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Abstract-In digital system design, Intellectual Property (IP) reuse technology reduces the complexity of System on a Chip 
(SoC) design, and improves its design efficiency. However it also brings some testing or verification difficulties. Aiming 
at the low efficiency of testing mechanism, the difficulty of real-time signal monitoring and non-reusability of module-
level debugging platform for IP design, we propose an elastic solution to dynamic batch in-circuit emulating on Field Pro-
grammable Gate Array (FPGA) so as to optimize the testing process. Through the simulation debugging kit working in the 
computer side, the downloading pathway of stimulus signals and configuration data is created; through the simulation 
monitoring kit working in the FPGA side, the uploading pathway of simulation data and feedback signals is created; and 
with Universal Asynchronous Receiver/Transmitter (UART), the stimulus signals, configuration data, simulation data and 
feedback signals are transmitted between the computer side and the FPGA side. After testing of multiple IP instances, the 
results show that the method has strong universality and can improve the efficiency of IP verification.  

Keywords: IP testing, In-circuit debugging, Elastic design, FPGA. 

1. INTRODUCTION 

With the continuous innovation of integrated circuit de-
sign methods and the continuous improvement of chip manu-
facturing technologies, the functions of complex digital sys-
tems made of integrated circuits are becoming more and 
more powerful, and the difficulty and complexity in design, 
especially with regards to testing, are increasingly signifi-
cant. The integrated circuit design has transformed from Ap-
plication Specific Integrated Circuit (ASIC) to SoC, and SoC 
design method based on IP reuse has become the mainstream 
of the digital system design [1]. 

1.1. Related Works 

IP reuse technology effectively shortens the design cycle, 
improves the design efficiency, and reduces the design com-
plexity, and the functions of real chips can be simulated with 
high-level hardware models of IP cores in FPGA. The FPGA 
testing not only has higher accuracy, but also the running 
speed will not be reduced with the increase of design com-
plexity. However, the FPGA testing need the complete sup-
port of testing platforms to generate stimulating signals and 
monitor the port signals. Since the testing is still the most 
usefull approach to ensure the reliability and availability of 
systems, the stimulating mechanism and the non-reusability  
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of testing platforms have become the major bottleneck of 
improving the efficiency of IP testing [2-4]. 

In recent years, researchers have carried out extensive re-
searches on software simulation and hardware emulating 
platform of IP testing. UC Berkeley developed a software 
system named Ptolemy that provided heterogeneous simula-
tion environment [5]. This system can be used in the model-
ing and simulation of embedded system, and customized IP 
cores can be added for simulation models [6]. However it is 
mainly used for modeling and simulation, effective solution 
to FPGA in-circuit verification is not given to improve the 
testing efficiency. Chung put forward PROToFLEX [7] 
which provided a novel multiprocessor emulation approach 
in which the execution of many processor contexts is inter-
leaved onto a shared emulation engine [8]. The point is that 
not all systems are composed by processors, especially the 
semi-customized digital systems. The Research Accelerator 
for Multiple Processors (RAMP) project, which was co-
founded by many colleges and universities in 2005 ISCA 
conference, developed a testing platform that supports multi-
processor design, and its goal is to ramp up the rate of inno-
vation in hardware and software multiprocessor research [9-
10]. Like PROToFLEX, the complexity of the RAMP verifi-
cation platform is higher, and cannot verify a variety of IP 
cores according to flexible and effective ways. Xilinx Com-
pany also provided an in-circuit logic analyzer ChipScope 
[11] which can implant Integrated Logic Analyzer (ILA) and 
Integrated Controller (ICON) into FPGA, and the Joint Test 
Action Group (JTAG) cable will be used to collect and ob-
serve signal transformation in the chip. The logic analyzers  
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need a special JTAG adapter to work, and have no versatili-
ty. Therefore, more universal communication technology and 
computer with monitoring functions [12] helps to simplify 
in-circuit debugging and speed the test schedule of IP design. 

1.2. Contributions 

In this paper, we propose an elastic solution to dynamic 
batch in-circuit debugging on FPGA. Using general UART 
without special JTAG, the testing process is optimized. It 
consists of two parts- one is the FPGA side and another is 
the computer side, which communicate with UART. Accord-
ing to different modules under testing with simple configura-
tion, we can effectively save time of testing model reconfig-
uration in this way, and the hardware overhead is small. It 
also can take full advantage of the early accumulation to 
accelerate the design process and reduce the risk of product 
development such as image processing [13], artificial intelli-
gence simulation [14-16], data processing [17], and optimi-
zation [18]. Multiple IP testing instances shows that the 
method can effectively improve the efficiency of IP testing 
and reduce the working strength of designers. 

 

2. DESIGN SCHEME OF XDEBUGGER 

A complete in-circuit emulating platform is mainly com-
posed of a hardware testing environment and a software em-
ulating environment, in which the verification process is 
controlled by test vectors and debugging commands. 
XDebugger is shown in Fig. (1a), where X means that we 
can debug different IP modules including combinational 
logic, sequential logic and hierarchical logic. 

The software emulating environment is a emulation 
module running in the computer side to produce testing se-
quences, send testing sequences, receive feedback signals 
and display waveforms. The hardware testing environment is 
a testing module working in the FPGA side to stimulate the 
Device Under Testing (DUT) with stimulus signals and cap-
ture the stimulus signals. They ensure the completeness and 
orderliness of debugging effectively. 

Fig. (1b) shows the structure of XDebugger. Firstly, in 
the computer side, the generator produces stimulus signals, 
and the latter are transmitted to the sequence sender for serial 
sending. Secondly, in the FPGA side, the stimulator loads  
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Fig. (1). Architecture of XDebugger. 
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stimulus signals from the input buffer, and throws them to 
the DUT as input signals. Then the monitor captures the 
monitoring signals and sends them to the output buffer 
which transmits them to the computer side through serial 
transmission. Finally, in the computer side, the receiver re-
ceives the monitoring signals, and the waveforms with the 
displayer. 

3. IMPLEMENTATIONS OF SOFTWARE EMULAT-
ING ENVIRONMENT 

In the traditional ASIC chip design process, software 
simulators, e.g. modelsim, Xilinx ISim, etc., are effective 
means to verify design results. However, with the increasing 
scale of SoC design, the time spent on simulation is also ex-
ponentially increasing. Meanwhile, although software simu-
lators can debug DUTs well, it cannot truly reflect the work-
ing hardware condition of and cannot be connected to real 
external devices. FPGA is a very good solution to this prob-
lem. Utilizing the parallel processing ability of FPGA, 
XDebugger can better debug DUTs. 

We design a software emulating environment in the 
computer side. It provides an interface for transmitting the 
testing data. We can organize stimulus signals and monitor 
feedback signals in computer side. It automatically generate 
the Verilog HDL codes of the FPGA side according to the 
stimulated port settings, monitored port settings and other 
parameter configurations. The stimulus vectors are read into 
the sequence generator from the corresponding test vector 
file. And the monitored port settings are read into the wave-
form displayer. Then, stimulus vectors are sent to the FPGA 
side. The latter will start debugging, and send back the feed-
back vectors to the computer side. Finally the displayer can 
draw the waveform for each monitored ports according to he 
received feedback vectors. 

3.1. Generator 

(1) Timer setting 
When the testing module in the FPGA side works, it 

needs to be triggered by a clock. Therefore we define some 
parameters which formats are as follows: 

#time_precision = Value Unit; representing the time 
precision which specifies the sampling cycle of monitoring 
signals. 

#time_unit = Value Unit; representing the time unit. 
#clock_cycle = Value; representing the clock cycle of 

the DUT. 
Where Unit may be s, ms, us, ns. 
(2) Stimulated port setting 
The generator need provide a configuration method so 

that designer can set which ports will be stimulated. Each 
stimulated port is defined as the following format: 

@PortName,Width; 

Where PortName gives the name of the stimulated port 
and Width gives its width and it must be the port of the top  
 

module. Assuming that we have n stimulated ports, and for 
the stimulated port ,  1,  2,  ...,  ip i n= , its width is iw , we 
can get the total width  

  

w= w
i

i=1

n

!  (1) 

(3) Monitored port setting 
Finally, the sequence generator also need provide a con-

figuration method so that designer can set which signals will 
be monitored. Each monitored port is defined as the follow-
ing format: 

[In-
stanceName[.InstanceName[...]].]PortName,Width; 

Where PortName gives the name of the monitored port 
and Width gives its width. If PortName is not the port of 
the top module but one port of one instance, InstanceName 
must be explicitly indicated. Assuming that we have N moni-
tored ports, and for the stimulated port 

  
P

i
,  i = 1,  2,  ...,  N , its 

width is 
 
W

i
, we can get the total width 

  

W = W
i

i=1

N

!  (2) 

(4) Stimulus vector 
Stimulus vectors are generated by the sequence genera-

tor. Each stimulus vector's format is defined as follows: 
#Delay VectorValue; 
Where Delay is an integer for representing that the stimu-

lus vector is updated with the new value VectorValue after 
Delay time units. The sequence generator reads an ASCII 
file including a series of stimulus vectors in the above format 
and send them to the sender. Besides the above format, there 
is another particular format #Delay Stop;, which also be 
encapsulated for Stop command representing that the moni-
toring stops after Delay time units. 

3.2. Sender 

The Sender is used to converted stimulus vectors from 
the generator into serial bits for serial sending with UART. 
In this process, the sender is not only to ensure that stimulus 
vectors will not be lost, but also to guarantee the transmis-
sion keeping the time sequence on track. 

All the stimulus vectors are decomposed into bytes. In 
each byte, if the most significant bit (MSB) is 0, the other 7 
bits will be used to store bits of stimulus vectors. Assuming 
that in each stimulus vector, Delay has 14 bits and Vector-
Value has w bits, they are encoded as shown in Fig. (2a). All 
stimulus vectors are generated by the generator and sent by 
the sender as shown in Fig. (2b). 

3.3. Signal Receiver 

As shown in Fig. (3), the receiver is used to get the re-
sponse (feedback) vectors which are transferred from UART, 
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and then store them in the current emulating environment so  
 
that the displayer can draw the correspond waveforms and 
designers can verify their correctness. During debugging 
process, the receiver may not receive or wait for the response 
data regularly; therefore it needs to control the time sequence 
as well as the sender. 

 
3.4. Displayer 

Finally, the displayer draws the response vectors in 
waveform, and designers can conveniently and visually ob-
serve the debugging results. 
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4. IMPLEMENTATIONS OF HARDWARE TESTING 
ENVIRONMENT 

The core work of the entire in-circuit debugging is the 
FPGA testing. It has two major functions. One is to control 
the ports of the DUT, so that the stimulus vectors are pushed 
to the fitting input ports in the given time according to the 
timing requirements, and the feedback vectors are sampled 
from the monitored ports. The second is to manage data 
transmission. 

To improve the elasticity of in-circuit debugging, shorten 
debugging time, and save system resources, we design the 
testing environment on FPGA. Its structure is shown in Fig. 
(4). It mainly consists of a CMU (Clock Management Unit), 
an input buffer, an output buffer, a stimulator, a monitor and 
a DUT. Since the elastic debugging platform will be applied 
in different designs, it can be put into use after making some 
appropriate adjustments. It need have a certain configurabil-
ity so that designers only modify one part of HDL codes, and 
the other part codes are generated automatically by the gen-
erator. For different design, the buffer depth and width are 
also different. In addition, buffers extremely consume FPGA 
resources. It will waste too much FPGA resources if the 
buffer storage is fixed. Therefore, the buffer is elastic and 
has the expandable feature to meet large or small design. 

4.1. Input Buffer 

The input buffer is composed of a Delay buffer, a Vec-
torValue buffer and an input buffer controller as shown in 
Fig. (5). The Delay buffer is a table in which each line can 
store one Delay in the format of 14 bits. 14 bits indicate that 
Delay spans 

 
0,  2

14 !1"
#

$
% . In fact, only [0,999] are used due 

to the time unit s, ms, us, ns. The VectorValue buffer is also  
 

a table in which each line can store one VectorValue in the 
format of w bits. Both of them are round-robin queues, 
which have the maximum lines (=m) depending on the initial 
configuration, and are controlled by the input buffer control-
ler. The input buffer controller mainly completes the follow-
ing two operations: 

(1) Buffer writing 
Before the input buffer starts to work and RST=1, it sets 

the initial state for the Delay buffer and the VectorValue 
buffer. Then it starts to receive stimulus vectors. Once it re-
ceives a byte Rxd_data, it will check the MSB of Rxd_data 
and take the appropriate action. If it is a stimulus vector, i.e., 
Rxd_data[7]=0, it will initialize Delay_width=0 and Vec-
torValue_width=0 so as to start to receive a full stimulus 
vector and store it in the Tail pointed line of the Delay buff-
er and the VectorValue buffer. Otherwise, i.e., 
Rxd_data[7]=1, it will start to receive a particular stimulus 
vector Stop and send it to the stimulator. In that situation, its 
Delay is stored into the Delay buffer and a random Vector-
Value is stored into the VectorValue buffer. Before the in-
put buffer controller stores the received stimulus vector into 
the input buffer, it needs to make sure whether the buffer is 
full. If it is full, it must stop receiving and send a particular 
signal to the output buffer. 

(2) Buffer reading 
When the buffer is triggered (Buffer_Read=1) by the 

stimulator, it will read a test vector from the Head pointed 
line of the Delay buffer and the VectorValue buffer, and 
send the test vector to the stimulator. Once the last test vec-
tor is read, the buffer will generate a special signal Stop=1 
for the monitor so that the latter stops monitoring the re-
sponse signals. 
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Fig. (4). Testing Environment. 
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4.2. Stimulator 

The stimulator provides the DUT with the clock signal 
and stimulus signals related to Delay. As shown in Fig. (6), 
it is composed of the following three modules: 

(1) Clock signal generator 

It generates the clock signal for the DUT. The frequency 

  

f =
1

ClockCycle !  TimeUnit
 if FULL is not true. 

(2) Delay timer 

It is a timer which works when FULL is false. The tim-
ing cycle is 

  
Delay !  TimeUnit . When it is initialized, it 

makes Buffer_Read=0 and Stimulate_en=0 so as to disable 
the Buffer_Read signal of the input buffer. After that, it 
makes Buffer_Read=1, fetches a test vector from the input 
buffer. Then, it makes Buffer_Read=0 again and starts  
 

 

timing. Once the timer expires, it will make Stimu-
late_en=1. This process will continue to be repeated until the 
input buffer is empty. 

(3) Test vector loader 
This module is used to assign the signal values of the cur-

rent test vector to the corresponding DUT ports when Stimu-
late_en=1. 

4.3. Monitor 

The monitor is a signal detector used to monitor the re-
sponse signals of the monitored ports of the DUT. As shown 
in Fig. (7), it is composed of the following three modules: 

(1) Stop timer 
It is a timer. In order to limit the size of the output buffer 

and prevent buffer overflow, the monitor must stop sampling 
the response signals at some time point and disable the  
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sampling timer. In the input buffer, the last test vector is the 
Stop. When The stop timer gets Stop=0, it makes Tim-
ing_en=1. Otherwise, when it gets Stop=1, it starts timing. 
The timing cycle is Delay. Once the timing ends, it will 
make Timing_en=0. 

 (2) Sampling timer 
It is also a timer which works when FULL is not true. 

The timing cycle is the sampling cycle TimePrecision. 
When it is initialized, it makes Buffer_Write=0 and Moni-
tor_en=0 so as to disable the Buffer_Write signal of the 
output buffer. After that, it makes Buffer_Write=1, stores 
the values of the response signals to the output buffer. Then, 
it makes Buffer_Write=0 again and starts timing. Once the 
timer expires, it will make Monitor_en=1. This process will 
continue to be repeated until the output buffer is full or the 
monitoring is finished. 

(3) Response signal storer 
This module is used to sample the signal values of the 

monitored ports of the DUT and generate the corresponding  
 

response values when Monitor_en is effective, i. e., Stimu-
late_en=1. 
4.4. Output Buffer 

The output buffer is composed of a ResponseValue 
buffer and an output buffer controller as shown in Fig. (8). 
The ResponseValue buffer is a table in which each line can 
store one response vector in the format of W bits. Similar to 
the input buffer, the ResponseValue buffer is also a round-
robin queue, which has the elastic maximum lines (=M) de-
pending on time_precision and Stop, and is controlled by 
the output buffer controller. The output buffer controller also 
has the following two operations: 

 (1) Buffer writing- to store the values ResponseValue of 
the current monitored response signals into the Tail pointed 
line of the output buffer. 

(2) Buffer reading- to load the values ResponseValue of 
the current monitored response signals from the Head point-
ed line of the output buffer so as to send them to the comput-
er side through the serial transmitter. 

 

Monitor_en

DUT_monitor

CLK

Sampling Timer

Response Signal Storer

RST

ResponseValue

Buffer_Write

Stop Timer

Timing_en

Delay
Stop

FULL

 

Fig. (7). Monitor. 

 

ResponseValue Buffer
W bits

Output Buffer Controller

⋯⋯

Write

Tail

Read

Head

ResponseValue_in ResponseValue_out

ResponseValue Txd_data

Txd_enTxd_busy

M

Buffer_Write
 FULL

 

Fig. (8). Output buffer. 



XDebugger: An Elastic Solution to Dynamic Batch In-Circuit The Open Automation and Control Systems Journal, 2015, Volume 7    859 

5. EXPERIMENTS AND ANALYSIS 

5.1. Experiment Environment 

According to the proposed in-circuit debugging kit for IP 
core design, we build the in-circuit debugging platform. The 
software emulating environment is implemented in C# lan-
guage which supports graphical user interface helpful to 
draw waveforms easily, and the hardware testing environ-
ment is constructed in Verilog HDL which supports IP mod-
ular design helpful to generate codes automatically. The tar-
get device is Xilinx Artix-7 XC7A35T FPGA. 

In the software emulating environment, users need carry 
out the following operations: 

• Select the serial port and its baud rate; 
• Set the trigger mechanism(Posedge, Negedge, High, 

Low) and the half cycle of the clock of the DUT; 
• Set the time unit; 
• Set the time precision; 
• Set the simulation time; 
• Set the simulated ports and test vectors; 
• Set the monitored ports. 
Both custom mode and imported mode are supported for 

setting simulated ports and test vectors. In the custom mode, 
users need set Delay, all port names (Port) and their values 
(Value) for each test vector as shown in Fig. (9a). This mode 
is suitable for less test vectors. If there are more test vectors, 
the imported mode is recommended. In the imported mode, 
users only need set each simulated port name (Port) and its 
width (Width) for the test vector, and import the test vector 
values from a test vector file which is defined according to 
the formats as shown in Fig. (9b) in Section 3.1. 

After completing the above operations, users can click 
the running button to start sending the stimulus vectors to the 
FPGA side so that latter can receive them, assign them to the 
DUT and generate the expected monitored signals, and send 
those monitored signals to the computer side. Then users can 
observe the waveforms of all monitored signals as shown in 
Fig. (9c), or open the monitor file and view the details. 

5.2. Performance Analysis 

In-circuit debugging platform is aimed to improve the 
simulation accuracy of the DUT. However, owing to the 
serial communication, the acceleration ability of the debug-
ging platform determines the simulation efficiency and ef-
fect. According to the debugging process, from sending of 
stimulus vectors to receiving of monitored response signals, 
the total spent time includes the following three parts: 

(1) Time of sending of stimulus vectors 

Assumed that there are m stimulus vectors, and each 
stimulus vector has 14+w bits, the total number of sent bytes 

is 
  

m! 2+
w

7

"

#
#

$

%
%  

&

'(
)

*+
. Besides, the Stop command has 2 bytes  

 

for Delay and for 1 byte for Stop. Therefore, in all, there are 

  

m! 2+
w

7

"

#
#

$

%
%  

&

'(
)

*+
+ 3  bytes which need to be sent through the 

serial communication. If a frame of serial data has 1 start bit, 
8 data bits for one byte, 1 parity check bit and 1 stop bit, and 
the baud rate is λ , then the total sending time is: 

  
T

send
=

m! (2+
w

7

"

#
#

$

%
%)+ 3

&

'(
)

*+
!11

,
 (3) 

(2) Time of testing of the DUT 

Assumed that there are m stimulus vectors which have 
Delays 

  
D

1
,  D

2
,  ...,  D

m
, and the Stop command has the De-

lay 
 
D

Stop
, we have the total delay 

  

D = D
i

i=1

m

! + D
Stop

 (4) 

Therefore the testing time is 

 
T

Test
= D !TimeUnit  (5) 

(3) Time of receiving of monitored response signals 
During the working period of the DUT, the total number 

of sampling is 

 

M =
T

Test

TimePrecision
 (6) 

Therefore the total number of bytes which need to be 

transmitted is 
  

W ! M

8

"

#
#

$

%
% , and the spent receiving time in the 

computer side is 

  

T
Receive

=

W ! M

8

"

#
#

$

%
% !11

&
 (7) 

During the working of the DUT, the generated monitored 
response signals are also being sent to the computer side. 
Therefore the total debugging time is 

  
T < T

Send
+T

Test
+T

Receive
 (8) 

5.3. Resource Analysis 

In the in-circuit debugging platform, only the DUT is our 
design module. In order to verify its correctness and feasibil-
ity, we need design some auxiliary modules such as the input 
buffer, stimulator, monitor, output buffer and UART in the 
FPGA side. All these modules consume FPGA resources. 
Table 1 gives the resource consumption statistics of some 
test instances in the case of time_precision=20ns, 
time_unit=100ns, clock_cycle =2, m=100. Among them,  
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Table 1. FPGA resources. 

No. DUT 
Number of FPGA Slices/Slice Flip Flops/4 input LUTs 

w W Input Buffer  Configurator Monitor Output Buffer DUT 

1 Decoder 3 8 890/1063/1793 104/98/105 121/63/219 673/521/1045 4/0/8 

2 DIV 32 33 2912/1728/5528 108/105/187 141/94/255 2287/1981/3845 78/0/139 

3 ALU 38 16 3455/2010/6424 110/107/203 135/80/242 1210/1012/1974 197/23/363 

4 PWM 3 34 912/1093/1841 105/99/106 143/95/258 2358/2022/3879 29/41/57 

5 EEPROM 24 11 2378/1673/4812 108/104/194 123/66/232 928/716/1438 109/67/210 

6 FIFO 15 10 1368/1363/2483 106/103/115 123/65/226 835/653/1322 35/41/49 

7 I2C 10 8 1355/1291/2305 105/99/195 121/63/219 673/521/1036 235/185/439 

8 VGA 2 25 837/869/1573 102/98/103 141/90/258 2101/1811/3473 244/30/464 

9 Wishbone 16 13 1626/1143/3290 109/105/192 127/70/235 1095/845/11696 507/488/961 

 

Decoder, DIV and ALU are three combinational logic mod-
ules, PWM and EEPROM are two sequential logic modules, 
FIFO, I2C and VGA are three two-layer hierarchical logic 
modules, and Wishbone is a mutli-layer hierarchical logic 
module. As can be seen, a large number of resources are 
consumed by the input buffer and the output buffer. 

If there are m stimulus vectors and each stimulus vector 
has w bits, the total number of bits for the Delay buffer and 
the VectorValue buffer is 

  
b = m! (14+ w)  (9) 

If there are M times of sampling and each sampling gen-
erates W bits of response signals, the total number of bits for 
the ResponseValue buffer is 

  B = M !  W  (10) 

All of them will consume lots of FPGA resources. 

6. CONCLUSIONS AND FUTURE WORKS 

In-circuit debugging is one of the key verification tech-
nologies in SoC design. With the development of SoC tech-
nology, IP core design helps to accelerate the product devel-
opment. Unfortunately, the traditional verification methods 
are facing many problems. For example, the debugging plat-
form is hard to reuse, and needs to be rebuilt when the DUT 
is only changed a little. It is also hard to push and capture the 
effective signals for observing to find errors. 

By above knowledge, in this paper, an efficient elastic in-
circuit debugging method is presented for verification of 
complex digital logic designs. This verification method pro-
vides a perfect platform for FPGA-based functional simula-
tion. The successful IP verification instances have demon-
strated that this debugging platform can decrease the com-
plexity of verification by reusable elastic modules and pro-
vide a configurable solution to import test cases to the DUT.  
 

The in-circuit debugging platform makes the technology 
ubiquitous and low cost, and eliminates most differences 
between the development and runtime environments. Com-
pared to Lauterbach in-circuit debugger which is a hardware 
assisted debug tool for embedded systems, especially some 
chip products, and exchanges debugging data between the 
computer side and the target chip using JTAG, our in-circuit 
debugging method is mainly used in the design and devel-
opment stage of the modules and IP cores, and can be more 
flexible in making use of the advantages of the elasticity of 
FPGA devices to debug and verify different complex digital 
logic circuits. 

Nevertheless, the current in-circuit debugging platform 
still has the following two problems which need to be solved 
in the future: 

• Only the two valued logic is provided and the high 
impedance signal (z) is not supported. 

• The low rate of serial port cannot meet the rapid data 
exchange between the computer side and the FPGA 
side. 
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