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Abstract: The most integrated approach toward understanding the multiple molecular events and mechanisms by which 

cancer may develop is the application of gene expression profiling using microarray technologies. As molecular 

alterations in breast cancer are complex and involve cross-talk between multiple cellular signalling pathways, microarray 

technology provides a means of capturing and comparing the expression patterns of the entire genome across multiple 

samples in a high throughput manner. Since the development of microarray technologies, together with the advances in 

RNA extraction methodologies, gene expression studies have revolutionised the means by which genes suitable as targets 

for drug development and individualised cancer treatment can be identified. As of the mid-1990s, expression microarrays 

have been extensively applied to the study of cancer and no cancer type has seen as much genomic attention as breast 

cancer. The most abundant area of breast cancer genomics has been the clarification and interpretation of gene expression 

patterns that unite both biological and clinical aspects of tumours. It is hoped that one day molecular profiling will 

transform diagnosis and therapeutic selection in human breast cancer toward more individualised regimes. Here, we 

review a number of prominent microarray profiling studies focussed on human breast cancer and examine their strengths, 

their limitations, clinical implications including prognostic relevance and gene signature significance along with potential 

improvements for the next generation of microarray studies. 
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INTRODUCTION 

 A leading cause of death among women, breast cancer is 
one of the most common malignancies, with the sporadic 
form of the disease constituting more than 90% of all breast 
cancers. As the level of expression of every gene involved 
during the malignant transformation of a cell is controlled by 
the transfer of information encoded in its genetic blueprint to 
its environment via signal transduction and regulatory 
processes, we can examine this process at various stages [1]. 

 Although estrogen receptor (ER) status is predictive of 
response to hormonal treatments, there are currently no 
clinically useful predictive markers of a patient’s response to 
chemotherapy. As a result all patients who are eligible for 
chemotherapy receive the same treatment even though de 
novo drug resistance will result in the treatment failing in a 
large number of cases [2]. Most breast cancer patients treated 
with adjuvant chemotherapy do not get any benefit, yet are 
still exposed to the toxicity of the therapy. This consideration 
has led to the hypothesis that identifying predictors of 
prognosis may identify those patients who could benefit and 
those who could be spared from adjuvant chemotherapy. The 
expected benefit from such predictors would be to decrease 
acute and latent toxic effects and to reduce the cost 
associated with the treatment of the disease [3]. The 
underlying goal of improving systemic treatments of breast  
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cancer is to evolve from a shotgun approach of treating every 
patient with relatively non-specific cytotoxic chemotherapy 
or hormonal therapy to a more direct practice in which 
patients are treated with therapies aimed at specific 
molecular targets [4]. 

MOLECULAR GENE EXPRESSION APPROACHES 
TO BREAST CANCER INVESTIGATION 

 The application of gene expression profiling using 
microarray technologies is an excellent, integrated, approach 
towards understanding the multiple molecular events and 
mechanisms by which cancer may develop [5]. As the 
process of oncogenesis involves the disruption of diverse 
cellular pathways including cell cycle, growth, survival and 
apoptosis, the high throughput of microarray analyses 
provides a powerful tool with which to examine multiple 
cellular processes simultaneously. Microarray hybridisation 
shows a snapshot of the complete cellular transcriptome on a 
single microarray chip, providing investigators with a global 
perspective of the complex interactions among thousands of 
genes [6]. RNA profiles obtained from microarray analysis 
are a static representation of the biological sample and yields 
the highest information and throughput of any classification 
assay. The identification of a gene signature specific to 
tumour cells may provide important etiological and 
diagnostic clues in the complex interactions of genes 
involved in cancer development. 

 The differentially regulated synthesis and degradation of 
RNA molecules forms hierarchal systems which determine 
organ, tissue and cell function through complex and 
interactive pathways. Therefore, molecular abnormalities 
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controlling the cellular gene transcription machinery may in 
turn contribute to the tumour phenotype [6]. For this reason, 
traditional techniques which focus on a single gene or a 
limited group of genes, limit the ability of researchers to 
identify complex gene interactions. Already, the 
identification of breast cancer molecular subtypes and the 
development of prognostic and predictive molecular 
signatures through gene expression profiling have resulted in 
a better appreciation of the biologic heterogeneity of breast 
cancer [7]. While studies have shown that the use of gene 
expression profiling holds tremendous potential as a new 
prognostic and predictive tool, to date, the clinical 
implementation of this technology has been limited. Here we 
review existing literature regarding the use of gene-
expression based profiling in breast cancer and examine the 

future clinical implications of this emerging technology. 

GENE EXPRESSION PROFILING IN HUMAN 

BREAST CANCER 

 A recent search of the PubMed database (Entrez, 
www.ncbi.nlm.nih.gov) identifies over 1500 publications 
with the key words “gene expression profiling using 
microarray in human breast cancer”. To date, most of this 
research has focussed on the characterisation of 
transcriptional profiles of breast cancer utilising one of two 
platforms, cDNA microarrays or oligonucleotide arrays. 
Here, we review a combination of these (8 cDNA microarray 
studies and 13 oligonucleotide studies) in an effort to 
summarise gene expression studies utilising microarray 

Table 1. Summary of cDNA Microarray Studies Investigating Human Breast Cancer, Including the Identified Key Markers and 

the Study Conclusions 

 

Study Tumour 

Sample Cohort 
Number of 

Probes Used 
Key Markers Findings/Conclusion 

Perou et al. (2000)  42 8 102 

• Cluster included Ki-67 and PCNA 

• STAT1 showed substantial variation in 
expression 

• Classified tumours into 4 major groups 

• Identification of a novel subgroup of basal-
like breast tumours 

Sorlie et al. (2001) 78 8 102 

• Basal-like subtype characterized by high 
expression of keratins 5 and 17, laminin, 

and FABP7 

• ERBB21 subtype characterized by high 
expression of ERBB2 and GRB7 

• Luminal subtype A, demonstrated highest 

expression of the ER, GATA BP 3, X-
BBP 1, TF3, HNF3a and LIV-1. 

• Identification of novel luminal-type 
subclasses luminal A, luminal B and luminal 

C 

• Basal-like, erbB2, luminal subtype BC 
worse clinical outcome: luminal A subtype 

good clinical outcome 

Gruvberger et al. (2001) 58 6 728 

• Top 5 genes higher expression in ER+ : 
ESR1, TFE3, GATA3, P28 and SFRS5 

• Top 5 genes higher expression in ER- : 
S100A8, LCN2, CDH3, PFKP and 

LAD1 

• Confirmed by SAGE: STC2 and CCND1 
which had higher expression in ER+ and 

SLC7 A5 which had higher expression in 
ER- 

• Developed class predictor of 100 genes that 
best distinguish ER+ and ER- breast 
tumours 

• ER presence or absence determines distinct 

gene expression patterns 

Hedenfalk et al. (2001) 16 6 512 

• Tumours separated into 2 groups which 
manifested significantly different 

expression of the CYP1A1  

• Mutation in BRCA1 or BRCA2 gene results 
in gene expression profiles distinct from 

sporadic tumours 

Sotiriou at al. (2003) 99 4 336 

• GSTM3 emerged as an important survival 
marker both this study and van’t Veer et 
al. (2002) 

• PRAME, MYBL2 and BUB1 

• Gene profiles that relate to prognosis may 
help define new therapeutic targets 

• Cell cycle regulation suggests continued use 
of anti-proliferatives is a rational approach. 

Sorlie et al. (2003) 115 13 691 

• Tested prognostic impact of the 231 
markers published by van’t Veer et al. on 

Norwegian cohort - performed less well 
(47%) in predicting recurrences within 5 

years 

• Classification of breast cancer based on gene 
expression profiling captures the molecular 

complexity of tumours 

Ma et al. (2003) 36 1 940 

• 39 genes with increased expression in 
IDC relative to DCIS 

• CKS2, RRM2 and UBE2C showed 
increased expression in IDC relative to 

DCIS (validated by QRT-PCR) 

• In contrast to tumour stage, different tumour 
grades are associated with distinct gene 
expression signatures 

Zhao et al. (2004) 60 13 671 

• Genes whose expression significantly 
differs between ILCs and IDCs: AOC3 , 
ANXA1 , F11R , AKR1C2 , PTGS2 , 

TNF , PKP3 , PLA2G2A , 
ALOX15B , SAA2  

• Gene expression profiling has revealed 
distinct patterns of gene expression among 
ILCs and IDCs 
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hybridisation to derive molecular profiles of human breast 
cancer. These studies are summarised in Tables 1 and 2 
respectively. 

cDNA MICROARRAY STUDIES 

 cDNA microarrays are a competitive hybridization 
reaction where a sample of interest (e.g. tumour) is directly 
compared with a reference sample (e.g. normal tissue). In 
order to accomplish this, RNA isolated from the sample of 
interest and the reference sample are differentially labelled 
using distinguishable fluorescent dye-conjugated deoxyuri-
dine triphosphates (d-UTPs) (usually cyanine-3 (Cy3) and 
cyanine 5 (Cy5)) by reverse transcription using random 
primers. The differentially labelled reference and tumour 
cDNAs are pooled and hybridised to a glass slide spotted 
with cDNA clones. A dual channel pair-wise fluorescence 
measurement is carried out for each spot and the relative 
abundance of the mRNA in the tumour reference mRNA 
sample is obtained as a ratio of Cy5/Cy3 intensities [5]. 

 Through hierarchical cluster analysis Perou and 
colleagues [8], analysed the expression profiles of primary 
breast tumours. Various 'gene clusters' were recognized as 
biologically distinct networks reflecting the phenotypic 
wiring of individual tumours. These molecular portraits 
revealed information on numerous biological levels, from 
broad tumourigenic properties to discrete biochemical 
pathways and intra-tumour tissue heterogeneity. These 
differences led to the discovery of an intrinsic gene subset 
able to distinguish between multiple new cancer subtypes on 
the basis of fundamental tumour properties associated with 
cell-type origin [9]. These subtypes, termed Luminal A/ER+, 
Luminal B/ER+, Normal Breast-like, ERBB2+, and Basal-
like (termed the Perou–Sorlie subtypes), were later 
demonstrated to be stable and reproducible classes apparent 
in different patient populations, which correlated 
significantly with tumour recurrence and patient survival [9]. 
A set of 1753 genes was selected on the basis of a four-fold 
change in gene expression from the median abundance of 
transcript in the sample set. The largest distinct cluster of 
genes within the 1,753-gene cluster diagram was a group of 
genes whose levels of expression correlated with cellular 
proliferation rates. The expression profile of this cluster of 
genes varied widely among the tumour samples but was 
generally well correlated with the mitotic index. As one 
might expect, this cluster also included the genes encoding 
two widely used immunohistochemical markers of cell 
proliferation including Ki-67 and PCNA. In addition, a large 
cluster of genes regulated by the interferon pathway 
(including STAT1) showed substantial variation in 
expression among the tumours, as was previously observed 
in a smaller set of breast tumours [8]. 

 In a subsequent study, Sorlie and colleagues [10] 
examined 78 breast tumours, 3 fibroadenomas and 4 normal 
breast samples to determine if a correlation between 
microarray-based tumour classification and clinical outcome 
could be established. The intrinsic subset of 476 genes 
resulted in a similar distribution based on tumour type as 
originally described [8], but the luminal subtype displayed 
two major sub-groups, the luminal type A, and another 
group, luminal types B and C. Luminal subtype A, 
demonstrated highest expression of the ER gene, GATA BP 

3, X-BBP 1, TF3, HNF3a, and estrogen-regulated LIV-1. 
The basal-like subtype was characterized by increased 
expression levels of keratins 5 and 17, laminin, and FABP7. 
The ERBB21 subtype was characterized by high expression 
of both ERBB2 and GRB7. Interestingly, the luminal sub-
types differed significantly in their outcome of disease-free 
and overall survival, suggesting that this classification had 
novel clinical implications. 

 In the study conducted by Gruvberger et al. [11], breast 
cancers were shown to segregate into clusters depending 
upon whether the tumours were ER+ or ER-, demonstrating 
the association of ER status with distinctive gene expression 
patterns. To determine the minimum number of genes whose 
expression pattern could be used to stratify tumours into 
ER+ and ER- groups, Gruvberger et al. [11] then analysed 
the gene expression profiles of breast cancers from 58 node-
negative patients, of which 23 were ER+ and 24 were ER-. 
The expression patterns of the 3389 genes studied were 
demonstrated to be altered in a statistically significant 
manner. The genes with higher expression in ER+ compared 
to ER- tumours included ESR1, TFE3, GATA3, P28 and 
SFRS5. In contrast, genes with higher expression in the ER- 
compared to ER+ tumours included S100A8, LCN2, CDH3, 
PFKP and LAD1. These results were then confirmed by 
serial analysis of gene expression (SAGE) which also found 
STC2 and CCND1 to be more highly expressed in ER+ 
tumours and SLC7 A5 which had higher expression in the 
ER- tumours. The SAGE analysis also revealed that several 
genes that belonged to the ER set of signature genes were 
not regulated directly by estrogen signalling, suggesting that 
other regulatory pathways may be involved in the expression 
of those genes. The study developed a class predictor of 100 
genes used to distinguish ER+ and ER- breast tumours and 
found that ER presence or absence determined distinct gene 
expression patterns. 

 In 2001, Hedenfalk et al. [12] compared gene expression 
profiles of sixteen tumours from each of three distinct 
tumour types: i) BRCA1 mutation carriers; ii) BRCA2-
positive patients; and iii) sporadic tumours. The authors 
selected a sub-set of 51 genes, whose variance among 
samples best discriminated between the three groups. 
Secondly, the authors used a class prediction method to 
determine if gene expression profiles could correctly classify 
the BRCA1 and BRCA2 mutation-positive tumours. The 
BRCA tumours were separated into two groups using 60 
genes. Interestingly, many of the genes with increased 
expression between the groups were ribosomal, possibly 
indicating different capacities for protein biosynthesis 
between these groups. Nine genes were differentially 
expressed between BRCA1 mutation-positive and BRCA1 
mutation negative tumours, whereas 11 genes were 
differentially expressed in BRCA2-positive and BRCA2-
negative tumours. The two groups also manifested 
significantly different expression of the CYP1A1. The 
authors then used three statistical tests to select 176 genes 
that distinguished between the BRCA1 mutation and 
BRCA2 mutation positive tumours. Of the genes selected, 
BRCA1 mutations appear to affect genes in the DNA repair 
and apoptotic pathway displaying a ‘stress’-type state. An 
important observation of this experiment is that BRCA1 and 
BRCA2 mutations dictate cellular pathways distinct from 
those observed in sporadic tumours. 
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Table 2. Summary of Oligonucleotide Microarray Studies Used to Examine Human Breast Cancers Including the Identified Key 

Markers and the Study Conclusions 

 

Study 
Tumour 

Sample 

Cohort 

Number of 

Probes 

Used 
Key Markers Findings/Conclusion 

West et al. 

(2001) 
46 5642 

• Genes that contribute to discrimination of ER 

status: Trefoil factor 1 (pS2), ER, Cytochrome 

P450, subfamily IIB, Trefoil factor 3 and ILGF 

• Gene expression profile could predict metastatic 

potential even in the absence of reportedly positive 

nodes 

Van ‘t Veer 

et al. (2002) 
117 11 141 

• Genes which were significantly upregulated in ER- 

group (poor prognosis signature) include: cyclin 
E2, MCM6, MMP9, MMP1, RAB6B, PK428, 

ESMI and FLT1 - all considered potential drug 
targets. 

• Signature that defines ER status can be used to decide 

on therapy and signature that reveals BRCA1 status 
may further improve diagnosis of hereditary breast 

cancer. 

Van de 

Vijver et al. 
(2002) 

295 25 000 

• Data indicates that the ability to metastasize to 

distant sites is an early and inherent genetic 
property of breast cancer 

• Classification of patients into high-risk and low-risk 

subgroups on basis of prognosis profile - useful means 
of guiding adjuvant therapy in patients with lymph-

node–positive breast cancer 

Huang et 

al. (2003) 
87 8 628 

• Genes implicated in interferon response found to 

overlap with genes found in study by West el al. 
(2001) including STAT1, MX1, IFIT1, ISG115, 

IFI27, and IFI44 

• Group analysis of lymph-node risk defines metagene 

patterns that can accurately predict high-risk versus 
low-risk cases, in both internal and external validation 

studies 

Ma et al. 
(2004) 

60 14 457 
• 3 genes were identified as differentially expressed: 

HOXB13, IL17BR and EST AI240933 

• HOXB13:IL17BR expression ratio may be useful for 
identifying patients appropriate for alternative 

therapeutic regimens in early-stage breast cancer 

Chang et al. 

(2005) 
295 11 378 

• Used the 4 major group signature derived by Perou 

et al. (2000) and the 70 gene prognosis signature 
by Ven’t Veer et al. (2002) and Chang et al.’s 

(2004) CSR genes to predict ”wound response 
signature” (activated vs quiescent) to predict 

clinical outcome. 

• Both overall survival and distant metastasis-free 

survival diminished in patients whose tumours 
expressed the wound response signature. 

• Wound response signature improves risk stratification 
independently of known clinico-pathogenic risk 

factors. 

Dai et al. 

(2005) 
311 - 

• Many highly expressed genes in tumours of poor 

outcome are cell cycle-associated genes including 
STK6, STK12, CCNB2, CCNE2, BUB1, CDC6, 

CDC25A, CDC45L, MAD2L1, RBL2, E2F1, 
KNSL5, UBE2C, UBCH10, PKMYT1 and BIRC5 

• By combining ER expression level and age, identified 

group of patients with relatively poor outcome 

• Suggest that cell proliferation is the driving 
mechanism associated with poor outcome 

Farmer et 

al. (2005)  
49 12 331 

• Molecular apocrine represent 8-14% of tumours in 

this and 4 published studies 

• Apocrine tumours express HMGCR, GHR, PRLR 
and EGFR 

• Divided mammary tumour cells into 3 groups based 

on steroid receptor activity: luminal (ER+ AR+), basal 
(ER- AR-) and molecular apocrine (ER- AR+) 

Miller et al. 

(2005) 
251 16 308 

• p53-inducible genes PERP, BAX and SFN 

• HOXB13 and IL17BR (Ma et al. 2004) also 

predictive of disease-specific survival in patients 
treated with Tamoxifen monotherapy 

• Show the primary importance of p53 functional status 

in predicting clinical breast cancer behaviour 

Wang et al. 

(2005) 
286 12 331 

• Genes implicated in disease progression: CAPN2, 

ORP, DS phosphatases, Rho-GDP DI, TNF 

superfamily protein, CC 3, MTA protein, PP 1 and 
apoptosis regulator BCL-G 

• Previously characterised prognostic genes cyclin 
E2 and CD44 were also the gene signature 

• Identified 76-gene prognostic signature, which was a 

better predictor in pre-menopausal breast cancer as 

compared to postmenopausal cases 

• Identification of patients at high risk of distant 

recurrence 

Chin et al. 

(2006)  
145 - 

• Suggest FGFR1, TACC1, ADAM9, IKBKB, 

PNMT, GRB7, PROCC, FNTA, ACACA and 

NR1D1 as high-priority therapeutic targets  

• Low-level CNAs appear to contribute to cancer 

progression by altering RNA and cellular metabolism 

Naderi et 
al. (2006)  

135 22 575 

• Over expression of extracellular matrix genes 
OMD, SPARCL1, LUM and developmental genes 

NANOG, TIMELESS, SOX11, SHOX2 

• Genes overlaping with van’t Veer et al. 2002 
BM039, CTPS, PSMD2, BUB1, MAD2L1, 

PSMD7 

• Genes overlapping with Dai et al. 2005 BUB1, 
MAD2L1, PKMYT1, BM039, PSMD7 

• 29 genes that associated with survival 

• Identified a prognostic classifier and gene set, which 
predicts the overall survival in three independent 

studies 

Archarya et 

al. (2008) 
964 22 000 

• 6 prognostically significant clusters representing 

patterns of oncogenic pathway activation and 
tumour biology/ microenvironment 

• Activation of TNF-a, RAS, CTNNB, and SRC 

associated with worst prognosis. 

• Incorporation of gene expression signatures into 

clinical risk stratification can refine prognosis 
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 A study by Sotiriou and colleagues in 2003 [13] 
correlated comprehensive gene expression patterns generated 
from cDNA microarrays with detailed clinico-pathological 
characteristics and clinical outcome in a group of 99 node 
negative and node positive breast cancer patients. Gene 
expression patterns were found to be strongly associated 
with ER status and moderately associated with grade but not 
associated with menopausal status, nodal status or tumour 
size. Hierarchical clustering separated the tumours into two 
main groups based on their ER status, which correlated well 
with basal and luminal characteristics. Statistical analysis 
identified 16 genes that were significantly associated with 
relapse-free survival at a stringent significance level of 0.001 
to account for multiple comparisons. Of 231 genes 
previously reported by van’t Veer et al. (2002) as being 
associated with survival, 93 probe elements overlapped with 
the set of 7,650 probe elements represented on the arrays 
used in this study. Hierarchical cluster analysis based on this 
set of probe elements segregated the population into two 
distinct subgroups with different relapse-free survival, with 
relapse-free survival (P < 0.05) represented by 11 unique 
genes. Genes involved in cell cycle, DNA replication and 
chromosomal stability were consistently elevated in the 
various poor prognostic groups. Another significant finding 
was the melanoma tumour antigen PRAME, along with 
MYBL2 and BUB1 were identified as being significantly 
differentially expressed between the two groups. In addition, 
glutathione S-transferase M3 emerged as an important 
survival marker in both studies. 

 In 2003, Sorlie and colleges [14] set out to refine their 
previously defined subtypes of breast tumours distinguished 
by distinct patterns of gene expression. They analysed a total 
of 115 malignant breast tumours by hierarchical clustering 
based on patterns of expression of 534 intrinsic genes 
resulting in one basal-like, one ERBB2-overexpressing, two 
luminal-like, and one normal breast tissue-like subgroups. 
They also reanalysed published data from two independent 
studies by van’t Veer et al. (2002) and West et al. (2001) 
which are also discussed in the oligonucleotide microarray 
studies section of this review. They derived similar cluster 
analyses for the two published independent data sets 
representing different patient cohorts from different 
laboratories which uncovered some of the same breast cancer 
subtypes. The authors also tested the prognostic impact of 
the 231 markers published by van’t Veer et al. (2002) on 
their cohort which performed less well (47%) in predicting 
recurrences within 5 years. Based on these findings they 
concluded that rather than individual tumour markers, 
patterns that distinguish subtypes appear to provide a more 
refined stratification. 

 The same year as Sorlie and colleagues [14] published 
their findings, Ma et al. (2003) [15] conducted a cDNA 
microarray study on 36 tissue specimens that demonstrated 
one or more pathological lesions: ADH (atypical ductal 
hyperplasia); DCIS (ductal carcinoma in situ); and IDC 
(invasive ductal carcinoma). They generated an in situ gene 
expression profile associated with the premalignant, pre-
invasive, and invasive stages of human breast cancer. A 
paired t-test was performed on 11 patient-matched DCIS–
IDC pairs to identify genes with increased expression in IDC 
relative to DCIS. A total of 39 genes were identified in the  
 

100-gene grade III signature after adjusting the P value. 
Three of these genes were validated by QRT-PCR (CKS2, 
RRM2 and UBE2C). RRM2 may play a dual role in 
supporting rapid cell proliferation and promote invasive 
growth behaviour thus linking higher tumour grade (higher 
proliferation rate) and the DCIS-IDC transition (invasion). 
They revealed extensive similarities at the transcriptome 
level among the distinct stages of progression which suggest 
that gene expression alterations that show the potential for 
invasive growth are already present in the pre-invasive stage. 
In contrast to tumour stage, Ma et al. (2003) [15] suggest 
that different tumour grades are associated with distinct gene 
expression signatures. In their conclusions, they propose that 
a subset of genes associated with high tumour grade is 
quantitatively correlated with the transition from pre-
invasive to invasive tumour growth. 

 Zhao et al. (2004) [16] conducted a comprehensive gene 
expression profiling study to determine if IDC and ILC 
(invasive lobular carcinoma) represent molecularly distinct 
entities and which genes (if any) are involved in the 
development of these distinct phenotypes. The study 
included 64 samples which ranged from ILCs, IDCs, and 
lymph node metastases to normal tissues. Eleven of 21 
(52%) of the ILCs (referred to as “typical” ILCs) clustered 
together and displayed a different gene expression profile to 
the IDCs, whereas the other ILCs (the more “ductal-like” 
ILCs) were distributed between different IDC subtypes. 
Genes with significantly upregulated expression in ILCs 
when compared with IDCs included AOC3, ANXA1, 
AKR1C2, PTGS2, PLA2G2A, ALOX15B and SAA2. In 
contrast, F11R, TNF and PKP3 were shown to be 
significantly down-regulated in the ILCs. Combined, this 
data suggests that over half the ILCs differ from IDCs not 
only in their histological and clinical features but also in 
global transcription programs. 

OLIGONUCLEOTIDE MICROARRAY STUDIES 

 The preparation of oligonucleotide microarrays involves 
multiple steps [5]. Total RNA samples are reverse 
transcribed into cDNA using an oligo-dT primer with a T7 
polymerase promoter sequence at the 5’ end. Unlike cDNA 
microarrays, uniform labelling of the cDNA is not performed 
in oligonucleotide arrays. The cDNA is then converted to 
double-stranded DNA (dsDNA). This dsDNA is then used 
for in vitro transcription using T7 RNA polymerase to 
generate cRNA in the presence of biotinylated rNTPs for 
hybridisation to the chip. Signal is detected by the biotin 
streptavidin detection system where streptavidin is 
conjugated to a suitable fluorophore, the abundance of which 
can be determined using a laser scanner. Thus, 
oligonucleotide arrays have an additional step of target RNA 
amplification via in vitro transcription, leading to loss of the 
most linear relationship between the samples studied. In 
addition, a second loss of linearity occurs during the 
detection of the hybridized cDNA. Whether such processing 
leads to a bias in the overall data or a sub-set of genes is 
debatable. Amplification, however, allows one to perform 
array analyses on extremely small samples of low abundance 
template such as early tumour lesions and biopsies. The use 
of appropriate controls has been shown to reduce data bias 
[17]. 
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 In 2001, West and colleges [18] hybridised RNA from 46 
tumour samples onto a custom made HuGeneFL array to 
develop patterns which classified breast tumours on the basis 
of ER status and lymph node involvement. They assessed the 
utility and validity in predicting the status of tumours. 
Through the use of cross validation determinations they 
determined that genes that contributed to discrimination of 
ER status included trefoil factor 1 (pS2), ER itself, 
cytochrome P450, subfamily IIB, trefoil factor 3 and insulin-
like growth factor. The gene expression profile they 
developed was able to predict the metastatic potential of the 
tumours even in the absence of reportedly positive nodes. 
The authors conclude that the practical value of such an 
approach relies on the ability not only to assess the relative 
probabilities of clinical outcomes for future samples, but also 
to provide an honest assessment of the uncertainties 
associated with these predictive classifications on the basis 
of the selection of the specific gene subsets used for each 
validation analysis. 

 Although breast tumours may be classified similarly 
based upon traditional pathological criteria, response to 
treatment and clinical outcome vary widely. In 2002, van‘t 
Veer et al. [2] used microarray analyses to associate gene 
expression signatures with the history and clinical outcome 
of breast cancers. The investigation utilised 117 tumours 
from node-negative patients under the age of 55 years. Of 
the 25 000 genes analysed, approximately 5000 genes were 
regulated in a way that led to the classification of the 
tumours into 2 distinct groups containing 62 and 36 tumours, 
respectively. The authors subsequently used 78 tumours with 
known clinical outcome to determine a gene expression 
signature predictive of good and poor prognosis via artificial 
neural networks. In addition, they established a signature that 
identified the tumours of BRCA1 carriers. The poor 
prognosis signature consists of genes regulating cell cycle, 
invasion, metastasis and angiogenesis. Genes which were 
found to be significantly up-regulated in the ER- group (poor 
prognosis signature) included cyclin E2, MCM6, MMP9, 
MP1, RAB6B, PK428, ESMI and FLT1, which are all 
considered potential drug targets. As a consequence, the 
authors provided a strategy to identify patients who would 
potentially benefit from adjuvant therapy and established a 
molecular classification of tumours. 

 A number of clinical studies have correlated alterations 
in the expression of individual genes with disease outcome 
with often contradicting results. These include cyclin D1, 
ER- , UPA, PAI-1, HER-2 and c-myc, none of which were 
represented in van’t Veer’s set of 70 marker genes [2]. This 
discrepancy may be due to the fact that the van’t Veer study 
determined expression at the level of transcription while the 
clinical studies measured protein levels. It is more probable 
however that these genes in isolation have only limited 
predictive power, highlighting the need for a multi-gene 
approach. Results from van’t Veer et al. (2002) indicated 
that breast cancer prognosis can be determined from the gene 
expression profile of the primary tumours and that over-
expressed genes in tumours with a poor prognosis profile are 
potential targets for the rational development of new cancer 
drugs. The classification of these targets may improve the 
efficacy of therapeutic development for all tumour types. 
The conclusions drawn from the van’t Veer study suggest 
that small primary tumours negative for node metastases can 

display a poor prognosis signature but may already be 
programmed for metastasis. Thus, gene expression profiles 
may be utilized to determine prognostic classifiers in order 
to predict candidacy for specific therapeutic treatments. 

 In an effort to substantiate the classification based on this 
70-gene signature, van de Vijver et al. [19] initiated a study 
using a cohort of 295 young breast cancer patients. All 
patients in this cohort were aged 53 or younger, but lymph-
node positive patients were included. Interestingly, this was 
only a partially independent data series since 61 of the 
lymph-node negative patients from the original analysis were 
also included in this series. Using an optimized sensitivity 
threshold established in the original training series, 180 
patients had a ‘poor prognosis’ signature and 115 had a 
‘good prognosis’ signature with a mean overall 10-year 
survival rate of 54.6±4.4% and 94.5±2.6%, respectively. In 
multivariate analysis, the poor-prognosis signature was a 
more powerful predictor of distant metastases than other 
independent clinico-pathologic features. This data 
demonstrated the classification of patients into high-risk and 
low-risk subgroups on the basis of a prognostic profile may 
be a useful means by which to guide adjuvant therapy in 
patients with lymph-node positive breast cancers. 

 In 2003, Huang and colleges [20] aimed to predict nodal 
metastatic states and relapse for breast cancer patients. They 
analysed DNA microarray data from samples of primary 
breast tumours, using non-linear statistical analyses to assess 
multiple patterns of interaction of groups of genes that have 
predictive value for the individual patient, with respect to 
lymph node metastasis and cancer recurrence. They 
identified aggregate patterns of gene expression (metagenes) 
that associated with lymph node status and recurrence, and 
that were capable of predicting outcomes in individual 
patients with an approximate 90% accuracy. The metagenes 
defined distinct groups of genes, suggesting different 
biological processes underlie these two characteristics with 
breast cancer incidence. Genes implicated in interferon 
response found to overlap with genes found in study by West 
el al. (2001) [18] include STAT1, MX1, IFIT1, ISG115, 
IFI27, and IFI44. Multiple aggregate measures of gene 
expression profiles defined valuable predictive associations 
with lymph node metastasis and disease recurrence for 
individual patients. Group analysis of lymph-node risk 
defined metagene patterns that accurately predicted high-risk 
versus low-risk cases, in both internal and external validation 
studies. 

 In 2004, Ma et al. [21] generated gene expression 
profiles of hormone receptor-positive primary breast cancers 
in a set of 60 patients treated with adjuvant tamoxifen 
monotherapy. Tamoxifen significantly reduced tumour 
recurrence in several patients with early-stage ER+ breast 
cancers, yet markers predictive of treatment failure have not 
been identified. Three genes were identified as differentially 
expressed in both the LCM (laser capture microdissection) 
and whole tissue section analyses including HOXB13, 
IL17BR and EST AI240933. An expression signature 
predictive of disease-free survival was reduced to a two-gene 
ratio, HOXB13 versus IL17BR, which outperformed existing 
biomarkers. These findings indicate that the 
HOXB13:IL17BR expression ratio may be useful for 



52    The Open Breast Cancer Journal, 2010, Volume 2 Gabrovska et al. 

identifying patients who may benefit from alternative 
therapeutic regimens in early-stage breast cancers. 

 Work by Chang et al. (2005) [22] determined that the 
best validation of a gene signature’s prognostic value is to 
test its ability to predict outcome in large independent data 
sets. In their study they examined a database of 295 breast 
cancer patients that had previously been used to identify and 
validate prognostic gene expression profiles defined by a set 
of 70 genes by van’t Veer et al. (2002) [2] and Van de Vijver 
et al. (2002) [19]. They used the data set to test the 
reproducibility of the association between the wound 
response signature and breast cancer progression, and to 
investigate how the information from diverse gene 
expression signatures identified by various means might be 
integrated both biologically and for clinical use. Their results 
demonstrate that both overall survival and distant metastasis-
free survival are markedly diminished in patients whose 
tumours expressed the wound-response signature. The 
wound-response signature improved risk stratification 
independently of known clinico-pathologic risk factors and 
other previously established prognostic signatures based on 
unsupervised hierarchical clustering (‘‘molecular subtypes’’) 
or supervised predictors of metastasis (‘‘70-gene prognosis 
signature’’). 

 In 2005, Dai and colleges [23] used 311 breast carcinoma 
samples (295 of which were from the Van de Vijver et al. 
study [19]) to show that within a subset of patients 
characterized by relatively high ER expression for their age, 
the occurrence of metastases was strongly predicted by a 
homogeneous gene expression pattern almost entirely 
consisting of cell cycle genes. Over-expression of this set of 
genes was clearly associated with an extremely poor 
outcome, with the 10-year metastasis-free probability only 
24% for the poor prognosis group, compared with 85% for 
the good prognosis group. This gene expression pattern was 
not correlated with outcome in the other patient 
subpopulations. Examination of the molecular functions and 
biological processes of the 50 prognostic genes revealed that 
many of the highly expressed genes in tumours of poor 
outcome are cell cycle-associated genes (for example, STK6, 
STK12, CCNB2, CCNE2, BUB1, CDC6, CDC25A, 
CDC45L, MAD2L1, RBL2, E2F1, KNSL5, UBE2C, 
UBCH10, PKMYT1, and BIRC5). By combining the ER 
expression level and age, the authors identified a group of 
patients with relatively poor outcome. Within this group, a 
gene expression classifier identified a subgroup of patients 
with an almost 70% chance of metastasis. Importantly, this 
gene expression classifier suggests that cell proliferation is 
the driving mechanism associated with poor outcome. These 
results indicate that further refinements of diagnostic 
predictors may more often be generated by combining 
different informative clinical and molecular variables. 

 In 2005, Farmer et al. [24] examined a group of breast 
tumours with increased androgen signalling for correlation 
with a ‘molecular apocrine’ gene expression profile. They 
used tumour samples from 49 patients with large operable or 
locally advanced breast cancers. Principal component 
analysis and hierarchical clustering split the tumours into 
three groups: basal (ER- AR-), luminal (ER+ AR+) and a 
group classified as ‘molecular apocrine’ (ER- AR+). They 
determined that ERBB2 amplification was more common in 

the molecular apocrine group. To determine whether 
molecular apocrine tumours are present but under-reported in 
other breast cancer microarray studies, they identified genes 
able to discriminate between the three groups in their own 
data and correlated this expression pattern with four 
published data sets also discussed in this review (West et al., 
2001; van’t Veer et al., 2002; Huang et al., 2003; Sorlie et 
al., 2003). The luminal/apocrine/basal (LAB) genes were 
mapped in the other data sets and the top 90 genes for each 
pair-wise comparison in each data set retained. Genes that 
best split the three groups were identified, the average 
expression profile correlated and compared with the 
expression profile of individual tumours in the other four 
studies, suggesting that molecular apocrine tumours 
represent 8–14% of tumours in the studies. Their data also 
demonstrated that apocrine tumours express HMGCR, GHR, 
PRLR and EGFR. Overall, their results indicated the ability 
of microarray data to divide mammary tumour cells into 
three groups based on steroid receptor activity. 

 In an effort to prove whether the transcriptional 
fingerprint is a more definitive downstream indicator of p53 
function, Miller et al. (2005) [25] analysed the transcript 
profiles of 251 p53-sequenced primary breast tumours. They 
identified a clinically embedded 32-gene expression 
signature that distinguishes p53-mutant and wild-type 
tumours of different histological grade that outperforms 
sequence-based assessments of p53 in predicting prognosis 
and therapeutic response. From their microarray hierarchal 
cluster analysis, the authors demonstrated that the p53-
inducible genes PERP, BAX and SFN were all expressed at 
higher levels in the p53 mutants and the 26 mt-like tumours. 
They also determined that the previously implicated 
HOXB13 and IL17BR genes [21] were also predictive of 
disease-specific survival in patients treated with Tamoxifen 
monotherapy. These findings highlighted the primary 
importance of p53 functional status in predicting clinical 
breast cancer behaviour. 

 Both Wang et al. [26] and Naderi et al. [27] identified 
gene signatures predictive of distant metastases or survival. 
Wang et al. [26] identified a 76-gene signature consisting of 
60 genes for patients positive for ER  and  and 16 genes 
for ER-negative patients. This signature showed 93% 
sensitivity and 48% specificity in a subsequent independent 
testing set of 171 lymph-node-negative patients. The gene 
profile was highly informative in identifying patients who 
developed distant metastases within 5 years, even when 
corrected for traditional prognostic factors in multivariate 
analysis. The 76-gene profile also represented a strong 
prognostic factor for the development of metastasis in the 
subgroups of 84 pre-menopausal patients and 79 patients 
with tumours of 10–20 mm, a group of patients for whom 
prediction of prognosis is especially difficult. 

 In Naderi et al.’s study [27] a prognostic signature of 70 
genes that significantly correlated with survival was 
identified. Using two different prognostic classification 
schemes and measures, the 70-gene classifier was also found 
to be prognostic in two independent external data sets. 
Overall, the 70-gene set was prognostic in a 715 patient 
cohort. Finally, a common prognostic module of 29 genes 
that associated with survival in both the cohort and the two 
external data sets was identified. The evidence that some of 
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these 29 genes are part of a ‘core’ prognostic signature is 
strengthened by the fact that six (BM039, CTPS, PSMD2, 
BUB1, MAD2L1, PSMD7) were also identified as part of 
the 231 genes that correlated with the prognostic categories 
in the original van‘t Veer et al. study [2] and five (BUB1, 
MAD2L1, PKMYT1, BM039, PSMD7) overlap with a cell 
proliferation signature recently derived from the same data 
and associated with extremely poor outcome [23]. 

 Chin et al. [28] comprehensively profiled 101 tumours at 
the DNA and RNA level, which allowed the authors to better 
define the impact of specific genetic events on breast cancer 
phenotypes in relation to clinical outcome. Sixty-six genes 
deregulated by high-level amplifications were defined as 
potential therapeutic targets. This indicated that genomic 
profiles provide additional prognostic information as 
compared to what is available from transcriptomic profiles 
alone. The study listed nine potential therapeutic targets, 
which much like the prototype HER-2 oncogene, are 
activated by recurrent gene amplifications in breast cancer 
and may show an association with aggressive tumour types. 
Many of these are potential drug targets for small molecule 
inhibitors. Patients whose tumours had one or more DNA 
amplifications had a poor prognosis independent of the 
previously defined five major gene expression classes 
described by Perou et al. [8]. This study demonstrates that 
recurrent CNAs (copy number abnormalities) differ between 
tumour subtypes defined by expression pattern and that 
stratification of patients according to outcome can be 
improved by measuring both expression and copy number, 
especially high level amplification. Low-level CNAs appear 
to contribute to cancer progression by altering RNA and 
cellular metabolism. 

 The most current and, to date, largest clinical whole 
genome expression study was conducted in 2008 by Acharya 
et al. [29]. With a statistically favourable sample size of 964 
clinically annotated breast tumour samples (573 in initial 
discovery set and 391 in the validation cohort), Acharya and 
colleagues looked at gene expression signatures and 
clinicopathological variables in breast cancers to determine a 
refined estimation of relapse free survival and sensitivity to 
chemotherapy. Since their work built on the current standard 
of care, i.e. clinicopathological risk stratification, their 
results provided an opportunity to better understand the 
biology underlying clinically relevant prognostic sub-
phenotypes. Beyond prognosis this approach has the 
potential to dissect broad phenotypes while providing data to 
reveal novel therapeutic opportunities for patients at the 
highest risk of recurrence. Their results not only provided an 
opportunity to tailor targeted therapeutic approaches but also 
suggest opportunities for selection of therapies that may be 
the most effective in patients with specific sub-phenotypes. 
Potential limitations of the study by Acharya et al. [29] 
include the lack of data regarding hormonal therapy in some 
patients. The authors accounted for this by suggesting that 
the incorporation of the knowledge of hormonal receptor 
status (via the clinicopathological model) may function as a 
surrogate for response to hormonal therapy. In addition, the 
panel of signatures representing sensitivity to cytotoxic 
agents in their analysis was not exhaustive, with regiment-
specific signatures for drug combinations proven to be 
effective in breast cancer proven to be more practical. A final 
limitation of the study was the small number of patients 

within certain pathway clusters which hampered statistical 
comparisons. Taken together, these results provide 
preliminary evidence that incorporation of gene expression 
signatures into clinical risk stratification can be used as an 
effective tool to refine prognosis. 

SUMMARY 

 In summarising the 8 cDNA microarray studies and 13 
oligonucleotide studies, several genes were found to overlap 
in a number of the studies. A total of 21 genes were found to 
be significantly differentially expressed in two or more of 
the studies (Table 3). STAT1, a modulator of chemotherapy 
induced apoptosis [30] was not surprisingly differentially 
regulated in Perou et al. (2000), West et al. (2001) and 
Huang et al. (2003). Involved in cell proliferation and 
apoptosis [31], GRB7 was up-regulated in both the Sorlie et 
al. (2001) and Chin et al. (2006) studies. Interestingly, 
GATA3 (GATA BP 3), which has previously been found to 
inhibit breast cancer growth and pulmonary metastasis [32], 
was up-regulated in both Sorlie et al. (2001) and Gruvberger 
et al. (2001). GSTM1, involved in the metabolism of various 
carcinogens, emerged as a survival marker in both van’t 
Veer et al. (2002) and Sotiriou et al. (2003). BUB1, involved 
in spindle checkpoint and preservation of correct ploidy 
through meiosis [33] was differentially expressed in van’t 
Veer et al. (2002), Sotiriou et al. (2003), Dai et al. (2005) 
and Naderi et al. (2006). 

 Abnormal regulation of cell cycle control is one of the 
hallmarks of tumourigenesis [34], and UBE2C, involved in 
the cell cycle, was found to be over expressed in both Ma et 
al. (2003) and Dai et al. (2005). Since the TNF super-family 
of genes are involved in control of cell proliferation, 
differentiation and apoptosis [26], one would expect an over-
expression of these genes; however in Zhao et al. (2004) 
TNF was down-regulated while in Archaya et al. (2008) it 
was associated with a worse prognosis. Another gene 
involved in cell cycle through the regulation of progression 
of cells [34] is cyclin E2 which was significantly up-
regulated in van’t Veer et al. (2002) and Wang et al. (2005). 
A regulator of translation initiation [35], IFIT1 was 
differentially expressed in both West et al. (2001) and Huang 
et al. (2003). A number of other genes were also found to 
overlap between these two studies and they all also appear to 
be involved in the interferon response including MX1, 
ISG115, IFI27 which is also a marker for epithelial 
proliferation [36] and IFI44, involved in T-cell function [37]. 
HOXB13 is pro-proliferative and pro survival role in ovarian 
cancer [38] while IL17BR has is involved in 
immunoregulatory activity [39] yet both of these genes were 
not only found to be significantly differentially expressed in 
both Ma et al. (2004) and Miller et al. (2005), but many 
other studies have also identified them as useful for 
identifying patients appropriate for alternative therapeutic 
regiments in early–stage breast cancer [40-42]. 

 While its function is currently unknown [43], BM039 
was differentially expressed in van’t Veer et al. (2002), Dai 
et al. (2005) and Naderi et al. (2006). Meanwhile CTPS is 
involved in nucleic acid and phospholipid biosynthesis [44] 
and differentially expressed in both van’t Veer et al. (2002) 
and Naderi et al. (2006). The protease subunits PSMD2, part 
of TNF signalling pathway [45] and PSMD7, part of the 
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proteasome pathway [46] were differentially expressed in 
van’t Veer et al. (2002), Dai et al. (2005) and Naderi et al. 
(2006). Another gene which was significantly differentially 
expressed in all three of the same studies includes MAD2L1, 
involved in mitotic arrest [47]. The last gene found to be 
significantly differentially expressed was between Dai et al. 
(2005) and Naderi et al. (2006) which was PKMYT1 and is 
involved in cell cycle progression and DNA damage 
response [27]. 

 These studies provide early evidence that the 
transcriptional mechanisms of breast cancer may not only 
provide novel insights into the biology of cancer but could 
also accurately identify certain previously non-discernible 
clinical phenotypes. The result would be the defining of new 
molecularly informed classifications able to delineate novel 
disease entities associated with patient outcomes [9]. The 
summarised experimental approaches in this review 
demonstrate that patho-biological simulations performed in 
vitro can reveal transcriptional configurations predictive of 
tumour biology [9]. Together, these functional genomic 

strategies are changing the scientific process of breast cancer 
biomarker discovery, toward one that incorporates 
mechanistic parameters. Microarray technology has begun to 
re-define our understanding of the breast cancer onco-
transcriptome and how it relates to tumour biology and 
behaviour. From this point forward, the correlations between 
pathological mechanisms and clinical endpoints can be 
explored. 

FUTURE CLINICAL IMPLICATIONS - PROGNOSTIC 
RELEVANCE OF GENE EXPRESSION 

 Several criticisms, questions and perspectives have been 
raised regarding the prognostic gene signatures reported to 
date. Primarily, some argue that most of the signatures add 
little information when compared to an optimal clinico-
pathological score that would include ER, HER-2 and Ki67 
data in addition to the conventional clinical parameters. It is 
also worthy to note that most of the genes included in the 
various published prognostic gene signatures are related to 
cell proliferation and the question then arises as to whether a 

Table 3. A Summary of cDNA and Oligonucleotide Microarray Studies Used to Investigate Human Breast Cancers 

 

Gene Function Studies 

STAT1 Modulator of chemotherapy-induced apoptosis (Thomas et al. 2004) Perou et al. 2000, West et al. 2001, Huang et al. 2003 

GRB7 Cell proliferation and apoptosis (Han et al. 2001) Sorlie et al. 2001, Chin et al. 2006 

GATA3, GATA BP 
3 

Inhibits breast cancer growth and pulmonary breast cancer 
metastasis (Dynesborg et al. 2009) 

Sorlie et al. 2001, Gruvberger et al. 2001 

GSTM1 Metabolism of various carcinogens (Gudmundsdottir et al. 2001) van’t Veer at al 2002, Sotiriou et al. 2003 

BUB1 
Involved in spindle checkpoint and the preservation of correct 
ploidy through mitosis (Bernard et al. 1998) 

van’t Veer 2002, Sotiriou et al. 2003, Dai et al. 2005, 
Naderi et al. 2006 

UBE2C Cell cycle (Ma et al. 2003) Ma et al. 2003, Dai et al. 2005 

TNF, TNF super 
family, TNF a 

Control of cell proliferation, differentiation and apoptosis (Want et 
al. 2005) 

Zhao et al. 2004, Wang et al. 2005, Archaya et al. 2008 

Cyclin E2 
Regulates the progression of cells through the cell cycle (Gugas et 
al. 1999) 

Van’t Veer et al. 2002, Wang et al. 2005 

MX1 Interferon target gene (Li et al. 2006) West et al. 2001, Huang et al. 2003 

IFIT1 Regulates translation initiation (Weichselbaum et al. 2008) West et al. 2001, Huang et al. 2003 

IFI27, IFI44 

IFI27: novel marker of epithelial proliferation and cancer (Suomela 
et al. 2004) 

IFI44: involved in interferon response, T-cell function gene (Sahar 

et al. 2005) 

West et al. 2001, Huang et al. 2003 

ISG115 Implicated in an interferon response (Huang et al. 2003) West et al. 2001, Huang et al. 2003 

HOXB13 
Pro-proliferative and pro-survival role in ovarian cancer (Miao et al. 
2007) 

Ma et al. 2004, Miller et al. 2005 

IL17BR Immunoregulatory activity (Goetz et al. 2006) Ma et al. 2004, Miller et al. 2005 

BM039 Currently unknown function (Lallier et al. 2007) van’t Veer et al. 2002, Dai et al. 2005, Naderi et al. 2006 

CTPS 
Involved in nucleic acid and phospholipid biosynthesis (Kursula et 
al. 2006) 

Van’t Veer et al. 2002, Naderi et al. 2006 

PSMD2, PSMD7  
PSMD2: part of TNF signalling pathway (Dunbar et al. 1997) 

PSMD7: ubiquitin proteasome pathway (Thompson et al. 2002)  
Van’t Veer et al. 2002, Dai et al. 2005, Naderi et al. 2006 

MAD2L1 Involved in mitotic arrest (Percy et al. 2000) Van’t Veer et al. 2002, Dai et al. 2005, Naderi et al. 2006 

PKMYT1 
Involved in cell cycle progression and DNA damage response 
(Naderi et al. 2006) 

Dai et al. 2005, Naderi et al. 2006 

The table identifies the genes determined to be significantly differentially expressed in more than one of the studies examined. 
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simpler biomarker for such parameter like Ki67, which has 
been measured routinely for decades, could have provided 
similar results. However, gene expression profiling studies 
suggest that measuring proliferation with a more objective, 
automated and quantitative assay may be more robust than 
less quantitative assays such as immunohistochemistry. 

 Another criticism of the technology relates to the fact that 
most of the predictors were generated using a mix of 
molecularly heterogeneous tumours. It has been reported by 
Perou et al. [8] that the breast cancer population is a mix of 
at least four different molecular classes. Since oncogenic 
events are different across molecular classes, some have 
suggested that optimal predictors should be set up in each 
molecular class. This was applied by Wang et al. [26] who 
developed the 76-gene signature to identify patients at a high 
risk of distant recurrence based on the prognostic genes 
separately identified in ER– and ER+ tumours. This study 
demonstrated that proliferation was the strongest parameter 
predicting clinical outcome in the ER+/HER-2– subgroup of 
patients only, whereas immune response and tumour 
invasion appear to be the main biological processes 
associated with prognosis in the ER–/HER-2– and HER-2+ 
subgroups, respectively. Combined, this data implies that the 
molecular background of the tumour should be taken into 
consideration when making predictions regarding prognosis. 

 Despite enthusiasm about the possible clinical 
implications of gene-expression profiling, a source of 
concern has been that comparisons of gene sets derived from 
the various studies show little overlap. This may be due to 
the different types of arrays used, the sample quality and the 
defined parameters used for data interpretation. In gene-
expression profiling with DNA microarrays, short DNA 
fragments, each representing a single gene, are spotted in a 
grid arrangement onto a solid membrane often referred to as 
a “chip”. RNA extracted from fresh frozen tissue is then 
hybridized to the spots with the amount of detectable 
hybridization corresponding to the level of gene expression. 
Subsequently, a computer algorithm is used to identify 
different gene-expression patterns. To date, this technology 
requires the availability of RNA from frozen tissue, although 
researchers are currently investigating whether sufficient 
RNA could be amplified from fixed tissue for use in DNA 
microarray analyses. Given the inherent instability of RNA, 
quality control and reproducibility have posed challenges to 
the use of microarray technology [7]. Differences in the 
handling and processing of samples can influence RNA 
integrity with significant alteration of gene-expression data. 
Microarray technology is susceptible to a number of 
potential errors not just at the time of sampling, pre-
processing and processing but also at the time of calibration 
and analysis of the data. 

GENE SIGNATURE SIGNIFICANCE 

 Even though the sensitivity of gene signatures for 
prognostic purposes appears excellent, there is still an 
approximate 5–10% error rate, with patients who will 
present with metastatic relapse being classified into the 
predicted low risk of relapse group. Although third 
generation chemotherapy has been shown to reduce breast 
cancer deaths by ~30%, optimal chemotherapy may still 
provide benefit even in this positive prognostic population. 

Nevertheless, most of the tumours classified as having a 
good prognosis are actually predicted to be resistant to 
chemotherapy. 

 To date, several gene signatures for prognostic purposes 
have been generated and some of them are currently being 
validated in prospective trials. Although they potentially 
increase the number of patients who could be spared 
adjuvant chemotherapy while still correctly identifying the 
high-risk patients, they present some limitations that need to 
be considered in order to generate more accurate ‘second 
generation’ gene signatures. As already discussed, while 
gene signatures clearly represent a major step forward in the 
molecular prediction of patient outcome and drug sensitivity, 
they are still showing constraints that are the basis for the 
development of second generation gene predictors. These 
constraints in terms of clinical relevance are summarised in 
Table 4. 

 Some solutions to these issues have been presented by 
Desmendt et al. [3]. First, considering that most of the first 
generation gene signatures capture genes correlated to 
clinicopathological characteristics, the focus of several 
groups is on the development of molecular predictors that 
contain genes selected to provide additional information to 
these characteristics. Second, since it is now clear that breast 
cancer can be considered as four distinct molecular groups, 
the next generation molecular predictors should focus on 
homogenous classes, already undertaken by several groups 
including Desmendt et al. [3] and Loi et al. [48]. Third, 
predictors for metastatic relapse should be designed to 
predict both early and late relapses. Fourth, drug-specific 
predictors should be optimally defined either in randomised 
trials that compare two drugs, or based on the two series of 
similar patients with different treatment schedules. The latter 
approach was used to generate a predictor that is specific to 
ixabepilone B as opposed to paclitaxel in a study by Hess et 
al. [49]. Finally, DNA microarrays used to generate first 
generation predictors contained between 22 and 44 K probe 
sets. Although some genes presented multiple probe sets, the 
vast majority of these probes were located in 3’ end of the 
transcriptome. This implies that gene profiling actually 
detects the transcriptional activity, but is unable to determine 
which of the transcripts are expressed for a single gene. Next 
generation arrays investigated by Pando et al. [50], include 
splice arrays, which detect both gene expression and splicing 
events, thereby providing a more functional picture of the 
genomic programme in every patient. 

 While gene-expression profiling has already provided 
important insight into the biologic heterogeneity of breast 
cancer, optimal incorporation of these genomic tools into 
clinical practice is yet to be determined and will depend on 
trials such as TAILORx and MINDACT [7]. Importantly, 
controversy remains about how much refinement in 
prognostic genomic tools provide over the standard 
assessment of histological grade and other clinicopathologic 
features. The importance of grade-related genes in the 
prognostic power of most gene expression models has been 
demonstrated by Desmendt et al. [3], who hypothesized that 
proliferation may serve as the most important common 
denominator in predictive gene-expression signatures. As 
pointed out by Fan et al. [51] the 70-gene signature, the 21-
gene recurrence-score, the wound-response and the two-
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gene-expression ratio models are all significantly correlated 
with histological grade, although to some degree all of these 
models provide prognostic information beyond that obtained 
by histological grade alone. Moreover, the genomic grade 
index (GGI) developed by Sotiriou et al. [52] seems 
promising in its ability to separate the clinically ambiguous 
histological grade II tumours as well as the clinically 
heterogeneous ER-positive tumours into prognostically 
distinct sub-types. Given the difficulty in clinical decision 
making for patients with small ER-positive grade II tumours, 
further refinement of prognosis within this subgroup of 
patients would certainly prove useful. Additionally, genomic 
assessment of histological grade, ER, PR and HER-2 status 
may lead to improved objectivity and accuracy. 

FROM GENE EXPRESSION TO CLINICAL 

EPIDEMIOLOGY 

 Gene expression profiling studies have claimed that 
molecular markers, identified by discovery-based proteomics 
and genomics research, provide a high degree of 
discrimination for cancer diagnosis and prognosis. 
According to Ransohoff et al. [53] some important claims 
about markers for diagnosis and prognosis have been 
unreliable and only weakly reproducible or not reproducible 
at all and the process of development seems slow and 
inefficient. If promising initial results are unreliable but are 
used as a foundation, the overall process of development 
may be inefficient. Although tools of phases and guidelines 
are useful, study design has the most critical role in 
addressing fundamental problems of reliability. To improve 
reliability, strong unbiased samples should be used rather 
than convenient samples however, this is not always 
possible. Methods to improve the reliability and efficiency of 
the process of marker development are being aggressively 
explored. Biganzoli et al. [54] suggests that it is relevant to 
promote the application of suitable study designs and 
statistical methods for the reliable assessment of data 
collected on tumour markers, either genomic or ‘‘old’’, 
along with a faster translation of basic research to medical 
decision-making. These goals can be most successfully met 
through the cooperation of clinicians, biomedical 

informaticians and biostatisticians. According to Hayden et 
al. [55] prognosis-focussed research can provide useful 
information to guide clinicians in their management of 
patients. To do this most effectively, researchers and readers 
of the medical literature should consider the objectives and 
approach of prognosis research studies to move their 
literature forward. 

CONCLUSIONS 

 Studies of gene expression profiling have altered our 
view of breast cancer and provided us with new tools for 
molecular diagnoses. Technical advances are rapid in this 
field, and the microarray platforms that were used to develop 
these signatures interrogated the “mRNA world” [56]. 
Pioneer studies have shown that gene signatures provide 
powerful information that should allow a better tailoring of 
treatment for breast cancer patients in the next five to ten 
years [3]. Building on the limitations exhibited by the first 
generation predictors, (Fig. 1) the second generation of gene 
signatures are currently being developed. This new wave of 
predictors should present a higher accuracy and be more 
complementary to pre-existing and routine treatment 
decision tools. 

 The next generation of microarrays (e.g., tiling arrays, 
microRNA arrays, and direct sequencing of complementary 
DNA) will enable investigators to study the clinical and 
diagnostic potential of new RNA species, including 
microRNAs, RNA transcribed from non-coding DNA, 
pseudogenes, and antisense DNA strands. An exciting 
prospect of microarray-based technology is that multiple, 
distinct predictions including prognosis, ER and HER-2 
status, and sensitivity to various treatment approaches are 
potentially generated from a single assay. This type of test 
would use information from different sets of genes from the 
same tissue for different predictions. This outcome is 
technically feasible and could substantially improve the cost-
effectiveness of a multigene assay. To provide treatment 
recommendations that are truly molecularly tailored to 
individual patients, it is important to measure the risk of 
relapse and the probability of benefit from endocrine therapy 
and chemotherapy separately and to consider the preferences 

Table 4. Summarising the Benefits and Limitations of First Generation Microarray Technology. A List of Potential Solutions for 

the Design and Implementation of Second Generation Analyses Directed Toward Personalised Therapeutics 

 

Beneficial Components of First 

Generation Microarray Technology 
Constraints in Terms of Clinical Relevance of First 

Generation Microarray Technology 
Potential Solutions for Second 

Generation Molecular Predictors 

Predictors for prognosis and drug sensitivity: 

• Added value to optimal clinico-pathological characteristics 

not proven 

• Metric performances not optimal 

• Generated regardless of breast cancer molecular classes 

• Generated using the 1st generation of arrays, of poorer 
coverage and quality 

Predictors for prognosis: 

• Poor performance to predict metastases over 5 years 

Feasible and reproducible across 
platforms 

Validated in retrospective studies 

Medical usefulness under evaluation in 
phase III trials 

Predictors for drug sensitivity: 

• Not generated based on direct comparison between two 
drugs, drug specificity to be determined 

Predictors generated to provide 
additional prediction to an optimal 
clinico-pathological score: select probes 

that increase performance of clinical 
characteristics 

Predictors generated for each molecular 

class 

Use of latest generation of arrays to 
generate predictors: exon arrays and 

splice arrays, SNP arrays and CNA 
arrays 

Predictor for late events 

Generation of drug-specific predictor 

based on the randomised trials 
(interaction test) 
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of patients within this context [56]. Another promising 
direction of research is to examine the hypothesis that 
different markers and biologic pathways may be involved in 
determining prognosis, response, and resistance to therapy in 
different molecular subgroups of breast cancers. As larger 
clinical data sets become available for gene expression 
analysis, it is conceivable that predictors of molecular class 
specific prognosis and treatment response will be developed. 

 As such, it is reasonable to postulate that at least initially, 
genomic results will be used in addition to and not instead of 
standard clinical and pathologic criteria [7]. Clinicians may 
rely on genomic tests as “tiebreakers” in selected cases. 
Whether these tools will be more broadly incorporated into 
clinical care is uncertain at present, but that represents the 
full potential of this technology. Further, it is unclear 
whether one or more tools, existing or yet to be developed, 
will emerge as optimal for widespread use. Technical and 
economic issues will need to be addressed and the manner in 
which genomic data is both presented and used in decision-
making by physicians and patients must be optimised. 

 Gene expression arrays initially began as a method of 
multiplexing single gene discovery, similar to running 
several thousand quantitative RNA dot-blots. From this one-
dimensional approach current expression profiling evolved 
to uncover pathway regulation of gene expression and to 
define molecular classes on the basis of integration of the 
total signals experienced by the cancerous cell. The ability to 
analyse and model complex systems is made possible by 
mathematical algorithms coupled with computational 
capacity which has been essential to this transition. The 
future of array-based expression genomics will lie in this 
analytical complexity and the advancement of such studies 
will have an immense impact on breast cancer research. The 
advantage will be the ability to be comprehensive yet precise 
at the same time and with time, the speed of discovery will 
be remarkable. 

ABBREVIATIONS 

BRCA-1/2 = Breast cancer 1 & 2 gene 

CAN = Copy number alterations 

 

Fig. (1). Comparison of diagnostic and treatment options for breast cancer patients following identification of the tumour through biopsy and 

pathological diagnosis. Treatment regimes include a) traditional chemotherapy - not target specific and generally results in either de novo 

resistance to chemotherapy or relapse; b) 1
st
 generation microarrays – tumour (stage/grade/current markers e.g. ER status) specific in 

combination with a gene expression profile which permits a more targeted chemotherapy approach; and c) 2
nd

 generation microarrays – 

treatment regimes are based on a gene signature based on target identification including splice variants which, correlated with clinical 

parameters, result in a personalised drug and chemotherapy. 
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cDNA = Complementary deoxyribonucleic acid 

CGH = Comparative genomic hybridisation 

c-myc = Proto-oncogene originally isolated from an  
   avian myelocytomatosis virus 

DCIS = Ductal carcinoma in situ 

DNA = Deoxyribonucleic acid 

ER = Estrogen receptor 

GGI = Genomic grade index 

HER-2 = Human EGF-like receptor 2 

MINDACT = Microarray for Node-negative Disease may  
   Avoid Chemotherapy 

mRNA = messenger ribonucleic acid 

PAI-1 = plasminogen activator inhibitor 1 

PR = Progesterone receptor 

RNA = ribonucleic acid 

SAGE = serial analysis of gene expression 

TAILORx = Trial Assigning Individualized Options for  
   Treatment 

TP53 = tumour protein 53 

UPA = transcriptional regulation or urokinase 
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