TXD_en

Buffer_Read Buffer_Write

DUT_clock

Stop

OVERFLOW

FULL

Fig. (4). Testing Environment.

856 The Open Automation and Control Systems Journal, 2015, Volume 7 Chen et al.

Delay Buffer
14 bits

Input Buffer Controller

⋯⋯

Read
Head

Delay_in Delay_out

Rxd_data

VectorValue Buffer
w bits

⋯⋯

VectorValue_in VectorValue_out

Delay
VectorValue

CLK
RST

Tail
Write

Buffer_Read

m

Stop
OVERFLOW

(a) Structure

begin

end

Stimulus vector
 arrives?

Y

Receive stimulus
vector

input buffer
full?

Y

N

STOP arrives?

Send
OVERFLOW

Y

N

(b) Work flow

Fig. (5). Input buffer.

Clock Signal Generator DUT_Clock

Stimulate_en

VectorValue

CLK

Delay Timer

Test Vector Loader

RST

Delay

DUT_Stimulus

Buffer_Read

FULL

(a) Structure

Fig. (6). Contd…

XDebugger: An Elastic Solution to Dynamic Batch In-Circuit The Open Automation and Control Systems Journal, 2015, Volume 7 857

Load stimulus vector

Load stimulus
vector to DUT

end

begin

Input buffer
empty?

N

DELAY
timer timeout?

Y

Y

N

Output buffer
full?

Y
DUT clock, DELAY

timer pauses

N

DUT clock, DELAY
timer continues

(b) Work flow

Fig. (6). Stimulator.

4.2. Stimulator

The stimulator provides the DUT with the clock signal
and stimulus signals related to Delay. As shown in Fig. (6),
it is composed of the following three modules:

(1) Clock signal generator

It generates the clock signal for the DUT. The frequency

f =
1

ClockCycle ! TimeUnit
 if FULL is not true.

(2) Delay timer

It is a timer which works when FULL is false. The tim-
ing cycle is

Delay ! TimeUnit . When it is initialized, it

makes Buffer_Read=0 and Stimulate_en=0 so as to disable
the Buffer_Read signal of the input buffer. After that, it
makes Buffer_Read=1, fetches a test vector from the input
buffer. Then, it makes Buffer_Read=0 again and starts

timing. Once the timer expires, it will make Stimu-
late_en=1. This process will continue to be repeated until the
input buffer is empty.

(3) Test vector loader
This module is used to assign the signal values of the cur-

rent test vector to the corresponding DUT ports when Stimu-
late_en=1.

4.3. Monitor

The monitor is a signal detector used to monitor the re-
sponse signals of the monitored ports of the DUT. As shown
in Fig. (7), it is composed of the following three modules:

(1) Stop timer
It is a timer. In order to limit the size of the output buffer

and prevent buffer overflow, the monitor must stop sampling
the response signals at some time point and disable the

858 The Open Automation and Control Systems Journal, 2015, Volume 7 Chen et al.

sampling timer. In the input buffer, the last test vector is the
Stop. When The stop timer gets Stop=0, it makes Tim-
ing_en=1. Otherwise, when it gets Stop=1, it starts timing.
The timing cycle is Delay. Once the timing ends, it will
make Timing_en=0.

 (2) Sampling timer
It is also a timer which works when FULL is not true.

The timing cycle is the sampling cycle TimePrecision.
When it is initialized, it makes Buffer_Write=0 and Moni-
tor_en=0 so as to disable the Buffer_Write signal of the
output buffer. After that, it makes Buffer_Write=1, stores
the values of the response signals to the output buffer. Then,
it makes Buffer_Write=0 again and starts timing. Once the
timer expires, it will make Monitor_en=1. This process will
continue to be repeated until the output buffer is full or the
monitoring is finished.

(3) Response signal storer
This module is used to sample the signal values of the

monitored ports of the DUT and generate the corresponding

response values when Monitor_en is effective, i. e., Stimu-
late_en=1.
4.4. Output Buffer

The output buffer is composed of a ResponseValue
buffer and an output buffer controller as shown in Fig. (8).
The ResponseValue buffer is a table in which each line can
store one response vector in the format of W bits. Similar to
the input buffer, the ResponseValue buffer is also a round-
robin queue, which has the elastic maximum lines (=M) de-
pending on time_precision and Stop, and is controlled by
the output buffer controller. The output buffer controller also
has the following two operations:

 (1) Buffer writing- to store the values ResponseValue of
the current monitored response signals into the Tail pointed
line of the output buffer.

(2) Buffer reading- to load the values ResponseValue of
the current monitored response signals from the Head point-
ed line of the output buffer so as to send them to the comput-
er side through the serial transmitter.

Monitor_en

DUT_monitor

CLK

Sampling Timer

Response Signal Storer

RST

ResponseValue

Buffer_Write

Stop Timer

Timing_en

Delay
Stop

FULL

Fig. (7). Monitor.

ResponseValue Buffer
W bits

Output Buffer Controller

⋯⋯

Write

Tail

Read

Head

ResponseValue_in ResponseValue_out

ResponseValue Txd_data

Txd_enTxd_busy

M

Buffer_Write
 FULL

Fig. (8). Output buffer.

XDebugger: An Elastic Solution to Dynamic Batch In-Circuit The Open Automation and Control Systems Journal, 2015, Volume 7 859

5. EXPERIMENTS AND ANALYSIS

5.1. Experiment Environment

According to the proposed in-circuit debugging kit for IP
core design, we build the in-circuit debugging platform. The
software emulating environment is implemented in C# lan-
guage which supports graphical user interface helpful to
draw waveforms easily, and the hardware testing environ-
ment is constructed in Verilog HDL which supports IP mod-
ular design helpful to generate codes automatically. The tar-
get device is Xilinx Artix-7 XC7A35T FPGA.

In the software emulating environment, users need carry
out the following operations:

• Select the serial port and its baud rate;
• Set the trigger mechanism(Posedge, Negedge, High,

Low) and the half cycle of the clock of the DUT;
• Set the time unit;
• Set the time precision;
• Set the simulation time;
• Set the simulated ports and test vectors;
• Set the monitored ports.
Both custom mode and imported mode are supported for

setting simulated ports and test vectors. In the custom mode,
users need set Delay, all port names (Port) and their values
(Value) for each test vector as shown in Fig. (9a). This mode
is suitable for less test vectors. If there are more test vectors,
the imported mode is recommended. In the imported mode,
users only need set each simulated port name (Port) and its
width (Width) for the test vector, and import the test vector
values from a test vector file which is defined according to
the formats as shown in Fig. (9b) in Section 3.1.

After completing the above operations, users can click
the running button to start sending the stimulus vectors to the
FPGA side so that latter can receive them, assign them to the
DUT and generate the expected monitored signals, and send
those monitored signals to the computer side. Then users can
observe the waveforms of all monitored signals as shown in
Fig. (9c), or open the monitor file and view the details.

5.2. Performance Analysis

In-circuit debugging platform is aimed to improve the
simulation accuracy of the DUT. However, owing to the
serial communication, the acceleration ability of the debug-
ging platform determines the simulation efficiency and ef-
fect. According to the debugging process, from sending of
stimulus vectors to receiving of monitored response signals,
the total spent time includes the following three parts:

(1) Time of sending of stimulus vectors

Assumed that there are m stimulus vectors, and each
stimulus vector has 14+w bits, the total number of sent bytes

is

m! 2+
w

7

"

#
#

$

%
%

&

'(
)

*+
. Besides, the Stop command has 2 bytes

for Delay and for 1 byte for Stop. Therefore, in all, there are

m! 2+
w

7

"

#
#

$

%
%

&

'(
)

*+
+ 3 bytes which need to be sent through the

serial communication. If a frame of serial data has 1 start bit,
8 data bits for one byte, 1 parity check bit and 1 stop bit, and
the baud rate is λ , then the total sending time is:

T

send
=

m! (2+
w

7

"

#
#

$

%
%)+ 3

&

'(
)

*+
!11

,
 (3)

(2) Time of testing of the DUT

Assumed that there are m stimulus vectors which have
Delays

D

1
, D

2
, ..., D

m
, and the Stop command has the De-

lay

D

Stop
, we have the total delay

D = D
i

i=1

m

! + D
Stop

 (4)

Therefore the testing time is

T

Test
= D !TimeUnit (5)

(3) Time of receiving of monitored response signals
During the working period of the DUT, the total number

of sampling is

M =
T

Test

TimePrecision
 (6)

Therefore the total number of bytes which need to be

transmitted is

W ! M

8

"

#
#

$

%
% , and the spent receiving time in the

computer side is

T
Receive

=

W ! M

8

"

#
#

$

%
% !11

&
 (7)

During the working of the DUT, the generated monitored
response signals are also being sent to the computer side.
Therefore the total debugging time is

T < T

Send
+T

Test
+T

Receive
 (8)

5.3. Resource Analysis

In the in-circuit debugging platform, only the DUT is our
design module. In order to verify its correctness and feasibil-
ity, we need design some auxiliary modules such as the input
buffer, stimulator, monitor, output buffer and UART in the
FPGA side. All these modules consume FPGA resources.
Table 1 gives the resource consumption statistics of some
test instances in the case of time_precision=20ns,
time_unit=100ns, clock_cycle =2, m=100. Among them,

860 The Open Automation and Control Systems Journal, 2015, Volume 7 Chen et al.

(a) Custom mode

(b) Imported mode

(c) Waveform display

Fig. (9). Debugging modes.

XDebugger: An Elastic Solution to Dynamic Batch In-Circuit The Open Automation and Control Systems Journal, 2015, Volume 7 861

Table 1. FPGA resources.

No. DUT
Number of FPGA Slices/Slice Flip Flops/4 input LUTs

w W Input Buffer Configurator Monitor Output Buffer DUT

1 Decoder 3 8 890/1063/1793 104/98/105 121/63/219 673/521/1045 4/0/8

2 DIV 32 33 2912/1728/5528 108/105/187 141/94/255 2287/1981/3845 78/0/139

3 ALU 38 16 3455/2010/6424 110/107/203 135/80/242 1210/1012/1974 197/23/363

4 PWM 3 34 912/1093/1841 105/99/106 143/95/258 2358/2022/3879 29/41/57

5 EEPROM 24 11 2378/1673/4812 108/104/194 123/66/232 928/716/1438 109/67/210

6 FIFO 15 10 1368/1363/2483 106/103/115 123/65/226 835/653/1322 35/41/49

7 I2C 10 8 1355/1291/2305 105/99/195 121/63/219 673/521/1036 235/185/439

8 VGA 2 25 837/869/1573 102/98/103 141/90/258 2101/1811/3473 244/30/464

9 Wishbone 16 13 1626/1143/3290 109/105/192 127/70/235 1095/845/11696 507/488/961

Decoder, DIV and ALU are three combinational logic mod-
ules, PWM and EEPROM are two sequential logic modules,
FIFO, I2C and VGA are three two-layer hierarchical logic
modules, and Wishbone is a mutli-layer hierarchical logic
module. As can be seen, a large number of resources are
consumed by the input buffer and the output buffer.

If there are m stimulus vectors and each stimulus vector
has w bits, the total number of bits for the Delay buffer and
the VectorValue buffer is

b = m! (14+ w) (9)

If there are M times of sampling and each sampling gen-
erates W bits of response signals, the total number of bits for
the ResponseValue buffer is

 B = M ! W (10)

All of them will consume lots of FPGA resources.

6. CONCLUSIONS AND FUTURE WORKS

In-circuit debugging is one of the key verification tech-
nologies in SoC design. With the development of SoC tech-
nology, IP core design helps to accelerate the product devel-
opment. Unfortunately, the traditional verification methods
are facing many problems. For example, the debugging plat-
form is hard to reuse, and needs to be rebuilt when the DUT
is only changed a little. It is also hard to push and capture the
effective signals for observing to find errors.

By above knowledge, in this paper, an efficient elastic in-
circuit debugging method is presented for verification of
complex digital logic designs. This verification method pro-
vides a perfect platform for FPGA-based functional simula-
tion. The successful IP verification instances have demon-
strated that this debugging platform can decrease the com-
plexity of verification by reusable elastic modules and pro-
vide a configurable solution to import test cases to the DUT.

The in-circuit debugging platform makes the technology
ubiquitous and low cost, and eliminates most differences
between the development and runtime environments. Com-
pared to Lauterbach in-circuit debugger which is a hardware
assisted debug tool for embedded systems, especially some
chip products, and exchanges debugging data between the
computer side and the target chip using JTAG, our in-circuit
debugging method is mainly used in the design and devel-
opment stage of the modules and IP cores, and can be more
flexible in making use of the advantages of the elasticity of
FPGA devices to debug and verify different complex digital
logic circuits.

Nevertheless, the current in-circuit debugging platform
still has the following two problems which need to be solved
in the future:

• Only the two valued logic is provided and the high
impedance signal (z) is not supported.

• The low rate of serial port cannot meet the rapid data
exchange between the computer side and the FPGA
side.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests
regarding the publication of this paper.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science
Foundation of China (No. 61370050), Anhui Provincial Nat-
ural Science Foundation (No. 1308085QF118), University
Natural Science Research Project of Anhui Province (No.
KJ2014A084), Wuhu City Science and Technology Key
Project (No. 2014cxy04), and Anhui Normal University
Postdoctoral Project (No.161-071214).

862 The Open Automation and Control Systems Journal, 2015, Volume 7 Chen et al.

REFERENCES
[1] Z. Hu, A. Pierres, and S. Hu, "Practical and efficient SOC verifica-

tion flow by reusing IP testcase and testbench", Proceedings of
IEEE International SoC Design Conference (ISOCC), pp. 175-178,
2012.

[2] T. Nahtigal, P. Puhar, and A. Zemva, "A systematic approach to
configurable functional verification of HW IP blocks at transaction
level", Computers \& Electrical Engineering, vol. 38, no. 6,
pp.1513-1523, 2012.

[3] S. S. Shankar, and J. S. Shankar, "Synthesizable verification IP to
stress test system-on-chip emulation and prototyping platforms",
Proceedings of 13th IEEE International Symposium on Integrated
Circuits (ISIC), pp.609-612, 2011.

[4] J. N. Xu, F. F. Fu, and J. X. Wang, "Data Path design of FPGA-
based HW/SW co-simulation platform", Microelectronics & Com-
puter, vol. 31, no. 3, pp.107-114, 2014.

[5] Ptolemaeus C, System Design, Modeling, and Simulation: Using
Ptolemy II, http://Ptolemy.org, 2014.

[6] J. Eker, J. W. Janneck, and E. A. Lee, "Taming heterogeneity-the
Ptolemy approach", Proceedings of the IEEE, vol. 91, no. 1, pp.
127-144, 2003.

[7] E. S. Chung, E. Nurvitadhi, and J. C. Hoe, "PROToFLEX: FPGA-
accelerated hybrid functional simulator", Proceedings of IEEE In-
ternational Parallel and Distributed Processing Symposium, pp.1-
6, 2007.

[8] E. S. Chung, E. Nurvitadhi, and J. C. Hoe, "A complexity-effective
architecture for accelerating full-system multiprocessor simulations
using FPGAs", Proceedings of the 16th ACM international
ACM/SIGDA symposium on Field programmable gate arrays,
pp.77-86, 2008.

[9] J. Wawrzynek, D. Patterson, and M. Oskin, "RAMP: Research
accelerator for multiple processors", IEEE Micro, vol. 27, no. 2,
pp.46-57, 2007.

[10] Z. Tan, A. Waterman, and R. Avizienis, "RAMP gold: an FPGA-
based architecture simulator for multiprocessors", Proceedings of
the 47th ACM Design Automation Conference, pp.463-468, 2010.

[11] ChipScope Pro Software and Cores User Guide, Xilinx UG029
(v14.3), http://www.xilinx.com, 2012.

[12] F. L. Chen, Z. X. Zhu, and X. Y. Fan, "FPGA-Based In-Circuit
Verification of Digital Systems", Advanced Materials Research,
vol. 187, pp.362-367, 2011.

[13] Z. K. Huang, , "A new image thresholding method based on gauss-
ian mixture model", applied mathematics and computation,
vol.205, no.2, pp. 899-907, 2008.

[14] R. Taormina, "Artificial Neural Network simulation of hourly
groundwater levels in a coastal aquifer system of the Venice la-
goon", Engineering Applications of Artificial Intelligence, vol.25,
no.8, pp. 1670-1676, 2012.

[15] C.T. Cheng, "Long-Term prediction of discharges in manwan res-
ervoir using artificial neural network models", Lecture Notes in
Computer Science, vol.3498, pp.1040-1045, 2005.

[16] K. W. Chau, "Application of a PSO-based neural network in analy-
sis of outcomes of construction claims", Automation in Construc-
tion, vol.16, no.5, pp.642-646, 2007.

[17] C. L. Wu, K. W. Chau, and Y. S. Li, "Predicting monthly stream-
flow using data-driven models coupled with data-preprocessing
techniques", Water Resources Research, vol.45, no.8, pp.2263-
2289, 2009.

[18] J. Z. K. Chau, "Multilayer Ensemble Pruning via Novel Multi-sub-
swarm Particle Swarm Optimization", Journal of Universal Com-
puter Science, vol.15, no.4, pp.840-858, 2009.

Received: May 07, 2015 Revised: May 19, 2015 Accepted: June 20, 2015

© Chen et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

