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Abstract:

Background:

A very important aspect in the planning and design of a harbor is to determine the response of the harbor basin to incident waves.
Many previous investigators have studied various aspects of the harbor resonance problem, though correct to a certain extent, have
some disadvantages.

Objective:

To calculate wave response in an offshore or coastal harbor of arbitrary shape, this research develops a two-dimensional linear,
inviscid, dispersive, hybrid finite element harbor resonance model using conservation of energy approach. Based on the mild-slope
wave equation, the numerical model includes wave refraction, diffraction, and reflection. The model also incorporates the effects of
variable  bathymetry,  bottom  friction,  variable,  full  or  partial  absorbing  boundaries,  and  wave  transmission  through  permeable
breakwaters.

Methods:

Based on the mild-slope wave equation, the numerical model includes wave refraction, diffraction, and reflection. The model also
incorporates the effects of variable bathymetry, bottom friction, variable, full or partial absorbing boundaries, and wave transmission
through permeable breakwaters. The Galerkin finite element method is used to solve the functional which was obtained using the
governing equations. This model solves both long-waves as well as short-wave problems. The accuracy and efficiency of the present
model are verified by comparing different cases of rectangular harbor numerical results with analytical and experimental results.

Results:

There said results indicate that reduction in wave amplitude inside a harbor caused by energy dissipation due to water depth, linearly
sloping bottom, and bottom friction is quite small for a deep harbor. But for a shallow harbor, these factors are critical. They also
show that reduction in wave amplitude inside a harbor due to boundary absorption, permeable transmission, harbor entrance width,
and horizontal dimensions.

Conclusion:

Those factors are very important for both deep and shallow harbors as proven by accurate agreement with the prediction of this
numerical model. The model presented herein is a realistic method for solving harbor resonance problems.

Keywords: Harbor resonance, Mild-slope wave equation, Conservation of energy, Variable depth, Bottom friction, Absorbing and
transmitting boundaries.
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1. INTRODUCTION

Groups of linear and nonlinear waves with high crest pose hazards to ships, inducing harbor resonance and over-
topping of structures. In the planning and design of a harbor the response of the harbor basin to incident waves is crucial
but  modelling of  waves varies  dramatically.  A harbor  is  dynamically similar  to  a  mechanical  or  acoustical  system,
where certain wave oscillation phenomena may produce resonance. Numerous studies have been conducted on various
aspects of the harbor resonance problem. Lee [1] developed a theory for wave-induced oscillations in constant depth
harbors of arbitrary geometry, by applying Weber’s solution of the Helmholtz equation. Chen and Mei [2, 3] developed
a  linear  inviscid,  nondispersive,  hybrid  finite  element  model  based  on  a  variation  principle  for  treating  arbitrary
platform geometries. Houston [4] used a model based on the mild-slope equation to study the interaction of tsunamis
with the Haeaiian Islands. Zelt [5] derived a Lagrangian description of nonlinear, dispersive and dissipative processes
for  wave propagation in two horizontal  dimensions,  to study the influence of  sloping boundaries on the long wave
response of  bays and harbors.  Tsay et  al.  [6,  7]  and Hamidi  et  al.  [8]  applied the mild-slope equation to effects  of
topographical variation and energy dissipation. Ganaba, et. al. [9] and Woo, et. al. [10, 11] developed finite element
methods for boundary layer modelling with application to dissipative harbor resonance problems. Boussinesq equation
models  have  also  been  successfully  applied  to  harbor  modelling  (Abbott  and  Madsen,  1990)  [12].  These  previous
numerical model studies have contributed significantly to the understanding of harbor resonance, but have not included
wave  energy  dissipation  with  bottom  friction,  boundary  absorption  and  wave  transmission  through  permeable
breakwaters. Researchers took advantage of rapid growth of computation capacity of computer to further develop tools
analysing long waves [13, 14] and nonlinear waves [15, 16].

Analytical investigation results also showed that the boundary conditions greatly affect the harbor resonance. Many
research programs focused on the harbor depths from constant slope [16, 17], Cosine squared bottom [18], exponential
bottom [19], to parabolic bottom [20] and geometric configuration [21], and the singular boundary method (SBM) [22]
(ISBM) [23]. Therefore, the need to develop realistic and fully interactive models for the prediction of wave conditions
inside a basin is imperative.

In  the  present  study,  the  governing  model  equation  is  based  on  the  mild-slope  wave  equation,  including  wave
refraction,  diffraction  and  reflection,  and  the  effects  of  variable  transmission  through  permeable  breakwaters.  The
function is based on a conservation of energy approach which represents the physical characteristics of actual harbors in
a realistic environment. An effective hybrid finite element method is used for solving the mild-slop wave equation. The
entire harbor basin is divided into a number of triangular finite elements. The resulting wave amplitudes response at the
node points is matched with the eigenfunction expansion employed for the region outside the harbor. The sensitivity of
the present model is evaluated by comparing the numerical results with analytical and experimental results for different
cases of rectangular harbors.

2. THEORETICAL DEVELOPMENT

In  this  theoretical  development,  the  fluid  is  assumed  homogeneous,  inviscid,  incompressible,  and  its  motion
irrotational.  Berkhoff  [24]  derived  an  expression  for  two-dimensional,  monochromatic  waves  of  infinitesimal
amplitude, over slowly varying water depths, which modelled both refraction and diffraction. The resulting mild-slope
wave equation can be expressed as:

(1)

where Φ (x, y) is the velocity potential on the mean free surface z = 0 and the vertical variation in the potential is:

,  and  c  =  ω/k  is  the  phase  velocity,  which  can  be  calculated

from the dispersion relation ω2 = gk tanh kh and Cg = dω/dk is the group velocity, where k is the wave number, ω is the
radian frequency, and h is the water depth.

If water depth is constant or deep, Eq.(1) reduces to the Helmholtz equation:

(2)

(x, y, z; t) = (x, y)
coshk(z+h)

coshkh
e−𝒾ωt

Φ
−  

∇2Φ + k2Φ = 0  

             ∇ ∙ (CCg∇Φ) +
cgω2

c
Φ = 0       
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2.1. Arbitrary-Shape Harbor Formulation Governing Equation

For an arbitrary-shape harbor, the domain is divided into two regions as shown in Fig. (1): Region A is the limit of
the harbor and Region R is the infinite open-sea. ∂A is near island region as shown in Fig. (1), and also in the harbor
basin  region shown in  Fig.  (2),  ∂C is  the  breakwater  boundary shown in  Fig.  (2).  The governing equations  for  the
respective regions can be expressed as:

Fig. (1). Configuration of an Offshore Harbor.

(3)

and

(4)

Where, water depth is constant or deep.

The total velocity potential can be separated into incident (ΦI), reflected (ΦR), and scattered (ΦS) wave potentials,
such that Φ = ΦI + ΦS (for offshore harbor), and Φ = ΦI + ΦR + ΦS (for coastal harbor).

The incident wave potential can be expressed as:

(5)

where ε0 = 1, εn = 2, n = 1, 2…. are the Neumann factors, a0 is the amplitude of incident waves, θI is the incident
angle, Jn is the Bessel function of the first kind and order n, θ is the angle variable in polar coordinates, and r is the
radial coordinate.

For a semi-infinite ocean with a straight coastline, the reflected wave potential can be written as:

(6)

The scattered wave potential satisfies the Helmholtz equation and Sommerfeld radiation condition, which can be

  ∇ ∙ (CCg∇Φ) +
Cgω2

C
Φ = 0                     In Region A          

  ∇2Φ + k2Φ = 0                            In Region R          

  ΦI = −
𝒾ga0

ω
exp[𝒾kr cos(θ − θI)] 

= −
𝒾ga0

ω
∑ εn

∞
n=0  𝒾n Jn(kr)[cos(nθI) cos(nθ) + sin(nθI) sin(nθ)]                     

 ΦR = −
𝒾ga0

ω
exp[𝒾kr cos(θ + θI)] 

= −
𝒾ga0

ω
∑ εn

∞
n=0  𝒾n Jn(kr)[cos(nθI) cos(nθ) − sin(nθI) sin(nθ)

R

αA
αB

αR

X
θ

B A

I

I

Φ I

S= Φ + ΦΦ

X
θ
r
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written as:

(7)

where  Hn
1  is  the  Hankel  function  of  the  first  kind  of  order  n,  αn  and  βn  are  unknown  coefficients  yet  to  be

determined. The boundary conditions fall into the following domains:

(1) The domain B (Fig. 1) represents the harbor, along whose boundaries appropriate boundary conditions must be
specified. On a solid boundary, the normal velocity must vanish, i.e. ∂Φ/∂n = 0, where n is the outward normal vector to
the boundary.

In practical problems, reflection may be partial where energy absorption occurs. Therefore, the general boundary
condition can be represented as:

(8)

Where, α is a boundary absorbing coefficient that must be empirically prescribed.

(2)  In  the  infinite  sea  region  R,  the  boundary  ∂R is  taken  as  a  circular  or  semicircular  contour.  A Sommerfeld
radiation condition is imposed at infinity in all horizontal directions and the scattered wave ΦS must be an outgoing
wave at infinity:

(9)

(3) A matching continuity condition is imposed along the boundary that may be expressed as:

(10)

(11)

2.2. Conservation of Wave Energy Formulation

The present method derives a function from the principle of conservation of energy. The total wave energy in the
inner Region A,EA (total), is the sum of the total wave energy in Region A,(EA) energy loss from boundary absorption
dissipation (Ef),  bottom friction energy loss  (Ebf),  and energy transmission through the permeable breakwater  (ETf),
which may be expressed as:

(12)

In the outer Region R: 

So the total wave energy can be expressed as:

(13)

For a progressive long wave, the average total energy may be obtained from the contributions of both potential
energy (PE) and kinetic energy (KE).

(1) The potential wave energy for per unit wave length is:

(14)

  ΦS = ∑ Hn
1∞

n=0 (kr)[αn cos(nθ) + βn sin(nθ)]    

∂Φ

∂n
= −𝒾αkΦ           on ∂B

  lim
n→∞

√r(
∂

∂r
− 𝒾k)ΦS = 0       on ∂R

   
∂ΦA

∂n
=

∂ΦR

∂n
            on ∂A

ΦA=ΦR                  on ∂A

In the inner Region A :     
∂

∂t
EA + ∫ Ef

A𝒹s
 

∂A+∂B
 = 0  

  
,  

EA(total) = ∬EA

 

A

𝒹𝓍𝒹𝓎 − ∫ [∫ Ef
A𝒹t]𝒹s − ∬[

 

A

 

∂A+∂B

∫ Efb
A 𝒹t]𝒹𝓍𝒹𝓎 + ∫ [∫ ETF𝒹t]𝒹s

 

∂C

 

∂

∂t
ER + ∫ Ef

R𝒹s
 

∂A+∂R
 = 0 , 

ER(total) = ∫ ER
 

R
𝒹𝓍𝒹𝓎 − ∫ [∫ Ef

R𝒹t]𝒹s
 

∂A+∂B

Ep = ∫ ρg𝓏𝒹𝓏
η

0
=

1

2
ρgη2
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where  ρ  is  the  water  density,  g  is  the  acceleration  due  to  gravity,  and  .  The  mean  free
surface is located at z = 0 and the free surface elevation η can be derived from the linearized Bernoulli’s equation and
the dispersion relation as:

(15)

Substituting Eq.(15) into (14), the simplified potential wave energy equation is:

(16)

(2) The kinetic wave energy for per unit wave length is:

(17)

.

(18)

Then the simplified kinetic wave energy equation is:

(19)

where .

Total wave energy is equal to potential (Eq.16) and kinetic (Eq.19) components, expressed as:

(20)

2.3. Wave Energy Flux

The instantaneous energy flux of a progressive long wave passing through a section of unit width, characterized by
its horizontal normal n, can be expressed as:

(21)

where  P  is  the  complex  excess  pressure,  ,  and  Uc  is  the  complex  particle  velocity  in  the  normal

direction, ; then,

(22)

Ep = −
ρ

g
e−2𝒾ωt(

1

2
ω2Φ2)

   Ek = ∫
1

2
ρ(∇Φ)2𝒹𝓏

0

−h

  Ek = ∫
1

2
ρ(∇Φ)2𝒹𝓏

0

−h
= ∫

1

2
ρ(∇Φ

− coshk(z+h)

coshkh
−Φ

− sinh(−k(𝓏+h))

cosh(−kh)
k)2𝒹𝓏

0

−h

   Ek =
ρ

g
e−2𝒾ωt 1

2
[CCg(∇Φ)2 +

1

2
(1 − G)ω2Φ2]  

G =
2kh

sin2kh
 and Cg =

1

2
C(1 + G) 

    ET = Ep + Ek =
ρ

g
e−2𝒾ωt 1

2
[CCg(∇Φ)2 −

Cg

C
ω2Φ2]  

Ef = ∫ PUc
0

−h
𝒹𝒵

 P = −ρ
∂Φ

∂t

Uc =
∂Φ

∂n

Ef = ∫ [(−ρ)(−𝒾ω)e−2𝒾ωtΦ
cosh k (z + h)

cosh kh
e−2𝒾ωt

cosh k (z + h)

cosh kh
]
∂Φ

∂n

0

−h

𝒹𝒵 

 =
ρ

g
e−2𝒾ωt𝒾ωCCgΦ

∂Φ

∂n

where the  velocity  potential  is  given  as 

,  the  velocity  potential  for  monochromatic  waves  with  angular  frequency  ω,  is  .
Substituting into Eq.(17) results in:

,Φ(𝓍,𝓎, 𝓏;t) = (𝓍, 𝓎; t)f(𝓏)Φ
−  and f(𝓏) =

coshk(z+h)

coshkh

.(x, y; t) = Φ(x, y)e−𝒾ωt
Φ
−

 η(𝓍, 𝓎, 𝓏) = e−𝒾ωt
η
−  

(𝓍, 𝓎)η
− =

−1

g

∂Φ

∂t
= 𝒾

ω

g
Φ
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2.4. Bottom Friction

A portion of wave energy dissipation is caused by bottom friction. Bottom energy flux per unit area (Efb) can be
expressed as:

(23)

where Ub is the instantaneous particle velocity at the bottom.

Conventionally the shear stress is defined as:

(23a)

where (τb,max) real and (Ub,max)real2 and kb are the real-valued maximum shear stress, potential theory particle velocity,
and wave friction at the bottom, respectively. Jonsson [25]

For convenience, we define:

(24)

where  and has dimensions of ft2/sec3

Particle velocity at the bottom (Ub) can be expressed as:

(25)

(26)

Substituting Eqs. (24) and (26) into Eq. (23) results in a bottom friction energy flux equation:

(27)

(27a)

2.5. Absorbing Boundary

The  wave  partial  reflection  due  to  wave  energy  dissipation  at  the  absorbing  boundaries  may  exist  such  as  the
instantaneous  wave  energy  flux  at  the  absorbing  boundaries.  Ef

A  is  the  instantaneous  wave  energy  flux,  measured
positive, from A out through ∂B to ∂A. One can integrate the instantaneous energy flux as Eq.(22) with respect to time
then yield:

(28)

Because of the absorbing boundary condition Eq.(8), , then along the absorbing boundaries ∂B can
be written as:

(29)

2.6. Transmission Through Permeable Breakwater

Permeable harbor structures, such as rubble-mound breakwaters, have been widely constructed to provide protection
from  wave  attack  by  reflecting  and  dissipating  incident  wave  energy.  At  a  permeable  breakwater  only  part  of  the
incident wave energy is reflected back to the ocean, while the rest is absorbed and/or transmitted into the harbor through
the structure. If this transmitted energy is exceedingly high, it may create undesirable and unsafe wave conditions inside

   (τb,max)real =
ρ

g
fω(Ub,max)real                 

   fω =
1

2
gkb(Ub,max)

𝐔𝐛 =
∂Φ

∂x
= (𝛁Φ)e−𝒾ωt coshk(h+z)

coshkh

 Ub
2 = e−2𝒾ωt 𝐜𝐨𝐬𝐡𝟐𝐤(𝐡+𝐳)

𝐜𝐨𝐬𝐡𝟐(𝐤𝐡)
(∇Φ)𝟐

Efb =
ρ

g
fωe−2𝒾ωt 𝟏

𝐜𝐨𝐬𝐡𝟐(𝐤𝐡)
(∇Φ)𝟐

   ∫ [∫ Efb𝒹t
0

−h

 

A
]𝒹𝓍𝒹𝓎 = −

ρ

g
e−2𝒾ωtkb

𝒾

2ω

1

cosh2(kh) (∇Φ)𝟐

∫Ef
A𝒹t = −

ρ

g
e−2𝒾ωt 1

2
CCgΦA

∂ΦA

∂nB

∂Φ

∂n
= −𝒾αkΦ

∫ [∫Ef
A𝒹t]𝒹s = −

ρ

g
e−2𝒾ωt ∫

1

2
Cg

 

∂B

 

∂B
𝒾ωαΦA

2𝒹s

Efb = τbUb

(τb,max )real =
1

2
ρkb(Ub,max)real

2
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the harbor.

Consider  a  two  dimensional  interaction  of  a  monochromatic  wave  train  with  a  single  homogeneous,  isotropic,
porous structure of width located between two semi-infinite fluid regions, as shown in Fig. (2). The damping region
occupies 0 < x < l and the flow domain extends to infinity (x → ± ∞). The wave field can be divided into three regions:

Region 1: x < 0, Energy dissipation can occur (incident wave region)

Region 2: 0 < x < l, Energy dissipation can occur (absorbed and transmitted wave region)

Region 3: x > l, No energy dissipation (transmitted wave region)

Since the solution in adjacent regions must be continuous at each interface, the appropriate boundary conditions are
the continuity of pressure and horizontal mass flux at y = 0 (between region 1 and 2) and y = l (between region 2 and 3),
expressed as,

(30)

(31)

where ε, ε' are the porosity of the porous medium, the solution of the velocity potential in each region (similar to
Liu, et. al. [26]) can be written as:

(32)

(33)

(34)

where  a0  is  the  incident  wave  amplitude,  B  and  F  are  unknown constants  to  be  determined,  R  is  the  reflection
coefficient, and T represents the transmission coefficient.

The wave transmission through a porous structure, such as the instantaneous wave energy flux at Region 3 (Fig. 2),
can be written as:

Fig. (2). Configuration of a coastline harbor with permeable breakwater.

Φ1𝓍 = εΦ2𝓍               at  𝓎 = 0

ε′Φ2𝓍 = Φ3𝓍             at 𝓎 =  ℓ

Φ1 = −
𝒾ga0

ω
(e𝒾k𝓍 + Re−𝒾k𝓍)      𝓎 < 0

  Φ2 = −
𝒾ga0

ω
(Be𝒾k𝓍 + Fe−𝒾k𝓍)    0 < 𝓎 < ℓ

Φ3 = −
𝒾ga0

ω
Te𝒾k𝓍 𝓎 > ℓ

RαR
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C

C

B

Z

Y
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(a) (b)
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0
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(35)

From Eqs. (32) and (34), assuming that Φ3 = kTΦI, results in,

(36)

where ΦI is the incident wave potential, and kT is an empirical transmission coefficient, Eq.(35) can then be written
as:

(37)

2.7. Construction of a Functional F (Φ)

Combining  total  wave  energy  (Eq.20),  bottom  friction  (Eq.27),  absorbing  boundary  (Eq.29),  and  transmitting
boundary (Eq.37) terms, a functional can be obtained from Eqs.(12) and (13) such that, the stationary functional is then:

(38)

The discretization of terms I1 to I8 will be discussed in detail in the following section.

3. FINITE ELEMENT NUMERICAL FORMULATION

The hybrid finite element method used to solve the mild-slope wave equation is similar to the one developed by
Chen and Mei [2] for shallow-water wave problems. The entire harbor basin is divided into a number of finite elements
of  triangular  shape (in  the  finite  inner  region A).  Wave amplitude at  the  nodal  points  is  sought  and the  solution is
matched with Eigen function expansion employed for the region outside the harbor (in the infinite outer region R).

∫ [∫ETf
3 𝒹t]𝒹s = −

ρ

g
e−2𝒾ωt ∫

1

2
CCg

 

∂C

 

∂C
Φ3

∂Φ3

∂nc
𝒹s  

  
∂Φ3

∂nc
=

∂Φ3

∂𝓍
= −

𝒾ga0

ω
kT(𝒾k)e𝒾k𝓍 = ΦIkT𝒾ke𝒾k𝓍

∫ [∫ETf
3 𝒹t]𝒹s = −

ρ

g
e−2𝒾ωt ∫

1

2
CCg

 

∂C

 

∂C

(kTΦI)(𝒾kkTΦI)𝒹s 

= −
ρ

g
e−2𝒾ωt ∫

1

2
CCg

 

∂C
𝒾ωkT

2ΦI
2𝒹s

F(Φ) = ∬
1

2

 

A

[CCg(∇Φ)2 −
Cg

C
ω2Φ2] 𝒹𝓍𝒹𝓎 + ∫

1

2
CCgΦ

s
∂Φs

∂nA
𝒹

 

∂A

s

− ∫ CCgΦA

∂Φs

∂nA
𝒹

 

∂A

s 

(I1)                                       (I2)                             (I3) 

   −∫ CCgΦA

∂ΦI

∂nA
𝒹

 

∂A

s + ∫ CCgΦ
I
∂Φs

∂nA
𝒹
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s − ∫
1
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Cg𝒾ωαΦA

2𝒹
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(I4)                           (I5)                          (I6) 
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𝒾

2ω
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1
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3.1. Evaluation of the Functional

The interpolation function  is used to evaluate the functional, and the Gaussian
quadrature four-point method of numerical integration is used to solve for phase velocity and group velocity. Using this
approach the functional, Eq. (38), can be evaluated as follows:

(1) First term (energy in region A):

(39)

with

(40)

where Wn is the weighting function, and 

(2) Second term (energy flux along ∂A):

(41)

with

(3) Third term (energy flux along ∂A):

(42)

with

(42a)

(4) Fourth term (energy flux along ∂A):

(43)

with

 

I1 = ∬
1

2

 

A
[CCg(∇Φ)2 −
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C
ω2Φ2] 𝒹𝓍𝒹𝓎 =

𝟏

𝟐
{Φe}1×M

T [K1
e]M×M{Φe}M×1

[K1
e]M×M =

1

4∆2
∑ (CCg)

4
n=1 [

b1
2 + c1

2 b1b2 + c1c2 b1b3 + c1c3
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(43a)

(5) Fifth term (energy flux along ∂A):

(44)

with

(44a)

(6) Sixth term (boundary absorption energy flux along ∂B):

(45)

with

(45a)

where L is the total number of line elements along the inner boundary ∂B, LB
e is the length of each segment, and α is

a boundary absorption coefficient, dependent on empirical and laboratory data.

(7) Seventh term (bottom friction energy flux along A):

(46)

with

(46a)

where Wn is a weighting factor and Kb is an empirical bottom friction coefficient.

(8) Eighth term (energy transmitting through porous structures along ∂C):

(47)

with

(47a)

where L' is the total number of line elements along the porous structures (breakwater) ∂C, LC
'e is the length of each

segment, and kT is the transmission coefficient.
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3.2. Assemblage and Extermination of the Functional

Assembling the local stiffness matrix into a global stiffness matrix results in the functional being written as:

(48)

By combining nodal unknowns and coefficient unknowns and defining the total unknown vector {ϕ} by

(49)

where N=M+M and

(50)

the functional can be written as:

(51)

where the total load vector

(52)

and the total stiffness matrix [K] is usually large and banded,

(53)

then, the stationary functional of F(Φ) implies that

(54)

Substitution of equation (54) into equation (51), leads to

(55)

This set of N linear algebraic equations for N unknowns can be solved by the LU elimination method. The total
velocity potential at all nodal points and unknown coefficients can also be determined.

4. NUMERICAL EXAMPLES

For verification of the numerical model, a rectangular harbor has been tested for different cases as follows:
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4.1. Fully-Open Rectangular Harbor

A  fully-open  rectangular  harbor  finite  element  grid  layout  is  shown  in  Fig.  (3).  The  present  model  results  are
compared with existing experimental data of Ippen and Goda [27], Lee [1], and Chen & Mei’s [2, 3] model, as shown in
Fig.  (4).  The  incident  wave  angle  θI  =  -π/2  the  present  model  with  boundary  absorption  α  =  0.07,  bottom friction
coefficient Kb = 0.3. The resulting curve is the most exact replica of the experimental results. It reveals an accurate
agreement between the numerical results and experimental data.

Fig. (3). Finite element grid layout for rectangular harbor resonance model.

Fig. (4). Response of amplification factor (R) for different wave number (Kl) at the end wall of the fully-open rectangular harbor.
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4.2. Bottom Friction Testing

Fig.  (5)  shows the effect  of  energy dissipation due to bottom friction.  For deep harbor (h = 10.128 in.)  case as
shown in top Fig. (5), the reduction in wave amplitude inside the harbor is quite small; for shallow harbor (h=0.1 in.)
case as shown in bottom Fig. (5), the wave response is quite sensitive.

Fig.  (5).  Comparison  of  the  maximum  response  curve  for  a  fully-open  rectangular  harbor  using  4  different  bottom  friction
coefficients (fω).

4.3. Full Boundary Absorption Testing

In order to test the effect of energy dissipation due to fully absorbing boundaries, as shown in Fig. (6), when the
boundary absorption coefficient (α) increases, it shows an increase in the highly sensitive response curves reactively. In
order to express more effectively using three-dimensional plots, Figs. (7 and 8) show a three dimensional plot of the
relative surface elevations  for  the  harbor  resonance response of  the  first  and second resonance mode,  for  the  inner
boundary absorption coefficients α equal to 0.0, 0.1, 0.3, and 0.5 respectively.

Fig. (6). Comparison of the maximum response curve for a fully-open rectangular harbor using 4 different boundary absorption
coefficients (α).
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Fig. (7-1). The relative surface elevations for the harbor resonance response of the first resonance mode.

4.4. Partial Boundary Absorption Testing

In a realistic harbor, which consists of breakwaters, quay walls, and wharfs, boundary reflection factors may be
quite different. Fig. (8) shows the effect of partial boundary absorption (P.B.A.) on Rmax for five different boundary
absorption conditions: (1) No boundary absorption, (2) One end wall with P.B.A. (4 elements, α = 0.3), (3) One side
wall with P.B.A. (12 elements, α = 0.3), (4) One side and one end walls with P.B.A. (16 elements, α = 0.3), (5) All three
walls with P.B.A. (27 elements. α = 0.3). The results seem reasonable and point to the fact that as the total area of
absorption (i.e. number of absorbing boundary elements) increases, the harbor response should be reduced.

4.5. Permeable Transmitting Boundary Testing

A wider rectangular harbor with breakwater, with its finite element grid layout shown in Fig. (9) reveals the effect
of permeable transmitting boundaries for three cases as shown in Fig. (10). The harbor with an impermeable breakwater
creates  a  larger  response  as  the  energy  inside  the  harbor  can’t  be  reflected  back  to  sea.  Apparently  a  harbor  with
permeable breakwater has more energy flux transmitted through the porous structure into the harbor, and thus produces
the  largest  response,  even  larger  than  that  produced  for  a  harbor  with  impermeable  breakwater.  Fig.  (11)  shows
variation of maximum amplification (Rmax) with a different transmission coefficient (KT) for the first, second, and third
resonant modes for a harbor with permeable breakwater. Larger amplification occurs for (KT) and smaller wave number
(Kl). When KT is within the range 0.3 to 0.8, a larger amplification is produced in the first and second resonant modes.

WAVE RESPONSE SIMULATION FOR HARBOR RESONANCE
(First Resonant Mode Kl=1.3 , h=10.128 in)

RECTANGULAR  HARBOR  MODEL
MAXIMUM  AMP.  : 8.0700E+00 MINIMUM  AMP.  : 1.1560E+00

Z

YX

-10 -9 -7-8 -6 -5 -3 -2 -1 0 31-4 2

9

8

7

6

5

4

3

2

1

-1

-2

-3

-4

0

WAVE RESPONSE SIMULATION FOR HARBOR RESONANCE
(First Resonant Mode Kl=1.3 Full Absorption α=0.1)

RECTANGULAR  HARBOR  MODEL
MAXIMUM  AMP.  : 3.3790E+00 MINIMUM  AMP.  : 7.1200E-01

Z

YX

-10 -9 -7-8 -6 -5 -3 -2 -1 0 31-4 2

9

8

7

6

5

4

3

2

1

-1

-2

-3

-4

0

WAVE RESPONSE SIMULATION FOR HARBOR RESONANCE
(First Resonant Mode Kl=1.3 Full Absorption α=0.3)

RECTANGULAR  HARBOR  MODEL
MAXIMUM  AMP.  : 1.5550E+00 MINIMUM  AMP.  : 7.6200E-01

Z

YX

-6 -5 -3 -2 -1 0 31-4-10 -9 -7-8 2

9

8

7

6

5

4

3

2

1

-1

-2

-3

-4

0

WAVE RESPONSE SIMULATION FOR HARBOR RESONANCE
(First Resonant Mode Kl=1.3 Full Absorption α=0.5)

RECTANGULAR  HARBOR  MODEL

MAXIMUM  AMP.  U: 1.0070E+00 MINIMUM  AMP.  U: 7.9200E-01

Z

YX

-10 -9 -7-8 -6 -5 -3 -2 -1 0 31-4 2

9

8

7

6

5

4

3

2

1

-1

-2

-3

-4

0



A Harbor Resonance Numerical Model The Open Construction and Building Technology Journal, 2017, Volume 11   427

Fig. (7-2). The relative surface elevations for the harbor resonance response of the second resonance mode.

Fig. (8). The test result of partial boundary absorption (P.B.A.) on Rmax for five different boundary absorption conditions.
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Fig. (9). A finite element grid layout of a rectangular harbor with breakwater.

Fig. (10). Comparison of the maximum response curve for a rectangular harbor (13X8X10.128) using three cases: (1)Fully-open
harbor, (2)With impermeable breakwater 2 inch entrance long, (3) With permeable breakwater KT = 0.3.

Fig. (11). Comparison of maximum amplification factor (Rmax) with different transmission coefficient (KT) for the first, second, and
third resonant modes for a harbor with permeable breakwater.
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4.6. Variable Harbor Entrance Width Testing

Fig. (12) shows the effect of variable harbor entrance using three cases: (1) Fully open entrance, (2) Partial 4 inch
entrance  width,  (3)  Partial  2  inch  entrance  width.  As  the  entrance  width  decreases,  the  response  curve  amplitude
increases and Kl decreases. The model thus confirms the Harbor Paradox of Miles and Munk [28].

Fig. (12). Comparison of 3 different entrance width cases (D=8 in., 4 in., 2 in.).

4.7. Varying Length and Width Testing

Fig.  (13)  shows  the  effect  of  varying  length  and  width  for  a  rectangular  harbor  with  a  constant  basin  area  and
entrance  width,  using  four  different  horizontal  dimensions.  As  the  basin  length  decreases  and  width  increases,  the
response curve amplitude for the second resonant mode increases and has a larger Kl.

Fig. (13). Comparison of the maximum amplification factor (Rmax) and the harbor width to length ratio (W/L) for the first and
second resonant modes.
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numerical model is based on the mild-slope wave equation which includes wave refraction, diffraction, and reflection,
under  the  effects  of  variable  bathymetry,  bottom  friction,  variable  full  or  partial  absorbing  boundaries,  and  wave
transmission through permeable breakwaters. The conservation of energy principle is intuitively appealing in describing
harbor resonance, because of one of its uses of fundamental physical laws. The total wave energy in the harbor is a
combination of kinetic and potential wave energy, and instantaneous wave energy flux. This flux consists of the effect
of bottom friction dissipation, absorbing boundaries dissipation, and transmission through porous boundaries (which
increases available energy). This approach is used to derive a stationary functional which is equivalent to the mild-slope
governing  equation  and  boundary  conditions.  Model  calculations  for  a  rectangular  harbor  support  the  following
conclusions. Reduction in wave amplitude inside the harborsis important for shallow water harbors. Results showed that
energy dissipation due to boundary absorption, permeable transmission, entrance width, and horizontal dimension are
very important for both deep and shallow water harbors. In order to improve model response prediction results, more
experimental work is needed to better determine values for absorption and transmission coefficients.

NOMENCLATURE

Phase velocity c
Group velocity cg

Wave energy E
Bottom friction energy loss Ebf

Energy flux rate Ef

Boundary absorption energy dissipation (Ef)∂B
Kinetic wave energy Ek

Potential wave energy Ep

Energy transmission through permeable breakwater ETf

Functional F(Φ)
Bottom friction coefficient kb

Shoaling factor, defined by Eq.18 G
Gravitational acceleration G

Water depth H
Bessel function Jn

Wave number (2π/wave length) k
Transmission coefficient kT

Length of each segment L
Excess pressure P

Radial coordinate r
Particle velocity Uc

Bottom wave velocity Ub

Weighting function Wn

Horizontal coordinates x,y
Vertical coordinate z

Coefficients of eigenfunctions αn,βn

Jacobi symbols εn

Spatial factor of free surface displacement η
Angle variable in polar coordinates θ

Water density ρ
Bottom shear stress τb

Velocity potential Φ
Radian frequency ω

near island boundary ∂A
Inner boundary ∂B

Porous structure breakwater boundary ∂C
Vector formed by α_n,β_n {μ}

Vector formed by nodal potential {ϕ}
Total unknown vector {Φ}
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Superscripts Subscripts
Element e Region A A
Incident I Region R R

Radiation R Incident I
Scattering S Index i , j

Transmission T Transmission T
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