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Abstract: In the present paper, on assuming that the material has infinite friction and no cohesion, i.e. it is No-Tension in the sense
of Heyman, we study the equilibrium of cross vaults of unequal rise, such as those of some Romanesque and Gothic churches. In
particular the case study of the lateral cross vaults of the Cathedral of the old town of Caserta is analyzed. The scope of the paper is
not to study in detail and quantitatively any particular vault, rather we give a compressive equilibrium solution (compatible with the
unilateral material assumption) for the general case of cross vaults, constructed on arches of unequal rise, and loaded by a uniform
load.

For the purpose of the structural analysis, the vault is modelled as a thin shell made of Rigid No-Tension material. The webs of the
vault that we consider, are supported on two crossing ribs. To obtain the axial force inside the ribs, equilibrated and singular stress
fields (that is stress fields concentrated on curves and balanced with the loads) are constructed.

An estimate of the thrust forces transmitted by the vault to the peripheral arches and walls is also obtained, so that the stability of
these structures can be checked.
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1. INTRODUCTION

In recent papers by Angelillo et al. ([1 - 3]), the equilibrium of masonry vaults, domes and helical stairs has been
studied, by applying a simplified theory of vaults, put forward in [4].

In the present paper by following the same line of thinking (that is on assuming that the material has infinite friction
and no cohesion, i.e. it is No-Tension in the sense of Heyman), we shall study the equilibrium of cross vaults of unequal
rise, such as those of some Romanesque and Gothic churches. In particular the case study of the Cathedral of the old
town of Caserta (Fig. 1a) will be analyzed.

The construction of the Cathedral of Saint Michael in Casertavecchia started under Norman domination, in 1113,
and took nearly 40 years to be completed. In 1153, under Archbishop Rainulfo, this Gothic Cathedral was finished,
testifying the new identity of the place, which was undergoing a period of expansion and acquiring a new political
power.

The Latin cross plan of the church, pointed toward East, shows a neat difference of orientation between the nave and
the transept (see Fig. 2a). The form of the transept itself, rather protruded and different in style, suggests that the nave
was the original construction.
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The church  of  Saint  Michael  represents  a  splendid  example  of  interaction  between different  traditions,  cultural
environments and architectural styles, ranging from French-Romanesque style to Sicilian-Arabic influences, testified by
elements of Norman-Arabic mould.

Fig. (1). View of the Cathedral in the old town of Caserta, from the bell tower: (a). View of a lateral vault of the transept: (b).

The facade, whose style is similar to that of the Amalfi Cathedral, shows three white marble portals, nestled into a
comparatively large wall and contrasting with the grey-ochre colour of the tuff masonry stones. The gable is marked
with five equally spaced blind, interwoven arches, supported by six small marble columns.

Fig. (2).  Schematic plan of the Cathedral: (a).  Plan of the left cross vault of the transept (rotated left of 90° with respect to the
previous plan): (b). 3D photographic reconstruction of the intrados of the right cross vault (same orietation of the previous plan): (c).

The roof of the nave is made with shingles supported by a A-shaped wooden trusses, visible from the interior; the
transept is covered by cross vaults of distinct French style, since the stones of the webs are disposed toward the key
stone. Another evidence is given by the form and style of the section of the ribs disposed along the diagonals (see Fig.
1b, 2c and [5], p.165).
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We suggest the reader inclined toward a historical-structural approach to masonry architecture to read the manual on
vaults by Henri Thunnissen [5], which combines the historical interest with practical application and structural insight.

The equilibrium problem that we consider here is represented by the case study represented by the two lateral cross
vaults  of  the  transept,  shown  in  Fig.  (1b),  and  whose  plan  is  reported  in  Fig.  (2b).  A  detailed  3D  photographic
reconstruction of the intrados of one of the two cross vaults is reported in Fig. (2c).

The scope of the paper is not to study in detail and quantitatively any particular vault, rather we shall try to give a
compressive equilibrium solution (compatible with the unilateral material assumption) for the general case of cross
vaults, constructed on arches of unequal rise, and loaded by a uniform load.

For the purpose of the structural analysis, the vault is modelled as a thin shell made of Rigid No-Tension material.
The vault we consider is supported on two crossing arches, which are called ribs. To obtain the axial force inside the
ribs, equilibrated and singular stress fields (that is stress fields concentrated on curves and balanced with the loads) are
constructed.

The existence of such (regular and singular) compressive equilibrium solutions, is a proof that, in the spirit of the
safe theorem of Limit Analysis, the structure can stand without resorting to tensile strength.

An estimate of the thrust forces transmitted by the vault to the peripheral arches and walls is also obtained, so that
the stability of these structures can be checked.

2. The NT MODEL

As a first approximation to the behaviour of the masonry shell that we are studying, the Rigid No-Tension model is
adopted. This crude unilateral model material that idealizes the real material as indefinitely strong in compression but
incapable of sustaining tensile stresses, is rigid in compression and can elongate freely, a positive deformation of the
material being interpreted as a size of fracture into the material (either smeared or concentrated). It must be observed
that, though this ideal material has a limited repertoire of admissible stresses and strains and can exhibit fractures, its
uniaxial behaviour in elongation is elastic in the sense that strain determines stress and there are no residual strains upon
reloading in compression.

The unilateral model for masonry has been around since the nineteenth century (see Moseley [6]), first rationally
introduced by Heyman in [7], was divulgated and extended in Italy, thanks to the effort of Di Pasquale [8] and other
members of the Italian school of Structural Mechanics, such as Romano & Romano [9], Baratta [10], Del Piero [11, 12],
Como [13], Angelillo [14]. Angelillo & Giliberti [15], Angelillo & Rosso [16] and Angelillo & Olivito [17], till the
more recent articles of Fortunato [18] and Angelillo et al. [19 - 22]. A general treatment of internal constraints on stress
can be found in [23].

The formulation of  the BVP for unilateral  masonry materials,  that  is  Rigid No-Tension materials  for  which the
latent strains (fractures) satisfy a normality condition with respect to the admissible stresses, can be found in the recent
papers by Angelillo [22], Silhavi [24], Lucchesi [25] and Angelillo [26].

In particular, in the application we present here, we focus on the statical approach, namely on the safe theorem of
limit  analysis.  By  working  with  the  safe  theorem,  one  can  admit  also  singular  stresses  representing  concentrated
compressive internal forces, with support on surfaces or curves located inside the masonry.

Indeed the more efficient  tool  that  can be introduced for  applying the unilateral  No-Tension model  to  masonry
structures is the systematic use of singular stress and strain fields, within the framework defined by the two theorems of
Limit Analysis (see Angelillo et al. [21] for applications of the safe theorem and Fortunato et al. [27] for applications of
the kinematic theorem to walls).

The concept of compatible loads and distortions, and the validity of the two theorems of Limit Analysis, admitting
singular stresses and discontinuous displacements, are discussed in Angelillo et al. [21, 26, 27]. The use of singular
equilibrated stresses for approximating plane equilibrium problems can be traced to the work of Fraternali et al. [28],
and for vaults to the more recent paper by Block & Ochsendorf [29].

2.1. Examples of Singular Equilibrated Stress Fields

The analysis of some trivial examples of regular and singular equilibrated and compressive stress fields, in the plane
case,  can  help  to  visualize  how  singular  stresses  look  like  inside  the  masonry.  In  Fig.  (3),  three  simple  cases  are
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reported. In the example of (Fig. 3a), there is a panel rigidly supported at the bottom base and subject to a vertical
concentrated force at  the  center  of  the  upper  base.  Two stress  fields  of  pure  compression which are  both statically
admissible for the case considered, are shown.

Fig. (3). Examples of singular stress fields. Singular (right) and regular (left) statically admissible stress fields, corresponding to a
concentrated  load  applied  at  a  point  on  the  boundary:  (a).  Singular  (right)  and  regular  (left)  statically  admissible  stress  fields,
corresponding to regular data: (b); on the left of Fig. (b), the regular stress is a constant biaxial stress field; the regular part of the
stress field on the right of Fig. (b) is represented by uniaxial stresses having discontinuities along the interfaces depicted with double
lines.  Singular  stress  inside  a  reinforced  concrete  beam:  (c);  Uniaxial  stresses  emanate  from  the  upper  boundary,  concentrated
compressive stresses have support on a curved line (represented by a double line in the picture), tensile concentrated stresses have
support on the solid straight line at the bottom (the rebar). Below the curved line the stress is zero.

On  the  left,  a  regular  state,  consisting  of  a  fan  of  uniaxial  compressive  stresses  emanating  from  the  point  of
application of the force, is depicted.

On the right, a singular solution for which a constant singular stress is concentrated along the center line is reported.
We may think of the support of the singular stress inside the panel as a 1d bar carrying an axial force.

In the mathematical terminology such a stress is a line Dirac delta with support on the center line.

The equilibrium conditions on such singular stress fields can be enforced in much the same way it is done with
structures formed by straight and curved bars, that is 1d elements transmitting only axial forces (no moments and no
shears),  and subject  to  given external  loads.  The regular  part  of  the  stress  field  can have  the  effect  of  transmitting
distributed loads to such ideal structures: if the regular part is discontinuous across an internal line Γ , the loads acting
on the ideal 1d structure having the form of Γ , are represented by the unbalanced tractions produced by the regular part
of the stress, across this ideal structure.

The second example (Fig. 3b), refers to a traction problem (that is a boundary value problem of pure loading: no
constraints), in which there are no concentrated forces applied at the boundary. A regular and a singular stress field
balancing the given tractions are reported in Fig. (3b).

A third interesting example is reported in Fig. (3c) . The example is concerned with a rectangular panel loaded by a
uniform load at the upper base, supported by two vertical forces at two points on the lower base, and representing a
concrete beam reinforced by a lower straight rebar and with no stirrups. In the statically admissible stress field that is
depicted in Fig. (3c), the reinforcing steel, simulated in this 2d example by a 1d straight fiber, carries a singular stress,
that is a concentrated constant tensile axial force; the stress field in the concrete consists of a singular part, represented
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by  a  (variable)  concentrated  compressive  axial  force,  applied  on  a  curved  arch,  and  a  regular  part,  represented  by
vertical uniaxial stresses located above the arch, and by vanishing stresses below it.

2.2. Singular Stresses as Line Dirac Deltas

Calling T the stress field inside the body, for linear elastic materials, that is hyperelastic materials for which the
elastic energy is a quadratic function of stress, the usual assumption is that

3. ANALYSIS

3.1. Geometry

The relevant geometrical dimensions of a vault are the geometry of the intrados and extrados surfaces, its (possibly
variable) thickness t, the geometry of the fillings, and for vaults supported on arches rising from piers, the form and
dimension of the enlargements (counter-sinks) of the piers at their tops. A schematic perspective view of a cross vault
with ribs is depicted in Fig. (4a).

It is assumed that the load applied to the vault is carried by a shell structure S of thickness t′. The geometry of the
shell S is not fixed, in the sense that we can displace and distort it, provided that we keep it inside the masonry.

The shell surface S carrying the stress is defined a la Monge, by considering as parameters the x1, x2 components of
the points of S, and defining the third component as x3 = f (x1, x2), f being a continuous function of its arguments. The
orthonormal triad associated to the Cartesian reference system depicted in Fig. (3b) is denoted {ê1, ê2, ê3}.

that  is,  stress  fields  that  are  square-summable are  admitted.  For  RNT materials  a  weaker  assumption can be made,
namely

that is, one can admit stress fields that are only summable. Therefore the set of competing functions enlarges to bounded

measures, that is to summable distributions  :

We note that line Dirac deltas are special bounded measures.

In general, bounded measures can be decomposed into the sum of two parts

(∫

Ω

(T ·Tda

) 1

2

< ∞ ,

∫

Ω

(T ·T)
1

2 da < ∞ ,

∫

Ω

|T̃| < ∞ .

T̃

where r is absolutely continuous with respect to the area measure (that is r is a density per unit area) and s is the
singular part.

For simplicity only bounded measures  whose singular part is concentrated on a finite number of regular arcs, that
is bounded measures admitting on such curves a density s with respect to the length measure, are usually considered.
This  restricted  class  of  distributions,  called  line  Dirac  deltas,  represent  the  distributional  derivatives  of  functions
belonging to a subset of the function space BV (the space of functions of Bounded Variation), called SBV (the space of
function of Special Bounded Variation), that is the space of functions of Bounded Variation whose Cantor part is void
(for reference to such space and other issues connected with free discontinuities, the reader can consult the book by
Ambrosio, Fusco, Pallara [30] and see the papers [31, 32, 33]).

T̃ T̃T̃

T̃

T̃

T̃ = T̃r + T̃s ,



334   The Open Construction and Building Technology Journal, 2016, Volume 10 Contestabile et al.

Fig. (4). 3D view of a gothic groin vault: (a). 3D view of the surface S: (b).

The couple (x1, x2) belongs to a connected 2d domain Ω, called the planform of the membrane S. Ω is a domain
whose boundary ∂Ω is a closed, plane curve of finite perimeter, endowed (a.e.) of a unit outer normal n, contained in
the plane {O; x1, x2}.

The surface that we consider is continuous but not necessarily smooth. A 3D view of such a surface structure, that
could be fitted inside the masonry for the case of Fig. (4a), is depicted in Fig. (4b).

By denoting {•, •, •} the components of vector quantities with respect to the Cartesian frame shown in Fig. (4b),the
parametric description of the surface S is

x(x1, x2) = {x1, x2, f (x1, x2)} . (1)

The natural (covariant) base vectors associated to the curvilinear system defined on S by the couple (x1, x2), are

a1 = {1, 0, f,1} , a2 = {0, 1, f,2} , (2)

where a comma followed by an index, say α, stands for differentiation with respect to xα. The unit normal to S (also
called m in what follows) is defined as

J  =  (1  +  f,2
1  +  f,2

2)
1/2  being  the  Jacobian  determinant,  that  is  the  ratio  between  the  differential  surface  area  and  its

projection on the planform.

The covariant components gαβ of the metric tensor, defined by the relations

gαβ = aα • aβ

are, in this case

g11 = 1 + f,2
1,    g12 = g21 = f,1f,2,    g22 = 1 + f,2

2 .

Finally, the reciprocal (contravariant) base vectors are

3.2. Membrane Equilibrium

The generalized membrane stress on S, is defined by the (surface) stress tensor T. In the covariant base, by adopting
summation convention on repeated Greek indexes: α, β, γ, ... = 1, 2, it can be represented as follows:

a
1 =

1

J2
{1 + f2

,2,−f,1f,2, f,1} , a
2 =

1

J2
{−f,1f,2, 1 + f2

,1, f,2} .

a3 =
1

J
{−f,1,−f,2, 1} ,

a b
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Tαβ being the contravariant components of T. Notice that the basis {a1, a2} is neither unit nor orthogonal, then though
the  contravariant  components  are  useful  and  convenient,  they  are  non-physical  components  of  stress,  and  a  bit  of
conversions is needed to transform them into Cartesian stress components.

Membrane equilibrium is dictated by the condition that the divergence of the generalized surface stress T balances
the load b, defined per unit surface area on S. Such a condition can be written, explicitly, as follows

(3)

The  most  simple  way  of  thinking  about  membrane  equilibrium  of  a  thin  shell  under  a  load  p  defined  per  unit
projected area

(that is p = Jb) is to adopt Pucher’s approach (see [34]). With Pucher’s transformation the generalized contravariant
stress components Tαβ  on the surface are transformed into projected stress components Sαβ  = JTαβ  in the planform (J
being the Jacobian of the coordinate transformation and, as already remarked, the ratio between the surface differential
areas on the surface and on the planform). Indeed, by projecting equation (3) into the three non-coplanar directions {ê1,
ê2, m = a3}, after some algebra,one obtains

Therefore, on substituting for the projected stress components Sαβ and for the load per unit projected area p, one
obtains

(4)

The equilibrium equations (4), in terms of such projected stresses, in the plane of the planform, are identical to those
of the plane problem and, in the case of pure vertical loading (say p = {0, 0, −p}), may be solved with the use of an
Airy stress function F , in the form

(5)

F being a function of x1, x2, usually assumed as smooth, and that here we consider only continuous. Indeed if F is only
continuous, it may have folds, and, along these folds, the projected stress (and hence the actual stress) is a line Dirac
delta with support along the projection Γ of the fold on the planform Ω. The Hessian of F is singular transversely to Γ
(namely has a uniaxial singular part directed as the normal to Γ ); the intensity of the concentrated second derivative
component in the direction of the normal h to Γ , is represented by the jump of the directional derivative of F in the
direction of h, called [F] h. Therefore, the singular part of the Hessian H of F can be written as

δ(Γ ) being the unit line Dirac delta defined on Γ .

Based on relations (5), the singular part of the corresponding projected stress is also a line Dirac delta defined on Γ ,
uniaxial in the direction of the unit tangent k to Γ :

The force acting transversely to the surface S, is balanced by the scalar product of the matrix of the Pucher stress
components times the matrix of the covariant components of the curvature (see the third of equations (4)). In terms of
the Airy’s solution, for the case of pure vertical loading, such transverse equilibrium equation can be rewritten in the
form

p = {p1, p2, p3} ,

S11 = F,22 , S22 = F,11 , S12 = −F,12 ,

T = Tαβ
aα ⊗ aβ ,

∂

∂xγ
(Tαβ

aα ⊗ aβ)a
γ + b = 0 .

(JT 11),1 + (JT 12),2 + Jb1 = 0 ,

(JT 21),1 + (JT 22),2 + Jb2 = 0 ,

JTαβf,αβ − Jf,γbγ + Jb3 = 0 .

S11,1 + S12,2 + p1 = 0 ,

S21,1 + S22,2 + p2 = 0 ,

Sαβf,αβ − f,γpγ + p3 = 0 .

Hs = δ(Γ ) [[F ]]hh⊗ h ,

Ts = δ(Γ ) [F ]hk⊗ k ,
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F,22f,11 + F,11f,22 − 2F,12f,12 = p . (6)

The  first  to  consider  membrane  equilibrium  with  Pucher's  transformation  for  NT  materials  were  Angelillo  &
Fortunato in [4]. If the membrane is made of NT material, the surface stress tensor must be negative semi-definite and
(as it is shown in [4]) the matrix itself of the projected stresses must be negative semi-definite. In terms of the stress
function F , this condition can be translated into the two conditions:

F,11 + F,22 ≤ 0 , F,11F,22 − F,12F,21 ≥ 0 , (7)

that is F must be concave.

3.3. Equilibrium of the NT Membrane in Terms of F

Based on the Airy solution (5), in the case of pure vertical loading, the problem of equilibrium for the unilateral
membrane S reduces to the form:

Find a concave stress function F satisfying equation (6), with the boundary conditions:

(8)

where g and h are the moment and the shear force along a 1d beam structure, having the same form of the projected
boundary, and loaded by the projected tractions acting at the boundary.

Remark.  Equation  (6)  is  a  second-order  p.d.e.  rather  than  a  fourth-order  one  (like  in  plane  linear  elasticity);
therefore,  we cannot impose both boundary conditions.  As a result,  we must choose between prescribing either the
projection of the normal stress component at the boundary (i.e., to give F ) or prescribing the tangential component
(dF/dn given).

If the shape f is given, then the second-order differential equation (6) with the BCs (8) has a unique solution for F
(modulo a  linear  function not  affecting the corresponding stress).  Therefore,  for  a  given shape one can just  verify,
aposteriori, if the solution corresponding to that shape is or is not concave.

The idea is that a concave solution F could be produced, by changing f within the masonry, that is, allowing for the
surface  S  to  vary:  in  a  sense,  under  this  view,  the  problem of  equilibrium of  a  unilateral  membrane  resembles  the
problem  of  equilibrium  of  a  cord  or  a  net  of  cords  under  given  loads:  the  cord  and  the  net  are  underdetermined
structures that change their geometry in order to reach equilibrium (form finding).

Another possible approach to obtain an admissible stress field is to consider f as an unknown, and start from a class
of statically admissible and concave Pucher stresses, by assigning a restricted class of concave stress functions F (notice
that  this  can be done,  since the  planform equilibrium equations  are  independent  of  the  shape).  Then determine,  by
solving  the  p.d.e.  of  transverse  equilibrium,  a  corresponding  restricted  class  of  shapes  f  ,  and  check  whether  the
corresponding S can fit inside the vault.

Some iterative procedures based on the alternate applications of this two dual approaches starting from f or from F,
are proposed and exploited in a recent paper (see [1]) in the case of domes. Here we use simply the approach based on
the assignment of a restricted class of stress functions F.

4. EQUILIBRIUM OF A NT CROSS VAULT: A CASE STUDY

4.1. Geometry of the Surface S for a Cross Vault

The  relevant  geometrical  dimensions  of  a  generic  cross  vault  are  the  internal  spans  a,  b,  the  rises  h1,  h2  of  the
supporting arches, and the rise h of the center of the vault. The, possibly variable, thickness t of the vault is another
important parameter. An element whose definition is of crucial importance, is the geometry of the fillings together with
the form and dimension of  the enlargements  (counter-sinks)  of  the piers  at  their  tops.  A schematic  3D view of  the
intrados of a cross vault is depicted in Fig. (5a), to which we refer for notations.

It is assumed that the load applied to the vault is carried by a shell structure S of thickness t′. The geometry of the
shell S is not fixed, in the sense that we can displace and distort it, provided that we keep it inside the masonry.

We describe the shell surface S a la Monge, in the form (1), that is in terms of a continuous function f depending on

F|∂Ω = g or

(
dF

dn

)

|∂Ω

= h ,
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x1, x2. For the surface S, we assume:

(9)

{Ω1, Ω2}, being the partition of the planform Ω of S, shown in Fig. (5a).

The surface that we consider is continuous but not smooth; it is divided into four curved sectors, meeting at an angle
at the common boundaries. In doing this we follow the geometry of the intrados of the vault, and, as we shall see, allow
for concentrated forces along the ribs. The geometry of the ribs (shown by thick solid lines in Fig. 6a), treated as 1d
arches, is defined by the intersection of these surfaces. A schematic 3D view of such a folded structure S is depicted in
Fig. (4b).

Fig. (5). Schematic 3D view of the intrados of a cross vault: (a). Quadratic, continuous and folded, stress function F, corresponding
to the form (7), for a special choice of the parameters:(b).

4.2. Equilibrium on the Folds of f

For the cross vault shown in Fig. (5a), we then explore the possibility that both S (i.e., f ) and the stress function F
are folded on the same line Γ  ,  that  is,  both the curvature field (i.e.,  the Hessian of  f  )  and the stress  field (i.e.  the
Hessian of F ) have singularities in the form of line Dirac deltas having support on Γ .

The fact  that  when F  is  folded on a  line Γ  then also f  must  be folded on the same line (and vice-versa)  can be
explained as follows. To fix ideas assume that F,11 is a line Dirac delta along the line Γ = {(x1, x2, 0) Ω s.t. x1 = 0}, that
is the surface whose graph is represented by F is folded and the folding line has a projection on the planform in the form
of a straight line directed as the axis x2.

By rewriting the equation of transverse equilibrium (6) along the line Γ

F,22| Γ f,11| Γ + F,11| Γ f,22| Γ − 2F,12| Γ f,12| Γ = p| Γ , (10)

we deduce that, in order to satisfy it, point by point, along Γ , either

f,22| Γ = 0, that is, the line on S that projects on x2 is straight;i.
p is singular along Γ and cancels F,11| ΓF,22| Γ;ii.
F,11| Γ is singular along Γ (i.e., also S is folded along Γ ) and F,22| Γ f,11| Γ cancels F,11| Γ f,22| Γ.iii.

Therefore, if the surface S is curved along Γ , and p is absolutely continuous, both F and f must be folded along the
same line Γ .

4.3. Transverse Equilibrium Starting from F

To construct a statically admissible stress field for the cross vault, we start by assigning a restricted class of stress
functions, depending on a few parameters.

A sensible choice for F is of the type depicted in Fig. (5b). The corresponding Pucher stress is a piecewise constant
and singular stress field (the singular part being a concentrated axial force field with support on the diagonals); four
balanced concentrated forces, directed as the diagonals and representing the thrust of the diagonal arches, emerge at the
corners (see Fig. 7a). The class of stress functions we consider is defined as follows

a b

( )
( ) { }
( ) { }

1
1 2 1 2 1

1 2 2
1 2 1 2 2

,  ,     , Ω

,

 ,
,  ,     , Ω
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Fig.  (6).  3D view of  the  surface  S,  which  is  the  solution  for  the  case  at  hand:  (a);  the  ribs  are  reported  with  thick  black  lines.
Quadratic, continuous and folded, stress function F corresponding to the solution: (b).

(11)

σ, σ1, σ2, being unknown parameters. The surface represented by this composite stress function is represented in Fig.
(5b),  for  a  particular  value  of  the  parameters,  is  continuous  but  folded  along  the  lines  ℓ1,  ℓ2,  whose  parametric
description is

The regular part of the stress corresponding to the function F defined in (11) is piecewise continuous. In Ω1

and in Ω2

Notice that the stress inside Ω1 and Ω2 is negative semidefinite if σ1 ≤ σ and σ2 ≤ σ, a circumstance that is to be
verified at the end of the analysis.

Since  the  surface  is  folded,  then  its  Hessian  is  singular  along  the  diagonals  of  the  rectangular  planform.  The
corresponding singular part Ss of the projected stress S associated to F , having support on the two diagonals

is a line Dirac delta, whose intensity can be computed as the jump of slope of F across the diagonals.

Some simple calculation show that, in the present case, the singular stress can be written as follows:

(12)
where

F (x1, x2) =
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and δ(Γ1), δ(Γ2) are the line Dirac deltas with support on the diagonals, k1, k2 the unit vectors along the diagonals.

From (12) we see that the axial internal force, concentrated along the diagonals, is non positive (that is compressive)
if

σ ≤ σ1 + σ2

Assuming that the load p is uniform, in order to satisfy the equation of trans-verse equilibrium (6) away from the
diagonals (that is where the stress is regular), the shape (9) must be piecewise quadratic. The general solution of these
two differential equations (given the restrictions on the shape of S, see Fig. (5a)) is

(13)

where  h,  h1,  h2,  are  the  rises  of  the  diagonal  and lateral  arches,  three  parameters  that  we may change slightly  with
respect to the corresponding actual values at the intrados, in order to fit the surface S inside the masonry.

For the cross vault of Figs. (1b, 2b, 2c), the values of the geometrical parameters appearing in (13), expressed in
meters, are a = 6.42m , b = 7.25m , h = 5.10m , h1 = h = 5.10m , h2 = 4.51m .

The form of the surface S corresponding to these values of the parameters, obtained as a solution for the case at
hand, is depicted in Fig. (6a). In the same pictures the ribs of the arch are reported with thick, solid lines.

If f is piecewise quadratic and of the form (13), taking into account (11), the equilibrium equation (6), written inside
Ω1 and Ω2 (that is excluding the diagonals) gives the two algebraic conditions

(14)

Besides these two equations, we must also enforce equilibrium along Γ1 and Γ2, that is impose equation (10). In the
case at hand, such a condition reduces to the single algebraic equation

that, since must be valid for any value of x1 in the interval [−a/2, a/2], gives the condition

(15)

The system formed by equations (14) and equation (15), is linear in the three unknown parameters σ, σ1, σ2, and
admits the unique solution:

(16)

Notice that, this solution verifies all the conditions that must be imposed on the parameters in order that the stress be
compressive, if h1 ≤ h, h2 ≤ h.

Finally, from (11) on the base of (16), stress function which we select to generate a statically admissible stress field
is

σ =
a2b2hp

8 (h2 − hh1 − hh2 + 2h1h2)
,

σ1 =
a2b2h2p

8 (h2 − hh1 − hh2 + 2h1h2)
,
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a2b2h1p

8 (h2 − hh1 − hh2 + 2h1h2)
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8(hσ − h1σ − hσ1 + 2h1σ1)

a2b2
= p ,

8(hσ − h2σ − hσ2 + 2h2σ2)

a2b2
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8
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(17)

The 3d plot of this function for a = 6.42m, b = 7.25m, h = 5.10m, h1 = h = 5.10m, h2 = 4.51m is reported in Fig.
(6b). It can be observed that, in this special case, the surface of which this F is the graph, is a ruled surface (that is has a
single curvature) in Ω2, and is a double curvature surface in Ω1.

4.4. Postprocessing of the Solution Obtained in Terms of F

4.4.1. Projected Stresses and Forces

By recalling (5), the projected stress corresponding to the stress function (17) consists of regular and singular parts
Sr and Ss. For what concerns the regular part, in Ω1

and in Ω2

Fig. (7). In (a), schematic picture of the projected stress field corresponding to the stress function (17): here A = a2/(8(h2 − hh1 − hh2 +
2h1h2)), B  =  b2/(8(h2  −  hh1  −  hh2  +  2h1h2)),  In  (b)  schematic  picture  of  the  projected  stress  field
corresponding to the stress function (17), in the case study; the load per unit area p must be given in kNm-2, and the projected stress
components, are generalized stresses which read in kNm-1. In (c), plot of the projected axial force along the diagonals (dashed line)
and of the axial force along the fold (solid line), as a function of x1, in the interval [−a/2, a/2].

Notice  that  the  stress  inside  Ω1  and  Ω2  is  negative  semidefinite  if  h1  ≤  h  and  h2  ≤  h.  Schematic  pictures  of  the
projected stresses for the general case and for case study, are reported in Figs. (7a, b).

Since  the  surface  is  folded,  then  its  Hessian  is  singular  along  the  diagonals  of  the  rectangular  planform.  The
corresponding singular part of the projected stress S associated to F , having support on the two diagonals Γ1, Γ2, is a
line Dirac delta, whose intensity can be computed as the jump of slope of F across the diagonals.

Taking into account (17) and recalling (12), in the present case, the singular stress can be written as follows:

Ss = δ(Γ1)g(h, h1, h2, p) |x1| k1  k1 + δ(Γ2)g(h, h1, h2, p) |x1| k2  k2 ,

( )

( )( )
( )( ) { }

( ) ( )
( )( ) { }

2 2 2 2 2
2 1 2 2

1 2 12
1 2 1 2

1 2 2 2 2 2 2
1 1 1 2

1 2 22
1 2 1 2

4 4
 ,   , Ω

64 2
,  .

4 4
 ,      , Ω

64 2

b h x a b h h h x
p x x

h h h h h h
F x x

b h h x a b h h x
p x x

h h h h h h

− + + − +
 ∈

+ − +
= 

− + + −
∈ + − +

 

Sr =

[
− a2(h−h2)p

8(h2−hh1−hh2+2h1h2)
0

0 − b2h2p
8(h2−hh1−hh2+2h1h2)

]
,

Sr =

[
− a2h1p

8(h2−hh1−hh2+2h1h2)
0

0 − b2(h−h1)p
8(h2−hh1−hh2+2h1h2)

]
.

⊗⊗

a b c

K = b
√

a2 + b2(h h1h2)A/2a.



Static Analysis of Cross Vaults The Open Construction and Building Technology Journal, 2016, Volume 10   341

where,

and δ(Γ1), δ(Γ2) are the line Dirac delta with support on the diagonals, k1, k2 are the unit vectors along the diagonals.

Then the projection on the planform of the axial contact force transmitted along the two ribs, written as a function of
x1 is

(18)

N is positive if h ≤ h1 + h2.

4.4.2. Physical Stresses and Forces

To pass from projected stress components to physical stress components some transformations are needed.

If we just wish to write the principal stresses Σ1, Σ2 of the regular part of stress T on the surface S, we can compute
the first and second invariants i1, i2 of the stress tensor on S and find the two eigenvalues by solving the equation

Σ2-i1Σ + i2 = 0 . (19)

Taking into account that

and considering that, in the case study a = 6.42m, b = 7.25m, h = 5.10m, h1 = h = 5.10m, h2 = 4.51m, by solving (19),
we obtain, in Ω1

Notice that the previous formulas are dimensional, in the sense that the load per unit area p must be given in kNm-2,
and Σ1, Σ2 read in kNm-1.

N = b
√

a2 + b2
(h− h1 − h2)

8 (h2 + 2h1h2 − h(h1 + h2))
p |x1| .

g(h, h1, h2, p) = b
√

a2 + b2
(h− h1 − h2)

8 (h2 + 2h1h2 − h(h1 + h2))
p ,

i1 = tr T = gαβT
αβ = gαβ

1

J
Sαβ ,

i2 = J2(T 11T 22 − T 11T 21) = S11S22 − S11S21 ,

and in Ω2

Σ1 = − 0.1515p√
1 + 0.6263x22

, Σ2 = −1.263 + 0.7914x22√
1 + 0.6263x22

p ,

Σ1 = − 1.142 + 0.875x21√
1 + 0.766x21 + 0.01102x22

p , Σ2 = 0 .

One way to obtain physical components is, instead, to consider a variable orthonormal system {k̂1 , k̂2} tangent to S,
and obtain the Cartesian components T(αβ) of T in such reference system, through the formula

(20)

Taking into account, again, that Tαβ = 1/J
Sαβ and recalling (2), from (20) one obtains

By choosing, in Ω1: k̂1 = a1 / |a1|, k̂2 = a2 / |a2|, and in Ω2: k̂1 = a1 / |a1|, k̂2 = a2 / |a2|, in the case study, one obtains, in Ω1

T(αβ) = T · k̂α ⊗ k̂β .

T(αβ) =
1

J
Sµν(aµ · k̂α)(aν · k̂β).
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(21)

and in Ω2

(22)

Fig. (8). Contour plot of the physical stress components Σ(11) (a) and Σ(22) (b). In (c), plot of the physical stresses Σ(11) (dashed line) and
Σ(22) (solid line), at x1 = a/2, versus x2. Notice that the stress Σ(11), at x1 = a/2, represents the thrust per unit length applied horizontally
to the supporting arch/wall. In (d), plot of the physical stress Σ(11), at x2 = b/2, versusx1. To read the pictures dimensionally, the load
per unit area p must be given in kNm-2, and the projected stress components, are generalized stresses given in kNm-1.

From (21), (22) we deduce that the directions k ̂1 , k ̂2 chosen in Ω1, and Ω2, are eigenvectors for the surface stress in
the regions Ω1, and Ω2 respectively.

Also these formulas are dimensional, in the sense that the load per unit area p must be given in kNm-2, and T(αβ) are
generalized stress components which read in kNm-1.

The  contour  plots  of  these  physical  components  are  shown  in  Figs.  (8a,  b).  In  Figs.  (8c,  d),  plots  of  the
nonvanishing  stress  components  at  the  boundary,  are  reported.  Finally  the  axial  force  along  the  diagonal  ribs

T(11) = − 0.1515p√
1 + 0.6263x22

,

T(12) = T(21) = 0 ,

T(22) = −1.263 + 0.7914x22√
1 + 0.6263x22

p ,

T(11) = − 1.142 + 0.875x21√
1 + 0.766x21 + 0.01102x22

p ,

T(12) = T(21) = 0 ,T(22) =

a b

c d
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can be obtained by the contact axial force N. Taking into account that, in the case study, the unit tangent to the rib, say
Γ1

S , is:

and that, recalling (18), the value of the projected axial force, in the case study, is:

N = -1.688 |x1| p , (23)

one obtains:

(24)

In Fig. (7c), plots of the axial force NS and of its projection N, are reported. From (23), (24) the value of the axial
force PS at a vertex and of its projection P can be calculated:

P = −5.417 p , PS = −12.83 p . (25)

Notice that the formulas (23), (24), (25) are dimensional, in the sense that the load per unit area p must be given in
kNm-2, and N , NS, P , PS, read in kN.

CONCLUSION

The  present  paper  is  concerned  with  an  application  of  the  safe  theorem  of  Limit  Analysis  to  the  study  of  the
equilibrium of a Gothic cross vault under the effect of pure vertical loading. The possibility of applying the theorems of
Limit Analysis to masonry structures, stems from the adoption of the so called masonry-like model, that is essentially
the model of Heyman describing Rigid No-Tension materials.

Based on the particular results that we present here, the cross vaults that we consider (the cross vaults of the transept
of  the  Cathedral  of  Casertavecchia)  are  in  a  compressive,  stable  state  of  equilibrium  and  the  stress  level  is  small
compared with the limit strength of the stones. Besides the distributed thrust transmitted to the walls and to the lateral
arches, and the concentrated thrust transmitted to the piers, give rise to internal forces largely comprised within the
thickness of the masonry.

The approach we propose is not restricted to the particular case that is considered, and can be applied to cross vaults
of general shape, that is having different rises along the sides and at the center.

The method, put forward in by Angelillo, Fortunato in the paper [4], and applied to simple vaults by Angelillo et al
in [1] and to spiral stairs by Angelillo in [2], leans on the use of singular stresses concentrated on surfaces (membranes),
on the Monge representation through a function f of the membrane surface, and on the Pucher formulation of membrane
equilibrium.

For parallel external loads, the Airy stress solution of equilibrium, based on a stress function F , can be adopted. In
this case, the equilibrium of the vault is described by two scalar functions: the function f , representing the shape, and
the function F , representing the stress. On assigning the shape f, the stress function F is determined by solving the
second order differential equation of transverse equilibrium. Vice versa, if F is given, the shape f is found by solving the
same  equation.  In  both  cases  the  problem  is  constrained,  since  F  must  be  concave  in  order  that  the  stress  be
compressive, and the surface described by f must be contained inside the masonry due to the No-Tension assumption.

In the present paper we adopt the second strategy, namely we assign a restricted class of stress functions F and find
a function f  that  is  contained within the masonry,  by solving the equation of  transverse equilibrium. In general  the

NS = −1.119 |x1|
√
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search of the couple (f, F ), can be formulated as an optimization problem, constrained by an equality constraint (the
transverse  equilibrium  equation),  and  the  inequality  constraints  resulting  from  the  No-Tension  assumption.  The
objective function to be minimized could be either the stress energy of the membrane or a scalar measure of the thrust
of the vault. The development of this line of research, deserving further study, is encouraged by the preliminary results
concerning cross vaults that we present here and in the recent papers [2, 3], where simple vaults and spiral stairs are
considered.
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