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Abstract:

Background:

Detrital leaves from seagrass of the Cymodoceaceae family were assayed for biologically active molecules that have commercial as
well as societal benefits.

Objective:

We focused on L-chiro-inositol, a very rare natural occurring cyclitol, and chicoric acid, a polyphenolic compound, in which both
applications were found in the nutraceutical segment.

Method:

Six species of seagrass belonging to the genera Syringodium, Cymodocea and Halodule were collected from their native habitat. The
L-chiro-inositol content of the crude aqueous extracts prepared from different batches of Cymodocea nodosa flotsam was measured
by quantitative 1H-NMR spectroscopy. High concentrations were found with values ranging from 22.2 to 35.0 mg.g-1 plant dw. The
presence of L-chiro-inositol in the tropical species C. rotundata, C. serrulata, Syringodium isoetifolium, and Halodule pinifolia was
also characterized by qualitative NMR. The chicoric acid content of crude aqueous methanolic extracts prepared from C. rotundata,
C. serrulata, S. isoetifolium, and Halodule pinifolia was determined by quantitative HPLC-DAD. The values found ranged from 0.39
to  6.15  mg.g-1  dry  weight.  Chicoric  acid  was  unambiguously  identified  as  the  major  phenolic  in  S.  isoetifolium,  and  Halodule
pinifolia, while it was found in mixture with flavonol derivatives in C. rotundata and C. serrulata. Flavonol derivatives are also of
interest for their bioactivity.

Result:

Considering the demonstrated therapeutic applications of L-chiro-inositol and chicoric acid, their high value on the nutraceutical
market, and their rare occurrence in the plant kingdom, their presence in Syringodium, Cymodocea  and Halodule  detrital leaves
makes this abundant biomass of interest for dietary and pharmaceutical applications.

Conclusion:

These results show that there is a real potential for harvesting beachcast Cymodoceacea.
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1. INTRODUCTION

During the last decade, the global nutraceutical market for medicinal herbs has grown at an unprecedented rate, as
consumers focus on health maintenance using natural products and health-enhancing foods. As a result, plant secondary
metabolites have become economically important in the field of food additives, nutraceuticals and drugs. This is the
case of chiro-inositol and chicoric acid.

Inositols constitute an important class of biologically active compounds [1 - 4]. Only five are known to occur in
plants in variable amounts.  Chiro-inositol exits in two enantiomeric forms, i.e.  D-chiro-inositol (DCI) and L-chiro-
inositol (LCI). They both exhibit a positive effect on glucose metabolism [3], but are very rare in nature, especially LCI,
whose  distribution  in  higher  plants  is  very  limited.  LCI  has  been  identified,  for  instance,  in  Amyema miquelii  [5],
Chrysantemum [6], Cremanthodium ellisii [7], Euphorbia resinifera [8], and Euphorbia pilulifera [9]. More recently,
LCI has been found in Ageratina petiolaris, a plant traditionally used in Mexico for the treatment of diabetes [10].

Chicoric acid (CA; Fig. (1)) is a rare and valuable natural product of special interest owing to its large spectrum of
biological properties including antioxidant activities, anti-obesity effects, anti-HIV, and others [11]. These properties
explain its success on the nutraceutical market [12, 13]. CA is the main phenolic compound in Echinacea purpurea, but
it does not occur in appreciable amounts in other species such as E. pallida and E. angustifolia [14]. The identification
of any novel sources of CA is of economic interest.

Marine biodiversity offers potential resources for a wide variety of non-drug nutritional natural products. Several
species of seaweeds are used as human food or as raw material for the production of nutraceuticals and cosmeceuticals
[15]. Compared to algae, seagrasses remain less exploited despite they offer promising opportunities to find valuable
phytochemicals [16, 17].

Fifty-nine seagrass species are recognised worldwide, distributed in four families [18]. The Cymodoceaceae family
(Manatee Grasses) encompasses the greatest variety with 15 species in five genera.

The  bioactivity  so  far  reported  for  seagrass  metabolites  has  been  recently  reviewed  [19].  Examples  include
cytotoxicity,  antioxidant-,  antimicrobial-,  antiviral-,  or  anti-inflammatory  activity.  The  ability  of  Zosterin  (a  pectin
isolated  from  Zostera  asiatica)  to  decrease  toxicity  of  antitumor  drugs  and  to  purge  heavy  metals  from  human
organisms [20, 21] led to marketed seagrass-derived food and drugs in Russia [see as examples: 22-24]. For our part,
we have demonstrated that  Z.  marina  and Z.  noltei  detrital  leaves  can compete  with  Rosmarinus  officinalis  for  the
production of rosmarinic acid, which is marketed as a nutraceutical [17].

Seagrass  beds  generate  considerable  standing  biomass,  which  could  be  exploited  as  raw  material.  In  places
dependent on tourism, local governments are under great public pressure to remove seagrass detritus from beaches and
shorelines used for recreational purposes. In most cases, the collected biomass is disposed of in waste disposal sites.

The increasing demand for alternative medicine, and the harvesting and collection pressures for the medicinal plants
of interest point up the need for alternative resources. Using dead seagrass biomass as a source of phytochemicals offers
some particular advantages:

Physical events (storm, waves, currents, etc…), and natural seasonal leaf drop result in massive deposit of leaf1.
litter along shorelines. As they originate from large areas of seagrass bed, and sometimes even from different
meadows, they offer a more representative metabolite content than isolated samples from a single meadow.
Seagrasses are much more resistant  to decomposition than are freshwater  angiosperms or algae.  The rate of2.
decomposition  of  seagrass  detritus  is  generally  low  (<  1%  of  dry  wt/day)  compared  with  other  sources  of
detritus.
We have previously shown that significant concentrations of cyclitol and/or phenolic compounds remain in the3.
detrital leaves of species of Zosteraceae and Cymodoceaceae [16, 17, 25 - 27].
In contrast to terrestrial plants, vegetative reproduction is more important in seagrasses than pollination. This4.
limits the plant-to-plant variation and consequent genetic inconsistencies in the type and level of phytochemicals
produced by terrestrial plants.
Heretofore, there has been no market for Cymodoceaceae flotsam, so that the cost of the same is simply that of5.
harvesting.
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Fig. (1). Chemical structure of caftaric- and chicoric acid.

Some members of the Cymodoceaceae family have been reported to accumulate cyclitols, including myo- and L-
chiro-inositol. However, LCI had not been isolated and its stereochemical assignment was only based on a hypothetical
biosynthesis pathway [28].

We have recently reported the isolation of LCI and CA from the dead biomass of the tropical seagrass Syringodium
filiforme [25, 26], and CA from the temperate Cymodocea nodosa [27]. Considering the economic potential of these
two substances within the pharmaceutical, cosmetic, and food industries, it appears of interest to evaluate the potential
of other tropical members of Cymodoceaceae.

The aim of this study was to examine the phytochemical content of detrital leaves, with a view toward exploiting the
flotsam. This work reports the quantitative determination of LCI in the temperate C. nodosa, and the first quantitative
characterization of polyphenols in C. rotundata, C. serrulata, S. isoetifolium, and Halodule pinifolia, which are found
throughout  the  Indian  and  Pacific  Oceans  [29].  In  addition,  these  tropical  species  were  screened  for  the  possible
presence of LCI.

2. MATERIAL AND METHODS

2.1. General

All  the  solvents  used  were  HPLC grade.  Trifluoroacetic  acid  (TFA),  anhydrous  pyridine,  trimethylchlorosilane
(TMCS), and hexamethyldisilazane (HMDS) were purchased from Aldrich Chemical Company (Saint-Louis, Missouri,
USA), and analytical-grade water from Sodipro Company (Echirolles, France). NMR spectra were recorded on a Bruker
AVANCE 400 MHz (Billerica, MA, USA). All the NMR solvents (DMSO, D2O, or CD3OD) and trimethylsilyl d-4-
propionic acid (TMSP) used as internal standards for the qNMR experiments were purchased from Euriso-Top (Gif-sur-
Yvette, France). Ultraviolet (UV) spectra were recorded on a V-630 UV-VIS Jasco spectrophotometer (Easton, USA) in
HPLC grade water. Rotatory power was measured on a Perkin Elmer 241 polarimeter. Authentic sample of caftaric- and
chicoric  acid  (also  known  as  cichoric  acid  and  dicaffeoyltartaric  acid)  was  given  by  Eburon  Organics  (B-2310
Rijkevorsel, Belgium). All the other standards were purchased from Extrasynthèse (Genay, France). Chlorogenic acid
(Extrasynthèse) was used for the HPLC quantification of CA and caftaric acid (CAF).

2.2. Plant Material

The following species were studied: Cymodocea nodosa (Ucria) Ascherson, Cymodocea rotundata, Ehrenberg &
Hemprich.  Ex  Ascherson,  Cymodocea  serrulata  (R.  Brown)  Ascherson  &  Magnus,  Halodule  pinifolia  (Miki)  den
Hartog, and Syringodium isoetifolium (Ascherson) Dandy (Table 1). The temperate seagrass C. nodosa was sampled in
Canary Island and throughout the Mediterranean Sea, while the tropical species were collected along the coast of Palk
Bay, India (Table 1).  Identification of the species was based on morphology and microscopic leaf anatomy of both
living tissue and fresh green detrital leaves, and on comparison with identification keys reported in literature [see as

caftaric acid (CAF)

chicoric acid (CA)
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examples: 30-32].

Whatever the species and the sampling site, green freshly detached leaves were collected in the intertidal zone and
from large accumulations of detritus along shorelines (Table 1). After collection, the samples were thoroughly rinsed in
seawater and then quickly washed in freshwater to remove sand and salt. Associated debris and algae were removed
when present, then plant material was air-dried at room temperature in the dark. When shoreline accumulation contain
several seagrass species, each of them were separated before drying.

Table 1. Collection data.

Genus Species Common
Name

Geographical Range Sampling Site Collection Date

Syringodium
Kützing

S. filiforme Kützing
Synonyms:
Cymodocea filiformis
Cymodocea manatorum
Phucagrostis manatorum

manatee grass Western tropical Atlantic from Florida
(USA) to Venezuela, including the
Gulf of Mexico and the Caribbean
Sea, as well as Bermuda.
,

Guadeloupe, French
West Indies

July to October 2007

S. isoetifolium (Ascherson)
Dandy

noodle
seagrass

Indo-Pacific region, including Fiji and
Samoa.

Palk Bay, Tamil Nadu,
India

October to December
2012

Cymodocea
König

C. nodosa Ucria
(Ascherson)

little Neptune
grass.

Mediterranean Sea and Atlantic Ocean
(Portugal, Mauritania, Senegal,
Canary, Madeira and Cape Verde
Islands)

Canary island, Spain
Cadiz, Spain
Alfacs Bay, Spain
Monastir, Tunisia,
Zeytineli, Turkey

14/07/2007
10/05/2008
21/05/2008
18/07/2008
28/07/2008

C. rotundata Ehrenberg &
Hemprich ex Ascherson

Indo-Pacific Palk Bay, Tamil Nadu,
India

October to December
2012

C. serrulata (R. Brown)
Ascherson & Magnus

Indo-Pacific Palk Bay, Tamil Nadu,
India

October to December
2012

Halodule
Endlinger

H. pinifolia (Miki) den
Hartog

Asian Pacific and eastern Indian
Oceans

Palk Bay, Tamil Nadu,
India

October to December
2012

 
2.3. Extraction of Seagrasses and Determination of their Composition

2.3.1. Typical Procedure for Extraction of LCI

Dried ground leaves (5 g) were extracted at room temperature with water (40 mL, 24 h). The process was twice
repeated, and then the extracts were pooled, lyophilized, and analyzed by NMR.

2.3.2. Isolation and Identification of LCI

A  pure  sample  of  LCI  (72  mg)  was  isolated  from  a  crude  aqueous  extract  of  C.  nodosa  (12  g),  following  the
silylation-desilylation  process  we  have  previously  developed  [25].  The  purity  was  confirmed  by  1H  NMR  and  the
rotatory power was measured on a Perkin Elmer 241 polarimeter at 25°C ([α]D

25 = - 67.8, c = 0.5, H2O).

2.3.3. Determination of the LCI Concentrations by 1H NMR

Samples were prepared with 3.00 mg of dried crude extract, 0.4 mL of D2O and 100 µL of a D2O solution of TMSP
(internal standard), and transferred to a 5 mm NMR tube. The internal standard solution was prepared by dissolving
TMSP of known purity in 5 mL of D2O. One dimensional 1H NMR spectra were acquired with an AVANCE DPX 400
MHz spectrometer (Bruker) in the conditions previously described [25]. For quantitative analysis, manual integrations
of the concerned peaks were achieved. LCI was quantified by integrating the area of the d (2 H) at 3.95 ppm and the
internal reference signal (s, 9 H) at 0.0 ppm. The amount of the internal standard was calculated to give peaks of similar
intensities for both analyte and standard. This similarity helps minimising the error in measurements.

The amount of LCI for each extract was calculated from the resultant analyte to standard peak ratio according to the
following equation:

 

Amount of LCI (extract) =  IS
LCI

IS

IS

LCI

extract

IS

IS

LCI P
N
N

I
I

W
W

MW
MW ����  
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Where:

LCI and IS refer to L-chiro inositol and the internal standard respectively, MW are the respective molecular weights,
W the amount of substance used, I the integrated peak area, N the number of atoms that gives rise to the measured NMR
signals (NIS = 9, NLCI = 2), PIS the percentage purity of the internal standard (98%).

The amount of LCI in the plant is obtained according to the equation:

Amount in the plant = Amount of LCI (extract) x extraction yield.

Data are expressed in milligrams per gram (mg.g-1 of dry matter of leave tissue, mean ± standard deviation (SD) of
three determinations).

2.3.4. Typical Procedure for Extraction of Phenolics

Dried ground leaves (10 g) were extracted at room temperature with aqueous methanol (50:50; 120 mL, 24 h). The
process was repeated, and then the extracts were pooled, evaporated to dryness, and analyzed by NMR, HPLC and LC-
MS.

2.3.5. HPLC Analysis

Separation and quantification of phenolics in the crude extracts were performed as previously described [27] using
the binary gradient 0.1% (v/v) TFA in water (A) and methanol (B). External standard calibration with chlorogenic acid
dissolved  in  methanol/water  (70:30)  with  the  aid  of  sonication  was  established  on  six  data  points,  covering  the
concentration  range  0.0619-0.00619  mg.mL-1.  Linear  regression  on  the  HPLC  analyses  gave  R2  values  of  0.9995.
Chromatographic peaks were checked for peak purity, and identification was achieved by comparing retention times
and UV spectra with those of standards. Quantitative determinations were carried out by peak area measurements at 328
nm, using the calibration curve of chlorogenic acid at the same wavelength and the correction factors, which take into
account the differences in the responses of the HPLC detector to CA, CAF, and chlorogenic acid. These factors have
been determined by the Institute for Nutraceutical Advancement (INA) in the frame of the INA Methods Validation
Program (INA Method 106.000 2000) [33].  The data presented in Table 2  are the average from three experiments,
calculated using the following equation and correction factors:

% W/W individual phenol compound = (C × F × 100)/Cs

Where:

C is the concentration of the tested phenolic compound (mg.mL-1) in the analyzed extract, calculated as chlorogenic
acid from peak areas and linear regression;

F is the correction factor of phenolic response against chlorogenic acid (F = 0.888 for CAF and 0.695 for CA);

and Cs is the concentration of the sample (mg.mL-1) diluted in deionized water for analysis.

Data are expressed in milligrams per gram of dry matter of plant material (mg.g-1 dw; mean ± standard deviation
(SD) of three determinations.

2.3.6. LC-MS Analysis

LC-MS was performed using an HP1100 (Hewlett-Packard, Palo-Alto, CA, USA) equipped with an Agilent MSD
1946B simple quad mass spectrometer and HP Chemstation software. Positive mode ESI spectra of the column eluate
were recorded in the range of m/z 100–1000 a.m.u. Absorbance was measured at 280 and 320 nm. Compounds were
separated  using  an  MN  Nucleodur  C18  column  (Macherey-Nagel,  Düren,  Germany):  125  mm  ×  2  mm  i.d.,  3  μm
particle size. The analytes were eluted at a flow rate of 0.3 mL min-1 using the binary gradient (v/v) formic acid in water
(pH 2.55, A) and methanol (B). The following linear gradient was used: 15% B to 100% B (15 min). Separation of the
analytes was carried out at 50°C. The injection volume was 2 μL. For MS analysis, compounds were detected using the
following conditions: nebulizing gas pressure, 60 psi; drying gas flow rate, 12 mL.min-1; drying gas temperature, 350°C;
capillary  voltage,  4000  V;  temperature  source,  350°C.  Data  were  acquired  in  full  scan  mode  (m/z  100-1000)  at  a
fragmentor voltage of 70 V.
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3. RESULTS AND DISCUSSION

3.1. Quantitative Determination of the LCI Content in C. nodosa

Quantitative analyses of mixtures of sugars are generally carried out  using chromatographic techniques such as
HPLC and GC. However, these methods are time consuming and suffer numerous limitations due to the preliminary
chemical  derivatizations  necessary  for  carbohydrate  detection.  These  problems  can  be  circumvented  by  using
quantitative 1H NMR spectroscopy. This fast,  non-destructive technique with minimal sample preparation has been
proved  useful  for  quantification  of  individual  components  in  crude  extracts  without  the  need  for  fractionation  or
isolation procedures [25, 34 - 37].

The LCI content of the crude aqueous extracts prepared from different batches of C. nodosa flotsam collected in the
Canary  Islands  and  throughout  the  Mediterranean  Sea  was  measured  by  quantitative  1H-NMR  spectroscopy  as
previously described [25, 37]. The presence of three proton signal at δ 3.50 (dd), 3.67 (multiplet) and 3.95 (d), and three
carbon signals at δ 70.48, 71.70 and 72.79, allow identification of the major product to free chiro-inositol [38, 39].

The doublet of LCI at 3.95 ppm, and the singlet (9 H) at 0.0 ppm of the TMSP chosen as internal standard were
used for all calculations. The values found ranged from 22.2 to 35.0 mg.g-1 plant dw (Table 2). These values are in the
same order as those found in S. filiforme [25]. The chiro-inositol contained in C. nodosa was isolated from the crude
extract  to  measure  its  rotatory  power.  The purification  step  was  achieved by sequential  silylation-desilylation  with
HMDS/TMCS in pyridine, then hydrolysis of the silylated chiro-inositol with TFA in CH2Cl2 led to a white precipitate
of  chiro-inositol  (see  Materials  and  Methods  for  details).  Its  purity  was  confirmed  by  1H  NMR  (Fig.  2),  and  the
observed  levorotation  ([α]D

25  =  −  67.8,  c  =  0.5  (literature  data:  [α]D
20  =  −  70,  c  =  0.55  in  H2O  [40]))  allowed  to

unambiguously identify the chiro-inositol contained in Cymodocea to LCI.

To the best of our knowledge, there are few published quantifications of LCI in plants. Epifano et al [41]. found 0.8
mg.g-1  of LCI in Phagnalon sordidum  while Ichimura et al  [6] found concentrations ranging from 0.2 to 1.9 mg.g-1

(fresh weight) in various organs of the ornamental plant Chrysanthemum. In a sample of living S. filiforme leaves from
Jamaica, Drew [28] estimated the LCI content at 50 mg.g-1 but mentioned that his method of quantification could led to
values in excess of 100% e.d.wt. Considering the demonstrated hypoglycaemic action of LCI, the high concentrations
found in our study (23-25 mg.g-1  plant dw) offer promise for the exploitation of C. nodosa  flotsam as a new cheap
source for nutraceutical or therapeutic applications.

The  presence  of  LCI  in  the  tropical  species  C.  rotundata,  C.  serrulata,  S.  isoetifolium,  and  Halodule  pinifolia
collected  in  Palk  Bay  (India),  was  also  characterized  by  qualitative  NMR.  LCI  appeared  to  be  present  in  variable
amount in all the samples.

Few authors have studied the biological properties of LCI, while it is well documented in the case of DCI. DCI has
found applications as drugs [42]. It has a positive effect on glucose metabolism and can be used for the treatment of
symptomatic insulin-resistant type II diabetes without known toxic or deleterious side effects [43] or as a preventive and
treatment  agent  for  cataracts  [44].  DCI  increases  the  action  of  insulin  in  patients  with  polycystic  ovary  syndrome
(PCOS), which is the most common cause of anovulatory infertility in the US [45, 46]. Comparison of the respective
effects of LCI and DCI on diabetic rats have shown that the stereoisomerism differences between the D and L- forms
did not affect the hypoglycaemic action of chiro-inositol [47].

Usefulness of DCI as a nutritional supplement in the treatment or prevention of oxidative stress and related deseases
has  been  claimed  [48],  which  resulted  in  extensive  cultivation  of  Fagopyrum  sagittatum  Gilib  (common  name:
buckwheat)  for  the  production  of  DCI-based  herbal  remedies.  The  concentrations  of  LCI  found in  the  leaves  of  S.
filiforme (23-25 mg.g-1) and C. nodosa (22-35 mg.g-1) are greater than the concentration of total DCI in buckwheat (14
mg.g-1 in farinetta) [49]. The ability of LCI to mimic DCI action, especially management of diabetes, opens promising
opportunities for the exploitation of Cymodoceaceae beach cast.

3.2. Quantitative Determination of the CA Content in Tropical Seagrasses.

High performance liquid chromatography (HPLC) combined with diode array detection (DAD) was used for both
qualitative and quantitative analyses of the crude extract composition. The identification of products in a sample was
performed by matching both their HPLC retention time (Rt) and 220-400 nm on-line UVspectra with those of standards.
Chromatograms were systematically recorded at 280, 328, and 350 nm, which allowed a clear distinction between C6,
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C6-C3,  and  C6-C3-C6  backbone  type  of  phenolic  metabolites.  HPLC analysis  using  a  C18  column  and  methanol:
aqueous trifluoroacetic acid (0.1 M) as the mobile phase allowed separation of the major and minor phenolics in one
chromatographic  run.  Individual  phenolic  compounds  were  identified  by  comparing  the  absorption  spectra  of  the
unknown metabolite with that of authentic standards.

Fig. (2). 1H NMR spectum (in D2O) of pure free chiro-inositol isolated from Cymodocea.

Examination  of  Fig.  (3)  shows  that  S.  filiforme,  S.  isoetifolium,  Halodule  pinifolia  and  C.  nodosa  share  a  very
similar phenolic profile largely dominated by a compound eluted at Rt ~ 36.9 min with a typical caffeate UV spectra in
good agreement with CA (λmax 330 nm). The identity of CA was confirmed by comparison of the retention time, on line
UV and UV-vis spectra, NMR and LC-MS data (ESIMS m/z: 497 [M+23]+; main product ion at m/z = 163), with those
of a commercial standard. All these analytical techniques led to perfectly overlaid results. A minor phenolic eluted at Rt

~ 21.7 min (λmax  328 nm, ESIMS m/z: 335 [M+23]+;  main product ion at m/z  = 163) was identified as caftaric acid
(CAF,  Figs.  1  and  3).  This  substance  often  co-occurs  with  CA  in  others  plants  and  could  originate  from  partial
hydrolysis of CA. The concentrations of CA found for S. isoetifolium and Halodule pinifolia (4.06 and 6.15 mg.g-1,
Table  2)  are  similar  to  those  previously  found  in  S.  filiforme.  In  contrast,  C.  serrulata  and  C.  rotundata  exhibit  a
complex mixture of phenolics, among which CA is still present but less abundant, while a mixture of flavonols was
eluted  between  39  and  45  min.  Their  on-line  absorbance  and  spectral  shape  were  characteristic  of  3-O-glycosyl
flavonols (Fig. 4). On the basis of LC-MS and comparison to standard, some were tentatively assigned to: peak 2: rutin,
MW 610; peaks 8 and 10, Kaempferol glucoside isomers, MW 448; peak 11, Kaempferol pentoside, MW 418. A peak
at 21.5 min (λmax 255 nm) was observed in the two species and identified to p-hydroxy benzoic acid. All the other peaks
eluted from 2.0 to 20 min exhibit a spectral shape with λmax ranging from 250 to 280 nm characteristic of aromatic C6
skeleton.

CA is of special interest due to its rarity in the plant kingdom and its biological properties. It has been reported to
possess multifunctional effects, namely immunostimulating, anti-hyaluronidase and antioxidant activities, the ability to
promote phagocyte activity in vitro and in vivo., the ability to inhibit HIV-1 integrase and replication [50, 51], and a
protective effect on the free radical-induced degradation of collagen [52]. CA has been found to be one of the most
potent HIV-1 integrase inhibitor [11]. Rutin and flavonols are also of interest. Epidemiological studies suggest that a
high dietary intake of flavonols is associated with reduced risk of vascular disease and improvement in a number of
parameters associated with this pathology [53]. Rutin and kaempferol have a variety of biological benefits including
antiallergic, anti-inflammatory, antimicrobial, antiproliferative, antidiabetic, and anticarcinogenic properties [54 - 56].
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Making direct comparisons between our results and the CA amounts reported in the literature for terrestrial plants
appears difficult. Indeed, how the calculations have been done is not always clear, some of the results are expressed on
a fresh weight basis, and concentrations were often obtained without taking into account the difference in the responses
of the HPLC detector to CA and the standards used for quantification. Using the method developed by the Institute for
Nutraceutical Advancement for the Echinaceae [33] solves these problems, and the data obtained represent the real
amounts of CA in the dry plant.

Table 2. LCI and CA content values. Data are expressed in milligrams per gram (mg.g-1 of dry matter of leave tissue, mean ±
standard deviation (SD) of three determinations).

Species Sampling Site LCI Content CA Content
S. filiforme Guadeloupe, French West Indies 23-25a 0.94–5.26 b

S. isoetifolium Palk Bay, India Present, nd 4.06
C. nodosa Canary Island, Spain

Cadiz, Spain
Alfacs Bay, Spain
Monastir, Tunisia,
Zeytineli, Turkey

35.0 ± 0.3
32.9 ± 0.6
22.2 ± 0.1
31.6 ± 0.6
25.0± 0.2

27.44± 0.42c

17.94±0.21
18.52±0.25
17.66±0.24
12.11±0.22

C. rotundata Palk Bay, India Present, nd 0.39
C. serrulata Palk Bay, India Present, nd 0.96

Halodule pinifolia Palk Bay, India Present, nd 6.15
Values from our previous works are given in bold character a [24]; b [25]; c [26]; nd: non quantified

Fig. (3). HPLC profiles of crude extracts obtained from the six Cymodoceaceae species: traces at 280 nm, abscissa in min, ordinate
in mAU. Retention times (min), assignment: 21.7 CAF; 36.9 CA; 38.5-45.0 mixture of flavonols.

Noticeable was the fact that CA and LCI were found in all the species. Although other members of Cymodoceaceae
should  be  analyzed,  these  results  already  suggest  that  CA  and  LCI  could  be  used  as  taxonomic  markers  for
Cymodoceaceae. Among the four families of seagrasses, the Cymodoceaceae encompasses the highest variety with 15
species in five genera. Except for the six species presented in this work, the full characterization of the phenolic content
of the nine others still needs to be established. Considering the high value properties of both LCI and CA, it appears of
interest to investigate these other members of Cymodoceaceae growing in tropical seas.
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Fig. (4). Close-ups of the Cymodocea HPLC traces (280 nm, min, mAU) showing the flavonal compounds and their respective on-
line UV spectum. (a) C. rotundata; (b) C. serrulata. Retention times (min), assignment: (1) 39.3, rutin derivative; (2) 39,7, rutin (8)
42.2 and (10) 43.1, kaempferol glucoside isomers; (11) 44.7, kaempferol pentoside.

CONCLUDING REMARKS

Considering the demonstrated therapeutic applications of L-chiro-inositol [3, 4, 48], and chicoric acid [12, 13], their
high value on the nutraceutical market, and their rare occurrence in the plant kingdom, their presence in Syringodium,
Cymodocea  and  Halodule  detrital  leaves  makes  this  abundant  biomass  of  interest  for  dietary  and  pharmaceutical
applications. These results show that there is a real potential for harvesting beachcast Cymodoceacea.

Seagrass meadows form one of the most widespread and productive coastal systems in the world. Huge amounts of
leaves are shed and washed ashore,  often building important  banks of  seagrass litter.  Recovery of  chiro-inositol  or
chicoric acid from beach waste material could promote opportunities for the economic development of tropical coastal
areas. In the West the demand for herbal drugs has reached a new high in recent years. In India, the total market for
nutraceuticals is also growing trying to incorporate traditional herbal ingredients into the nutraceutical portfolio. Indian
seagrasses were traditionnaly used for thousands of years for a variety of applications from food to medicine and the
engagement of the Tamil Nadu community in collecting and sorting seagrasses has been recently reported [57]. All
these features could justify significant exploitation of this abundant renewable resource. Harvesting seagrass litter on
areas where it is a nuisance to other economic activities, could be of benefit to all.
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