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Abstract: In order to retrain chaotic oscillation of marine power systems which are excited by periodic electromagnetism 
perturbation, in this paper, a novel model free backstepping control methods are designed. First, the dynamic model of 
marine power system is established based on the two parallel nonlinear model. Then, extended state observer (ESO) is de-
signed to estimate the velocity signal and unknown function. Next, the model free backstepping controller is proposed 
based on the ESO. Finally, simulation results demonstrate the proposed model free control algorithm can quickly retrain 
chaotic oscillation. And it shows the proposed control method is effectiveness and potential. 
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1. INTRODUCTION 

Structure of modern marine power systems has been ever 
more complicated, especially the emergence of high-
performance ship electric propulsion applications. With the 
development of modern marine power system becomes more 
and more complex, more extreme the reliability and stability 
requirements are need to marine power systems. In recent 
years, researchers found that chaotic oscillations are oc-
curred in marine power system during the voyage or parox-
ysmal bursts. Chaotic oscillations could lead to system insta-
bility, which poses a potential threat to the safe operation of 
the marine power grid [1-3]. At present, most the power sys-
tem chaos control method is mainly focus on land-based 
power systems, such as adaptive control, feedback control, 
inverse system control [2-7]. Obviously, the marine power 
systems can be regarded as a special case of land-based 
power systems, so a large number of control methods of 
land-based power systems can be extended to marine power 
systems. However, in the actual system, the accurate value of 
speed signal and the model parameters are difficult to obtain, 
this will make a lot of model-based control algorithms diffi-
cult to be applied [8]. 

In control theory, backstepping is a technique which is 
proposed in 1990s for designing stabilizing controls of strict-
feedback nonlinear dynamical systems [9]. These systems 
are established from multi-subsystems that emit out from an 
reducible subsystem that can be stabilized with some other 
approaches. Since this recursive structure, researchers can  
 
 

start the design procedure under the known stability sys-
tem and “back-out” new controllers that gradually stabilized 
each outer subsystems. The procedure terminates while the 
final external control is achieved. This procedure is called as 
backstepping. So far, backstepping control has made many 
achievements, like adaptive backstepping control, adaptive 
sliding mode backstepping control, dynamic surface control 
and so on [10-12]. 

Recently, model free control is increasingly receiving at-
tention in solving complex and practical problems, such as 
active disturbance rejection control (ADRC) [13], model free 
adaptive control (MFAC) [14, 15], and so on. Summary 
aforementioned works, the paper gives a model free back-
stepping control method for marine power systems. In order 
to suppress the chaotic marine power system oscillations, 
based on extended state observer (ESO), model free back-
stepping chaos controller is designed. This paper is orga-
nized as follows. In Section 2, a brief description for two 
parallel nonlinear mathematical models is given. In Section 
3, main results are given. Simulation results are presented to 
show the effectiveness of the proposed control technique in 
Section 4. Finally, some conclusions are made in Section 5. 

2. MARINE POWER SYSTEM MODELING AND 
PROBLEM FORMULATION 

The basic structure of the power supply network for ma-
rine power system can be expressed as Fig. (1). Where 
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reactance, respectively. P  and 
 
Q  describe the system load. 

Because of the short-circuit in the marine power system, the 
line resistance is very small, which often can be neglected. 

Consider same case of generator parameters, let
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 are relatively power angle and 

relative power angle velocity of the two equivalent genera-
tors. Then two machines interconnected system can be de-
scribed as following form 
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where  H  and  D  are equivalent inertia and damping, re-
spectively. mP  is the input mechanical power of generator, 
Pe is the electromagnetic power of system output. 
cos( )βΔp t  is electromagnetic perturbation which is intro-

duced to study chaotic motion for the marine power system 
under disturbance. Where 

 
P

e
! "p  describes the amplitude of 

disturbance, and β  describes the frequency of disturbance. 
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According to transformation, we know that the system state 
variables 1x  and 2x  were obtained by the transformation of 
! and ! , which have the physical meaning of power angle 
error and the power angle error relative velocity between the 
two generators. However, if the value

 
H P

e
 is imprecise, 

accurate state
  
x

2
(! )  cannot be obtained. On the following 

works, a novel model free control method is proposed under 
only power angle 

  
! (t)  can be measured. 
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In the above marine power system (3), when amplitude µ  
and frequency !  of disturbance meet certain conditions, the 
chaotic motion will be occurred. In order to suppress the 
chaotic motion, a control input u must be added to the equa-
tion of state (3), namely 
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If cannot obtain the parameters of model (3), 
  
f (x)  can 

be seen as an unknown function, and the state 
  
x

2
 cannot also 

be measured. 

3. MAIN RESULTS 

3.1. Extended State Observer Design 

Because we assume that only power angle 
 
! = y  can be 

measured for marine power system (3). So in this paper, the 
third-order ESO is designed, which is used to estimate the 
state 2x and unknown function

  
f (x) . And define unknown 

function ( )f x  as an extended state 3x . Let
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Fig. (1). Block diagram of the two-parallel model. 
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In order to estimate the state 2x  and unknown function
( )f x , we design the following third-order ESO [13, 16]: 
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where 
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 and 1x̂ , 2x̂ , 3x̂ is the observer of 1x ,

2x , 3x . 
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In generally, σ is selected as   ! = 5"10T , where  T  is 
sampling period of control. Until now, there is no reliable 
theoretical analysis method available for third-order ESO. 
Fortunately [16], if suitable parameters of observer (6) are 
selected, the following results can be obtained. 
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where 
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. Hence, we know the suita-

ble observer parameters can make the state estimation errors 
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Observer (6) is given the following form as 
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3.2. Backstepping Controller Design 

Based on the dynamic model (9), we can define the state 
tracking errors 1e  and 2e as follows: 
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From (10), we obtain the the derivatives of 1e  and 2e  as 
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Step 1: Let us define 2x̂  is the virtual control for x1-
subsystem, and choose 2 2ˆ ˆ=dx x  as the ideal control input. It 
is remarked that, in the step, the task is to stabilize the dy-

namic (11) under respect to Lyapunov function 
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The virtual controller (i.e., outer-loop controller) can be 
designed as 
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where 
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From (12) and (14), we define the Lyapunov function 
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then the global control algorithm is designed as 
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From (16), we can ensure that the closed-loop under 
global controller (15) is stable. Thus, the designed backstep-
ping controller is effectiveness. 
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4. SIMULATION RESULTS 

Simulations were performed in the 
MATLAB/SIMULINK environment. From numerical analy-
sis of the marine power system’s chaotic motion, we can 
obtain the results that when the amplitude 

 
µ = 1.3 , the ma-

rine power system will appear the chaos under  ! = 0.4 ,

 
! = 0.2 , disturbance frequency 

 
! = 0.8 . 

We can obtain the motion state of the marine power sys-
tem in Figs. (2 and 3). Form Fig. (2), it can be seen that the  
 

system power angle and the angular velocity of the phase 
diagram of movement is periodicity, which shows that the 
system appeared in chaos. The system experiences a similar 
random, but does not attenuate oscillations, further validates 
this point produced a chaotic system. 

The parameters of the backstepping controller are chosen 
as, 
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Fig. (2). Chaotic attractor under 
 
µ = 1.3 . 

 

 

Fig. (3). Timing diagram of power angle !  and relative power angle velocity ! . 
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Fig. (4). The curve of power angle ! . 

 
Fig. (5). The curve of power angle ! . 

 

Fig. (6). Phase diagram of power angle !  and relative power angle velocity! . 
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Fig. (7). Actual 
  
f (x)  function and its estimation

  
f̂ (x) . 

 

The initial of states is 
  
x

0
= [0.1, 0]

T . In the following 
simulation, we add the control signal u  to the marine power 
system when the chaotic motion is occurred after 100 se-
conds. Fig. (4) and Fig. (5) show the curve of power angle 
and the angular velocity of marine power system with ESO 
method. And the phase diagram is shown in Fig. (6). Fig. (7) 
shows the actual 

  
f (x)  function and the estimation 

  
f̂ (x) . 

It can be seen the results from Fig. (5) and Fig. (6), be-
fore 100 seconds, power angle !  and relative power angle 
velocity !  are in a chaotic state. While the designed con-
troller is added after 100 seconds, system is quickly stabi-
lized, this indicates the proposed ESO-based control algo-
rithm has a very reliable stabilization ability for the marine 
power system’s chaotic motion. 

CONCLUSION 

To rely on observer techniques, we propose a novel mod-
el free backstepping control methods for marine power sys-
tems. In the developed two model free backstepping con-
trols, there are three main problems are solved, they are 1): 
Velocity signal does not need to be known. The proposed 
control algorithms can achieve the close-loop stability with-
out speed sensor. 2): The proposed control methods don’t 
need dynamic mathematical model of marine power systems. 
3): The proposed control method can eliminate the impact of 
derivative signal and control saturation. In addition, Stability 
analysis is given for closed-loop control system. Simulation 
results show that the proposed method not only guarantees 
closed-loop stability of the controlled marine power system, 
but also identifies well the velocity state and unknown dy-
namic model. 
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