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Abstract: TNF-  (tumour necrosis factor- ) is a pleiotropic cytokine with wide-ranging actions on the immune system 

and is an important mediator in immune-mediated inflammatory disease states, including multiple sclerosis. TNF-  and its 

receptors are part of a large and complex superfamily of homologous ligands and receptors, whose many biological func-

tions overlap. Investigations have demonstrated the effects of TNF-  at various stages of pathology in multiple sclerosis 

(MS), including oligodendrocyte death, demyelination, immune cell trafficking, cellular proliferation and major histo-

compatibility (MHC) antigen expression. Targeting the TNF-  immunobiological pathway successfully ameliorates dis-

ease severity in a number of autoimmune inflammatory conditions except for multiple sclerosis. Anti-TNF-  therapy in 

experimental autoimmune encephalomyelitis (EAE) showed mixed results, whereas in MS trials it was deleterious. It is 

clear that TNF-  also has a beneficial role, especially in neuroprotection and regeneration. A clearer understanding of the 

protective role of TNF-  may be extrapolated from studies in other inflammatory conditions such as stroke and traumatic 

brain injury.  
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INTRODUCTION  

 The discovery of macrophage and lymphocyte-derived 
substances that could induce haemorrhagic necrosis of trans-
planted tumours in mice led to the description and isolation 
of the cytokines tumour necrosis factor-  (TNF- ), along 
with lymphotoxin-  (LT- , also known as TNF- ), more 
than three decades ago [1]. TNF- , then termed cachectin, 
was soon implicated in other biological processes including 
endotoxic shock [2, 3], tissue injury [2, 4] and cachexia [5].  

 We now know that TNF-  and LT-  are in fact members 
of an extensive and growing superfamily of membrane-
bound and soluble protein ligands which bind to one or more 
corresponding receptor(s) from the TNF receptor superfa-
mily. Members of TNF superfamily ligands include, but are 
not limited to, TNF- , LT- , Fas ligand (FasL), CD40 ligand 
(CD40L), TNF-related apoptosis inducing ligand (TRAIL) 
and OX40 ligand (OX40L). Many more TNF ligands and 
receptors have been identified, and the list is growing [6]. 

 The exact physiological roles of the TNF superfamily of 
ligands and receptors are still far from being fully elucidated, 
although it has become clear that they are the principal me-
diators in immune defense, inflammation and the develop-
ment and maintenance of the immune system [7-10]. In par-
ticular, TNF-  has been shown to promote inflammation, 
mediate cell growth and differentiation and induce apoptosis 
in a variety of cell types including tumour cells, T-cells, viral 
host cells, oligodendrocytes, endothelial and epithelial cells. 
Crucially, its dysregulation is implicated in autoimmune  
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inflammatory diseases, most notably in autoimmune arthritis 
and inflammatory bowel disease, whereby antagonism of 
TNF-  has major therapeutic benefit. TNF-  levels have also 
noted to be elevated in a variety of other central nervous 
system (CNS) disorders such as multiple sclerosis (MS), 
cerebral ischaemia, traumatic brain injury, Parkinson’s dis-
ease and Alzheimer’s disease. In contrast however, TNF-  
antagonism in MS has deleterious effects.  

1. TNF-  LIGAND/RECEPTOR AND SIGNALING  

 TNF-  is produced predominantly by macrophages and 
monocytes, and additionally by B and T lymphocytes, natu-
ral killer (NK) cells, astrocytes, microglia, fibroblasts, adi-
pocytes, and many other cells from immune and non-
immune lineages. Its counterpart, LT-  on the other hand, is 
mainly produced by lymphocytes, although their biological 
actions may overlap [7]. In the normal physiological state, 
expression of TNF-  is low, but is significantly upregulated 
following exposure to a variety of stimuli including infective 
agents, tumour cells, complement and cytokines, such as 
interferon-  (IFN- ) [7, 11]. It is biologically active as a 
trimeric 26-kDa membrane-bound pro-protein, and in solu-
ble 17-kDa form (sTNFR) following proteolytic cleavage by 
matrix metalloproteinases, primarily the TNF-  converting 
enzyme (TACE). TNF-  shares characteristic structural simi-
larities with rest of the TNF superfamily of ligands, specifi-
cally in possessing the TNF homology domain (THD), 
which binds to cystein-rich domains (CRD) of TNF recep-
tors [12]. TNF–  is encoded within the major histocompati-
bility complex (MHC) in the chromosomal segment 6p21[7].  

 Likewise, the TNF superfamily of receptors are mainly 
type I transmembrane proteins which may also be prote-
olysed into a biologically active soluble form. Although ho-
mologous in their extracellular structures, variations in the 



TNF-  in MS and EAE The Open Autoimmunity Journal, 2010, Volume 2    161 

number of CRDs and their constituent primary amino acids 
allow for ligand-binding specificity [13]. TNF-  binds with 
varying affinity to two receptors, i.e. TNF-RI (p55TNFR) 
and TNF-RII (p75TNFR), which are also shared with lym-
photoxin. Transmembrane TNF-  has been shown to be the 
primary binding ligand of TNF-RII, whereas soluble TNF-  
mainly binds TNF-RI [14]. TNF-RI and TNF-RII are ex-
pressed on most nucleated cells, accounting for the wide-
ranging effects of TNF- . TNF-RI is thought to be the main 
receptor through which most of the known inflammatory 
effects of TNF-  is exerted. 

 TNF-  binding to its receptors induces several different 
signalling pathways. TNF-RI contains a death domain (DD) 
binding structure, which recruits intracellular adaptor  
molecules, in particular TNRF-associated death domain 
(TRADD) adaptor protein, involved in pro-apoptosis signal-
ing. TNF-RI is also able to activate anti-apoptotic mecha-
nisms via the transcription of nuclear factor -B (NF- B), 
and is further regulated by other factors such as the silencer 
of death domain protein (SODD), which inhibits apoptosis 
[13, 15].  

 TNF-RII recruits TNF receptor-associated adaptor factors 
(TRAF), a family of adaptor proteins which in turn, regulate 
different cellular processes. The exact role of TNF-RII is less 
well known, although this may include enhancement of 
TNF-RI effects via distinct mechanisms [16, 17], prolifera-
tion of CD4 and CD8 T-cell subsets, including CD4+CD25+ 
regulatory T-cells in the periphery [18, 19] and other pro-
inflammatory effects [20].  

 TNF-  expression and its signalling are regulated at the 
transcriptional and post-transcriptional level. TNF-  gene 
transcription is induced by various extracellular stimuli such 
as lipopolysaccharide, viruses and other antigens in a tightly-
controlled, cell type- and stimulus-dependent manner [21-
23]. Numerous transcription factors and complexes that fa-
cilitate and control this process have been identified, includ-
ing NF- B (nuclear factor kappa-B), activating protein 1, 
cyclic AMP (adenosine monophosphate) response element, 
NFAT (nuclear factor of activated T-cells), Ets, C/EBP  
(CCAAT-enhancer binding proteins beta) and LI-
TAF(lipopolysaccharide-induced TNF-  factor) [24-29]. In 
the post-transcriptional stage, regulation is achieved by the 
presence of AU sequences in the 3’ region of TNF-  mes-
senger RNA (mRNA) and by the downstream induction of 
corticosteroids, prostaglandins and IL-10 [7]. The circulating 
extracellular domains of membrane-bound TNF receptors, 
which are shed following proteolytic cleavage, may bind to 
TNF- , thereby acting as a natural antagonist [30].  

2. TNF-  IN THE IMMUNOPATHOLOGY OF MS 

 Multiple sclerosis (MS) is a primary demyelinating dis-
ease of the central nervous system. The characteristic acute 
demyelinating plaques are the result of a T-cell mediated 
immune attack against myelin constituents, involving acti-
vated macrophages and microglia which damage the myelin 
sheath through secretion of toxic compounds, phagocytosis 
and the loss of myelin-producing oligodendrocytes [31-34]. 
Further damage is propagated via the secretion of pro-
inflammatory cytokines, including TNF-  from autoreactive 
T cells, microglia and astrocytes, and by myelin/oligoden-
drocyte-specific antibodies via antibody-dependent cell cyto-

toxicity (ADCC) effector mechanisms [31, 33, 35]. The pu-
tative inflammatory actions of TNF-  in the CNS are illus-
trated in Fig. (1). 

 TNF-  and LT-  were detected in MS lesions using im-
munocytochemistry techniques on brain tissue samples of 
MS patients [36, 37]. Also, TNF-  mRNA has been detected 
in active MS lesions, but not in inactive or remyelinating 
lesions, using samples from diagnostic brain biopsies of MS 
patients [38]. Elevated levels of TNF-  have been detected in 
the cerebrospinal fluid (CSF) of MS patients and those with 
acute disseminated encephalomyelitis (ADEM) [39-41]. 
Sharief et al. (1991) observed a higher level of TNF-  in the 
CSF of patients with chronic progressive MS, compared to 
those with stable MS. Additionally, the levels of TNF-  in 
the CSF correlated with the degree of disability and rate of 
deterioration in progressive MS patients [40]. TNF-  produc-
tion has also been shown to correlate with MS disease activ-
ity [42, 43]. In a longitudinal study of 20 MS patients [42], 
increased production of TNF-  and IFN-  as measured from 
whole-blood assays was noted to precede the onset of re-
lapses, and their persistence correlated to clinical sequelae 
following the relapses. This was supported by the finding of 
an increase in TNF-  messenger RNA (mRNA) expression 
in peripheral blood mononuclear cells prior to relapses in a 
separate study [43].  

2.1. TNF-  Causes Damage to Oligodendrocytes, Myelin 
and Axons 

 This may be achieved through cytotoxic mechanisms 
and/or apoptosis [44-48]. In an early study, the damaging 
effects of TNF on oligodendrocytes and myelin were shown 
in organotypic cultures of mouse spinal cord and recombi-
nant human TNF (rhTNF) [46]. Exposure to rhTNF induced 
oligodendrocyte necrosis and subsequent dilatation of the 
myelin sheath by water influx into the periaxonal space, 
leading to demyelination. The team later observed that both 
TNF-  and LT-  caused time and dose-dependent injury to 
oligodendrocytes cultured from mature bovine brain. This 
occurred via an apoptotic process as evidenced by the find-
ing of nuclear disintegration, although LT-  had more potent 
cytotoxic actions than TNF-  [47]. In another study, trans-
genic mice which expressed anti-apoptosis protein specifi-
cally in oligodendrocytes, and those deficient in caspase-
11(an essential effector molecule in apoptosis), were resis-
tant to experimental autoimmune encephalomyelitis (EAE), 
the animal model of MS [49]. 

 Although apoptotic mechanisms are seen to play a dam- 
aging role in pathological states linked to dysregulated TNF- 

, apoptosis is essential to physiological processes and the  
resolution of inflammation. Binding of TNF-  to its recep- 
tors induces the caspase cascade which promotes cell apop- 
tosis, and also the transcription of NK- B and activation of  
Jun N-terminal kinase (JNK) pathway which conversely,  
inhibits apoptosis [15]. Intracellular and extracellular regula- 
tory mechanisms exist to control the relative dominance of  
the apoptotic and non-apoptotic pathways, which determines  
cell survival or death [50-52]. Several alternative mecha- 
nisms of TNF-induced apoptosis have been also described  
[53]. Other death domain-containing TNF receptors such as  
TNF-RI, Fas and TRAIL receptors are capable of inducing  
apoptosis and have been shown to be preferentially ex- 
pressed in MS lesion [54-56].  



162    The Open Autoimmunity Journal, 2010, Volume 2 Lim and Constantinescu 

 Apart from direct oligodendrocyte damage, TNF-  has 
been shown to mediate indirect excitotoxic damage to oli-
godendrocytes and neurons by modulating the accumulation 
and release of glutamate from astrocytes [48]. Glutamate 
excitotoxicity is recognized as a mechanism for oligoden-
drocyte and axonal damage in MS models. Antagonism of 
glutamate receptors (e.g. NMDA, AMPA and kainate types) 
may protect neuronal structures from excitotoxic damage, 
potentially reducing disease progression and reversing ax-
onal damage in MS [57-59]. 

2.2. TNF-  Mediates Leukocyte Trafficking into the CNS 
by Upregulating Cell Adhesion Molecules 

 Cell adhesion molecules such as intercellular adhesion 
molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 
(VCAM-1) are cell surface glycoproteins that regulate im-
mune-cell contact, antigen presentation and extravasation of 
immune cells to sites of inflammation. In particular, VCAM-
1 facilitates lymphocytic migration and crossing of the 
blood-brain barrier by interacting with the VLA-4 integrin 
( 4 subunit) on blood mononuclear cells [60], a mechanism 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Simplified diagram showing the putative actions of TNF-  in EAE and MS, including CNS demyelination, apoptosis and leukocyte 

transmigration as described in the text. Exogenous inhibition with an antibody and receptor-IgG fusion protein is also shown. AC = astrocyte, 

EC = endothelial cell, ICAM-1 = Intercellular adhesion molecule 1, Glu = glutamate, IFN-  = Interferon- , mAb = monoclonal antibody, μG 

= microglia, MHC = major histocompatibility complex, Mn = monocyte, M  = macrophage, NO = nitric oxide, OGL = oligodendrocyte, Tc 

= T-cells, TNF-  = Tumour necrosis factor- , TNFR = Tumour necrosis factor-  receptor, VCAM-1 = vascular cell adhesion molecule-1, 

VLA-4 = very late antigen-4. 
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targeted by Natalizumab, a monoclonal antibody against 4 
integrin used in the treatment of MS [61].  

 Upregulation of adhesion molecules is observed in in-
flammation and immune-mediated inflammatory diseases 
[62]. Elevated levels of VCAM-1 have been detected in MS 
lesions but is almost absent in normal brain tissue [63]. High 
levels of VCAM-1 have been measured in the serum of pa-
tients with active MS which correlate to magnetic resonance 
imaging (MRI) evidence of blood-brain barrier breakdown 
[64]. Serum and CSF ICAM-1 levels are also raised in MS 
patients with active disease [65-67]. Both are found to be 
upregulated in the EAE [68-70]. In vitro studies have dem-
onstrated the ability of TNF-  to stimulate the expression of 
these cellular adhesion molecules on vascular endothelial 
cells [60] and astrocytes [71-73]. Barten et al. (1994) further 
demonstrated that anti-TNF-  therapy downregulated the 
expression of vascular endothelial VCAM-1 in passively 
transferred EAE, which was accompanied by disease inhibi-
tion [74]. More recently, it has been demonstrated that TNF-

 signalling through TNF-RI is necessary for VCAM-1 ex-
pression on astrocytes, which in turn was essential for the 
transmigration of autoreactive T-cells into the CNS paren-
chyma in the passively-transferred EAE model [75]. These 
studies further support the role of TNF-  in the various 
stages of the inflammatory process in MS.  

2.3. TNF-  Causes Astrocytic Activation and Prolifera-
tion 

 Astrocytic activation in the CNS results in a reactive gli-
osis, a pathological hallmark of MS lesions. The implications 
of gliosis in MS are wide-ranging and are reviewed in detail 
elsewhere [76]. In a study using in vitro cultures of mature 
bovine brain, TNF- , and to a lesser extent interleukin-6 and 
lymphotoxin, induced proliferation of astrocytes, suggesting 
a key role of TNF-  in the development of CNS gliosis [47]. 
In a similar experiment, TNF-  stimulated the proliferation 
of adult human astrocytes derived in a dose-dependent man-
ner [77]. 

2.4. TNF-  Induces MHC I and II Expression on Neu-

rons and Glial Cells 

 The expression of MHC class I and II molecules, which 
are crucial for antigen presentation and subsequent T-cell 
responses, is normally tightly regulated in the CNS but can 
be induced by the activation or production of transcription 
factors that regulate MHC gene expression. The mechanisms 
by which this is triggered have not been fully elucidated. 
Immunohistochemical analysis of post-mortem brain tissue 
in MS patients has shown an increased expression of MHC 
antigens and its transcription factors in white matter lesions 
and in pre-lesional microglial clusters within the normal-
appearing white matter [78]. MHC Class I antigens in par-
ticular, are highly expressed on neurons and glial cells in 
MS, which are targets for Class I MHC restricted cytotoxic T 
cells [79]. In various in vitro studies, TNF-  has been shown 
to induce or promote the expression of MHC class I and/or 
class II antigens on neurons and glial cells [80-83]. In con-
trast, TNF-  has been noted to inhibit the expression of 
MHC class II antigens on microvascular endothelial cells in 
the murine CNS [84]. This provides one example of a para-
doxical role of TNF-  in the regulation of autoimmunity and 
inflammation in the CNS.  

2.4.1. TNF-  in EAE 

 Our present understanding of the role of TNF-  in MS 
has been helped significantly by studying its effects in EAE 
using transgenic and gene knock-out mice. The histology, 
immunology and clinical symptomatology of various EAE 
models closely resemble that of MS. EAE can usually be 
induced in various species of animals either via immuniza-
tion with exogenous myelin components, including myelin 
basic protein (MBP) and myelin oligodendrocyte protein 
(MOG), or by adoptive transfer of T-cells sensitized to mye-
lin proteins [85]. TNF-  in EAE is mainly expressed by local 
microglia and infiltrating macrophages [85].  

 Studies in EAE have shown that encephalitogenic T-cells 
express higher levels of TNF-  [86, 87]. TNF-  is produced 
and upregulated at various stages of EAE evolution [88-91] 
and in parallel with disease progression [92]. Systemic ad-
ministration of TNF-  increases the severity of EAE, pro-
longs its duration and induces relapses [93-95]. Furthermore, 
direct intravitreal injection of TNF-  has been shown to 
cause demyelination of the optic nerve in mice [96, 97].  

2.5. EAE Development in TNF-  Overexpression 

 Transgenic mice have been developed to overexpress 
TNF-  or its receptors in specific cell lines in the CNS, 
whereas knock-out mice lacking the ability to express TNF-  
, LT-  or both, or one or both of its receptors. Probert et al. 
(1995) utilised a mouse model containing a murine TNF- -
globin hybrid transgene expressed in CNS neurons. The 
mice spontaneously developed a chronic demyelinating in-
flammatory CNS disease with 100% phenotypic penetrance 
consisting of ataxia, seizures, paralysis and early mortality. 
Histological examination of CNS tissues showed lympho-
cytic infiltration, astrocytosis, microgliosis and focal demye-
lination [98]. In a transgenic mouse model with high expres-
sion of TNF-  in oligodendrocytes, immunization with MBP 
induced a severe form of EAE compared to non-transgenic 
controls [99].  

 Another team used transgenic mice which expressed ei-
ther soluble human or transmembrane TNF-  in neurons or 
astrocytes [100]. The soluble TNF-  expressing- mice and 
those that expressed transmembrane TNF-  in astrocytes 
spontaneously developed CNS inflammation with a classic 
phenotype and histological appearance. However, neuronal 
overexpression of transmembrane TNF-  did not cause EAE. 
This could indicate that in order to trigger CNS inflamma-
tion, transmembrane TNF-  signalling requires its host cell 
to directly interact with other cells. Unlike neurons, astro-
cytes are able to participate in direct intercellular contact, 
e.g. with endothelial cells at the blood-brain barrier, and may 
induce critical changes in blood-brain barrier function and 
integrity, a crucial step in the inflammatory cascade [100]. 
EAE caused by overexpression of TNF-  was further shown 
to be independent of the adaptive immune response, as 
shown to occur in mice lacking CD4, 2 microglobulin, 
immunoglobulin μ and RAG-1 [101].  

2.6. EAE in the Absence of TNF-  

 It should be noted that EAE can still occur in the absence 
of TNF-  expression, although the disease severity may vary 
quite considerably between experiments. Single TNF-  
knockout mice showed a milder form of EAE with shorter 
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duration and delayed onset, possibly related to reduced leu-
kocyte trafficking into the CNS in the early stages of disease 
development [102, 103]. TNF-  and LT-  double knockout 
mice demonstrated delayed disease onset of MOG-induced 
EAE and less demyelination, albeit with increased inflamma-
tion [104].  

 Although some of these studies suggest a pathologic ef-
fect of TNF- , there is also evidence of a protective effect, 
such as that seen in TNF-  knockout mice of the 129 or 
C57BL/6 strain, whereby immunization with MOG led to 
extensive inflammation, demyelination and high mortality 
[105]. Other experiments show a varied response to EAE 
induction in the absence of TNF- , depending on the strain 
of mice and antigen used. In the 129xC57BL/6 mouse strain, 
where both TNF-  and LT-  were knocked out, a mild form 
of EAE occurred when immunised with mouse spinal cord 
homogenate (MSCH) [106]. However in the same study, 
SJL/J mice which lacked TNF-  and LT-  expression had a 
more severe and lethal form of EAE when immunised with 
MSCH. In addition, these mice also suffered from pro-
nounced cachexia and demonstrated the pathological hall-
marks of EAE despite the absence of TNF-  and LT- . In 
the same mouse strain, when immunised with proteolipid 
protein, a milder form of EAE was induced compared with 
the non-knockout SJL/J mice. 

2.7. EAE in the Absence of TNFR 

 Mice expressing TNF-  in CNS glial cells developed 
primary demyelination and an oligodendropathy in the pres-
ence of intact TNF-RI receptor and either intact or knocked-
out TNF-RII receptor [107]. However, mice lacking the 
TNF-RI receptor either did not develop EAE or had a milder 
disease course, suggesting that TNF-RI is the primary recep-
tor for the induction of EAE. TNF-RII on the other hand, 
may have a protective role in the clinical course of EAE. In 
separate experiments, TNF-RII knockout mice developed 
more severe demyelination and disease phenotype in MOG-
induced EAE when compared to TNF-RI single and TNF-
RI/II double knock-outs [104, 108].  

 The role of TNF- /TNF-RI signalling alongside Fas 
ligand/Fas in the induction of EAE was further examined in 
mice which were unable to express oligodendrocyte-specific 
TNF-RI (through lack of TNF-RI gene) or Fas (through ho-
mologous recombination and LoxP-Cre methods), or both 
[109]. When immunised with MOG, inactivation of TNF-RI 
or Fas alone partially protected mice from EAE, and inacti-
vation of both conferred complete resistance to EAE, indi-
cating that both receptors are key signallers in the induction 
of apoptosis in EAE.  

3. ANTI- TNF  THERAPY IN EAE AND MS  

 TNF-  inhibition by the administration of a monoclonal 
antibody or soluble TNF-  receptor-Ig G fusion protein has 
proved a successful strategy in the treatment of rheumatoid 
arthritis, psoriatic arthritis, inflammatory bowel disease, an-
kylosing spondylitis, juvenile rheumatoid arthritis and a va-
riety of other immune-mediated inflammatory conditions 
[110]. Two anti-TNF-  monoclonal antibodies (Infliximab 
and Adalimumab) and a soluble TNF-  receptor-IgG fusion 
protein (Etanercept) are currently in commercial use, with 
newer anti-TNF antibodies (Certolizumab and Gollimumab) 
emerging.  

 Studies in EAE hint at the potential of TNF inhibition in 
reducing disease severity and progression in MS. Neutralisa-
tion of TNF-  by administration of an anti TNF-  antibody 
[111-113], soluble TNF-RI receptor [114] or TNF receptor–
IgG fusion protein [111, 115-117] prevented the onset of 
EAE. It is worth noting however, that most of the studies of 
anti TNF-  antibodies in EAE used the adoptive transfer 
model. In a study using SJL/J mice immunised with MBP to 
induce EAE, the administration of an anti-TNF-  antibody at 
induction had no effect on the development of the disease, in 
contrast to the adoptive transfer mice which became resistant 
to EAE [118]. This suggests a differential effect between the 
two models of EAE to TNF-  neutralisation with antibodies.  

 Pharmacological agents such as phosphodiesterase in-
hibitors (e.g. rolipram, mesopram, pentoxyphylline), which 
are known to reduce the expression of TNF-  and LT- , can 
suppress EAE [119-122]. Blocking the conversion of TNF-  
from its transmembrane form to its soluble form (which 
mainly binds the primary TNF-  receptor, TNF-RI) by inhib-
iting the actions of matrix metalloproteinases can also pre-
vent EAE [123-125]. Interferon beta and glatiramer acetate, 
two immunomodulatory agents currently licensed for the 
treatment of relapsing-remitting MS, have wide-ranging ef-
fects on the immune system, part of which include the reduc-
tion of TNF-  production [126, 127] and bioavailability 
[128]. Both agents have been shown to reduce clinical re-
lapses by about 30% in relapsing-remitting MS. In addition, 
corticosteroids, which are used in the treatment of MS re-
lapses, also reduce transcription of TNF-  [129].  

 The effects of direct TNF-  inhibition in MS were first 
evaluated in an open-label study of two rapidly progressive 
MS patients who were treated with a chimeric anti-TNF-  
monoclonal antibody (cA2). This was administered as two 
10 mg/kg intravenous doses 2 weeks apart [130]. Both pa-
tients had an established diagnosis of MS with active relaps-
ing disease. Unexpectedly following each infusion, the pa-
tients developed an increase in the number of gadolinium-
enhancing lesions on brain magnetic resonance imaging 
(MRI) and elevation of CSF IgG index and lymphocyte 
count. These findings suggest that TNF-  inhibition in-
creased CNS immune activation and disease activity in MS 
patients.  

 A later study investigated the safety and therapeutic effi-
cacy of a soluble recombinant TNF-RI fusion protein 
(sTNFR-IgG p55; Lenercept) in MS [131]. Lenercept was 
previously shown to be effective in blocking the onset of 
clinical symptoms in EAE [116] and in treating rheumatoid 
arthritis [132]. The trial was conducted as a double-blind, 
placebo controlled phase II study involving 168 patients, the 
majority of which had relapsing-remitting disease. Patients 
were randomized to 4-weekly 10, 50 or 100mg of intrave-
nous Lenercept or a placebo for 24 weeks, followed by an 
additional 24 week follow-up period. Outcome measures 
consisted of MRI and clinical markers of disease activity. 
The results did not show a significant difference in MRI out-
comes between the study groups, however the relapse rate 
and was significantly higher and time to first relapse signifi-
cantly earlier in the Lenercept group compared to the pla-
cebo. Exacerbations in the Lenercept group also tended to be 
more severe and of a longer duration. The conclusions of this 
study were that anti TNF-  therapy with Lenercept failed to 
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improve disease activity and in fact, worsened MS severity 
in a dose-dependent manner.  

 Subsequently, cases of CNS demyelination and new-
onset MS following treatment with anti TNF-  agents have 
been reported in the post-marketing period [133-137]. All 
three commercial anti-TNF  agents have been implicated. 
Mohan et al. (2001) reviewed the cases of 20 patients with 
inflammatory arthritis who developed neurological events 
which were reported to the US Food and Drug Administra-
tion (FDA) between 1998 and 2000 [133]. The cases were 
temporally related to anti-TNF  therapy. Duration of treat-
ment with anti-TNF-  varied between 2 and 18 months, with 
symptoms occurring between 1 week and 15 months from 
initiation of therapy. Clinical features included sensory dis-
turbance, paresis, optic neuritis and cognitive dysfunction. 
MRI changes consistent with white matter demyelination 
were noted in most cases. On discontinuation of therapy, 
most patients showed partial or complete resolution of symp-
toms. However, despite their obvious implications, these 
cases do not definitively prove a causal relationship between 
anti TNF-  therapy and new-onset MS or CNS demyelina-
tion. Patients suffering from diseases within the spectrum of 
systemic immune-inflammatory disorders such as systemic 
lupus erythematosus and Behcet’s Disease, may have CNS 
demyelination which can be difficult to differentiate from 
MS [138]. Yet, it remains possible that anti-TNF  therapy 
could cause CNS demyelination and may unmask MS in 
some cases.  

4. TNF- : A DOUBLE-EDGED SWORD IN MS 

 The reasons for the disparity in response to TNF-  inhi-
bition between MS, EAE and other immune-mediated in-
flammatory conditions are yet uncertain. The key is likely to 
lie in the pleoitropic nature of TNF-  and possibly also the 
lack of specificity in some of the TNF-  inhibitory treat-
ments used in human trials thus far. Variability between the 
animal models used in experiments and the interpretation of 
experimental results may also play a part in the different 
responses seen [85]. 

 Because of its actions, TNF-  has often been likened to a 
double-edged sword. TNF-  is highly pleiotropic and its 
actions in EAE and MS are not restricted to promoting in-
flammation. In fact, the downstream induction of anti-
inflammatory prostaglandins, glucocorticoids and IL-10 by 
TNF-  serves to counter its own pro-inflammatory effects 
[7]. 

 TNF- /TNF-RI-mediated apoptosis is important for the 
deletion of autoreactive T-lymphocytes in the periphery, 
which subsequently downregulates the inflammatory re-
sponse and promotes immune tolerance [139]. Genetic dele-
tion of TNF-RI in mice resulted in significantly reduced in-
vivo apoptosis of activated cytotoxic T-cells and prolonged 
their persistence in the periphery [140]. In a later experiment 
supporting this finding, mice lacking TNF-  exhibited ab-
normally prolonged myelin-specific T-cell reactivity result-
ing in the exacerbation of EAE [141]. In addition, the immu-
nosuppressive properties of TNF-  were found to be inde-
pendent of TNF-RI. These findings suggest that TNF-  plays 
a dual role in EAE, i.e. in the initiation of a myelin-directed 
immune response and later, in the depletion of autoreactive 
lymphocytes and suppression of inflammation, possibly in-

dependent of TNF-RI activation. It was recently shown that 
mice lacking the ability to cleave transmembrane TNF-  into 
its soluble form exhibited resistance to EAE while retaining 
autoimmune suppressive properties and resisting intracellu-
lar bacterial infections [142]. It may therefore be possible to 
achieve anti-inflammatory effects without inhibiting the im-
mune-regulatory capabilities of TNF-  by specifically target-
ing soluble TNF- , which is the main binding ligand for 
TNF-RI.  

 In a separate experiment, mice lacking TNF-  or TNF-
RII showed impaired remyelination in a cuprizone-induced 
demyelination/remyelination model. On histological exami-
nation, reduction in oligodendrocyte precursors and mature 
oligodendrocytes were noted [143]. The findings suggest that 
TNF-  mediating via TNF-RII may have a reparative role in 
oligodendrocyte regeneration and remyelination.  

 TNF-  is involved in the development and normal func-
tioning of the nervous system. High levels of TNF-  are ex-
pressed in embryonic brain cells [144, 145], although TNF-  
knockout mice seem to be able to develop normally [146]. 
Neuroprotective functions of TNF-  have been observed in 
response to a variety of cerebral insults such as ischaemia 
and trauma. Activation of the NK- B pathway and the induc-
tion of antiapoptotic proteins are recognized neuroprotective 
effects of TNF-  following brain injury [52, 147-149]. In 
another neuroprotective role, TNF-  helps maintain intracel-
lular calcium haemostasis, via the upregulation of calbindin, 
and subsequently reduce glutamate excitotoxicity following 
ischaemic and traumatic brain insult [150, 151].  

 TNF-  mediated activation of the NK- B pathway can 
exert further beneficial effects by stimulating neurotrophic 
factor production essential for the survival, growth and func-
tion of neurons [152-154]. Importantly, TNF-  has been 
shown to induce the proliferation of neuronal progenitors in 
the CNS subventricular zone of adult rodents [155], whose 
equivalent in the human brain is a source of neural stem cells 
and is altered in neurodegenerative conditions [156]. TNF-  
has also been noted to play a role in neuronal plasticity by 
improving synaptic strength via the upregulation of synaptic 
AMPA-type glutamate receptor (AMPAR) expression, 
shown in in vitro hippocampal neuronal cultures [157]. On 
the other hand, an excess of AMPAR may make neurons 
more susceptible to glutamate-induced excitotoxicity [158].  

 TNF-  may enhance other neuroprotective pathways. For 
example, we have recently shown the up-regulation of can-
nabinoid receptors by TNF-  in an NF B-dependent fashion 
(Jean-Gilles et al, manuscript submitted). As shown by ani-
mal experiments, endocannabinoids promote neural stem cell 
proliferation [159, 160]. Another study eloquently demon-
strated the co-dependent interactions between endocannabi-
noid and TNF-  signalling pathways, crucial to neural stem 
cell proliferation [161]. These protective, regenerative and 
plasticity mechanisms are particularly necessary for recovery 
in the post-injury period, whereby a lack of TNF-  has been 
shown to be markedly detrimental in the later stages of brain 
trauma [162]. 

 The dual role of TNF-  is further reflected in the patho-
physiology of stroke. TNF-  promotes the formation of athe-
rosclerotic plaques [163]. Experiments in animal models 
showed that TNF-  expression is quickly upregulated fol-
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lowing acute ischaemia [164] and the direct administration 
of TNF-  following acute stroke worsened focal ischaemic 
injury [165]. Furthermore, the biological effects of TNF-  on 
vascular endothelium can adversely affect microvascular 
perfusion following ischaemia [166]. TNF-  inhibition in 
various preclinical animal models of ischaemia conferred 
protective effects [167]. In contrast, TNF-RI/II knockout 
mice developed more severe focal ischaemia and increased 
oxidative stress following middle cerebral artery occlusion 
[168]. Another team showed that TNF-RI knockout mice 
suffered more damage than wild-type controls following an 
occlusive hypoxic stimulus, whereas the presence of TNF-RI 
directly protected neurons from apoptosis, an effect which 
was further enhanced by exogenous TNF- . This was 
achieved through the activation of the anti-apoptotic NK- B 
pathway and upregulation of the anti-apoptotic protein, 
FLIPL [169]. Furthermore, the inhibition of TACE, which 
proteolyses TNF- , reduced the proliferation of subventricu-
lar zone neural progenitor cells following cerebral ischaemia 
in mice [170].Other experiments have shown the protective 
role of TNF-  in the induction and maintenance of ischaemic 
tolerance, as reviewed in more detail by Hellenbeck et al. 
(2005) [167]. 

 In their recent review, Taoufik and Probert et al. (2007) 
speculate on other protective mechanisms of TNF-  in im-
mune-mediated CNS diseases, including the effects of TNF-

 on the proliferation of microglia, which have highly pluri-
potent functions themselves, and the potential effects of 
TNF-  on regulatory T-cells in the suppression of inflamma-
tion, which warrant further study [171].  

CONCLUSION  

 We now know that TNF-  not only exerts pro-
inflammatory and cytotoxic effects but is also essential for 
the subsequent suppression of inflammation, repair and re-
generation in the CNS. However, extending the findings 
from anti TNF-  treatments in EAE into MS has so far 
proven difficult. With regards to treating MS, the mechanism 
of TNF-  inhibition may be of particular importance, espe-
cially in view of the need to simultaneously preserve its 
many helpful functions. Even if this can be addressed, the 
overlapping biological functions of TNF- /TNFR with that 
of other ligand/receptor superfamily members and the pres-
ence of genetic polymorphisms in individuals make this a 
very challenging prospect.  
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