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Abstract:

Objective:

Spatial variability is one of the largest sources of uncertainty in geotechnical applications. This variability is primarily characterized by the scale of
fluctuation, a parameter that describes the distance over which the parameters of a material are similar. Spatial variability is generally described
with traditional methods of time series analysis. In statistics, the Auto-Regressive Moving Average (ARMA) model is commonly used to describe
the relationship between two points  in time.  Instead of assuming an autocorrelation model,  the ARMA model calculates the necessary auto-
regressive components (AR), as well as a decaying Mean Structure (MA). The advantage of this method is that it is calculated for each specific
field study, so that the data is not forced to fit into a fixed autocorrelation model (e.g. Markovian, Gaussian, etc).

Methods:

In this study, the ARMA model is introduced as a means of measuring scale of fluctuation, and two case studies and a simulation are used to
compare the scale of fluctuation values from the ARMA model to the other estimates.

Results:

In the first case study, the ARMA model estimated a value of 0.26 m while the other methods ranged from 0.22-0.29 m. In the second case study,
the ARMA model estimated a value of 0.40 m while the other methods ranged from 0.40-0.54 m. In the simulated example, where the true value
was 5.0 m, the ARMA model estimated a value of 4.73 m while the other methods ranged from 3.24-3.51 m.

Conclusion:

This paper concludes that ARMA is a promising new method for estimating the scale of fluctuation but requires a considerable amount of research
before it can become established in the geotechnical sphere.

Keywords:  Auto-regressive  moving  average,  Mean  structure,  Cone  penetration  test,  Autocorrelation  model,  Auto-regressive  components,
Geotechnical sphere.
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1. INTRODUCTION

Spatial  variability  is  one  of  the  largest  sources  of
uncertainty in geotechnical applications. In recent decades, the
necessity  of  considering  spatial  variability  in  geotechnical
applications has been demonstrated in various studies [1 - 19].
This  variability  is  primarily  characterized  by  the  scale  of
fluctuation  which  describes  the  distance  over  which  the
parameters  of  a  soil  or  rock  are  similar  or  correlated;  soil
properties sampled from adjacent locations in the soil profile
tend to have similar values and as the sampling distance incre-
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ases, the correlation decreases. It is required to characterize as
well  as simulate a spatially variable field.  It  should be noted
that a different scale of fluctuation is defined for each material,
so the CPT data considered here is material-specific. Due to the
importance of the scale of  fluctuation,  various methods have
been developed to characterize this parameter from soil data,
particularly  Cone  Penetration  Test  (CPT)  measurements,  the
most  commonly  used  method  of  obtaining  near  continuous
field data. The scale of fluctuation can be estimated from CPT
data using methods such as the method of moments [20 - 23],
maximum  likelihood  estimation  [24  -  26],  and  Bayesian
analysis  [27,  28].

Spatial  variability  is  generally  described  by  traditional
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methods  of  time  series  analysis  in  statistics,  meaning  that  it
constitutes  a  trend  component  and  a  zero-mean  spatial
variability component (Equation 1). The reason for this is that
as with measurements in time, soil property measurements that
are closer together in space are more similar in value, as shown
below:

(1)

where Xi is the value of the soil property at location Si, Si is
the vertical distance from the ground surface, for example, and
k  is  the  total  number  of  measurements.  ϵ(Si)  is  the  spatial
variability  component.  The scale  of  fluctuation describes  the
distance over which the spatial variability components ϵ(Si) are
correlated amongst themselves.

The  commonly  used  methods  of  measuring  the  scale  of
fluctuation in the geotechnical field assume an autocorrelation
model. A method of moments can then be used to estimate the
scale of fluctuation value, by minimizing the error between the
theoretical  autocorrelation  model  and  the  experimental  one
[29].  An  autocorrelation  model  describes  the  relationship
between the distance separating two points and the correlation
between them. Some typical autocorrelation models are shown
in  Table  1,  where  ρ(τ)  is  the  correlation  coefficient  between
two points separated by lag τ, θ and is the scale of fluctuation.

Table 1. Common autocorrelation models.

Autocorrelation
Model Relationship

Markovian

Gaussian

Spherical

1.1. Need for Research

In  the  current  typical  methods  to  measure  the  scale  of
fluctuation, the autocorrelation model selected for a given set
of CPT measurements is generally just assumed to be the one
that describes the true structure of the data. Since no model can
fit  the  data  exactly,  this  makes  the  selection  of  an
autocorrelation  model  difficult.

In  statistics,  the  Auto-Regressive  Moving  Average
(ARMA) model is commonly used to describe the relationship
between  two  points  in  time.  Instead  of  assuming  an
autocorrelation  model,  the  ARMA  model  calculates  the
necessary  auto-regressive  components  (AR),  as  well  as  a
decaying  mean  structure  or  Moving  Average  (MA).  The
advantage  of  this  method  is  that  it  is  calculated  for  each
specific field study, so that the data is not forced to fit into a
fixed autocorrelation model.  Additionally,  a  very simple and
fast algorithm is needed to calculate the necessary AR, and MA
coefficients.

In this study, the ARMA model is introduced as a means of
measuring  the  scale  of  fluctuation.  Two  case  studies  and  a
simulation are used to compare the scale of fluctuation values
from the ARMA model to the method of moments estimates.
There are no previous studies that used this method to measure
the scale of fluctuation.

2. MATERIALS AND METHODS

2.1. ARMA

2.1.1. Stationary Time Series

As with the methods of moments, in order to measure the
scale  of  fluctuation  from  CPT  data,  the  data  must  first  be
stationary. A stationary time series has properties that do not
depend on  the  time at  which  the  series  was  observed.  In  the
CPT realm, a  stationary CPT is  one whose properties  do not
depend on the depth.

Weakly  stationarity  is  defined  by  a  constant  mean,
variance, and covariance structure. This is necessary in order
for  the  autocorrelation  function  to  have  meaning.  While  the
constant  variance  and  covariance  must  be  assumed,  the
constant  mean  is  the  famous  de-trending  problem.  This  is
analogous  to  removing  the  trend  of  measurement  and  only
looking at the spatial variability component ϵ(Si)  in Equation
1). The readers are referred to the multitudes of literature on
the  subject,  some  of  which  are  included  here  [30  -  32].  The
data used in the remainder of the paper is assumed to satisfy
weakly stationarity.

2.1.2. The ARMA Model

The Auto-regressive (AR) component of the ARMA model
allows for current measurements in time to depend on a certain
lag  of  past  measurements.  For  example  an  AR(1)  model
indicates that the current measurement depends on the last. An
AR(2) model indicates that the current measurement depends
on the last and the one previous to that. This can be similarly
applied to CPT measurements, such that for an AR(2) model, a
measurement at a given location depends on the measurements
at the two previous locations adjacent to it. An AR(p) model is
expressed  as  shown  in  Equation  2  below,  where  αi  are  the
coefficients associated with each past measurement, and wi are
the random error components which are typically assumed to
independently and identically distribute white noise with some
fixed variance σ2

2. Xi is the value of the soil property at location
Si, Xi-1 is the value at location Si-1, and δ is the intercept.

(2)

The Moving Average (MA) component indicates that the
regression error is a linear combination of the error terms at the
previous  locations.  Similarly  to  the  AR,  an  MA(2)  model
indicates  that  the  current  error  depends  on  the  error  at  the
previous  two  locations.  An  MA(q)  model  is  expressed  as
shown  in  Equation  3  below,  where  θi  are  the  coefficients
associated with each past measurement error, wi-1  is the error
associated with measurement Xi-1, and is the intercept.
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(3)

Therefore,  for stationary data,  an ARMA(p,q) model can
be  expressed  as  shown  in  Equation  4  below,  where  p  is  the
order  of  the  AR  component,  and  q  is  the  order  of  the  MA
component:

(4)

In the equation above, Xi are the stationary measurements
at each location, αi are the coefficients of the AR components,
θi  are the coefficients of the MA components,  and wi  are the
errors associated with the MA model.

Once  the  coefficients  αi  and  θi  are  determined  for  the
necessary number of p and q, then the autocorrelation function
for the specific case is defined, and the scale of fluctuation can
be calculated as simply the area under the correlation function.

It  turns  out  that  these  coefficients  and  orders  can  be
determined automatically and quickly with a simple algorithm.

2.1.3. Determining the ARMA coefficients

There are two ways to determine the ARMA coefficients.
One is by visual inspection of the autocorrelation function and
partial autocorrelation function plots. It is often evident from
reviewing these plots what the values of p and q should be. An
even simpler way is using the auto.arima algorithm from the
forecast package in R [33, 34]. This code is open-source and
available for implementation in other software.

The auto.arima function takes as an input the CPT data in
the format of measurement locations and measurements at each
location. It outputs the necessary values for p and q and their
respective coefficients.

Once  the  numbers  of  terms  are  known  (p  and  q),  the
coefficients themselves are determined as would be done for
any regression equation. The auto.arima algorithm determines

these coefficients as well.

Once  these  coefficients  are  determined,  the  correlation
structure  of  the  data  is  explained.

2.1.4. Determining the Scale of Fluctuation

Once the coefficients are determined, the autocorrelation
function  ρ(τ)  can  be  defined  and  the  corresponding  scale  of
fluctuation,  θ,  is  the  area  under  this  function,  as  shown  in
Equation 5 [29]:

(5)

An important note is warranted here – the factor of 2 in the
equation  above  is  often  omitted  hence  resulting  in  two
definitions  of  the  scale  of  fluctuation.  What  is  alternately
referred to as scale of fluctuation or correlation length has been
defined as both θ and θ/2 in geotechnical literature, resulting in
confusion. In this study, the scale of fluctuation refers to θ as
defined above.

This integral can be easily obtained with the quadrature of
the autocorrelation function.

3. VERIFICATION

Three  examples  are  considered  for  verification  of  the
ARMA method. The first two use CPT measurements from two
studies, the scale of fluctuations of which were measured using
a method of moments and an assumed autocorrelation model.
These  are  used  to  verify  that  ARMA gives  similar  results  to
classic  methods.  The  third  example  is  a  simulated  example
where the scale of fluctuation is known, and ARMA as well as
methods of moments are used to see how close they can get to
the true measurement.

3.1. Example 1: Świebodzice

This example uses a CPT measurement from Świebodzice
[35],  the  scale  of  fluctuation  of  which  was  measured  by
Pieczyńska-Kozłowska (2015) [36]. The Świebodzice CPT for
qc used in the study is shown in (Fig. 1).

Fig. (1). The Świebodzice CPT for qc.

                           

                                             

  ∫  ( )  
 

  
  ∫  ( )  

 

 
   



ARMA Models to Measure The Open Construction and Building Technology Journal, 2020, Volume 14   233

Pieczyńska-Kozłowska  (2015)  [36]  used  various
autocorrelation models and de-trending methods and compared
the resulting scale of fluctuations, measured using methods of
moments.  For  comparison  purposes,  only  the  linearly  de-
trended  measurements  are  used  below.  These  results  form
Pieczyńska-Kozłowska (2015) [36] are summarized in Table 2.

Table  2.  Pieczyńska-Kozłowska  (2015)  [36]  linearly  de-
trended  scale  of  fluctuation  results.

Markov
Autocorrelation

Gaussian
Autocorrelation

Vanmarcke
Method 0.28 m 0.22 m

Rice Method 0.23 m 0.29 m

The  auto.arima  function  from  the  forecast  package
determined  that  an  ARMA(4,4)  (for  more  details  please  see
section 2.3) model best described the correlation structure. That
is, a model with 4 AR terms and 4 MA terms. The coefficients
of this model are as shown in Table 3. Using these coefficients

and  quadrature  of  the  resulting  autocorrelation  function  as
explained in section 2.2, the estimated scale of fluctuation was
found to be 0.26 m, which is in close agreement with the values
found by Pieczyńska-Kozłowska (2015) [36].

Table  3.  The  ARMA  coefficients  determined  for  the
linearly  de-trended  Świebodzice  CPT.

AR Coefficients, αi MA Coefficients, θi

0.83 0.17
0.25 0.29
0.53 -0.34
-0.63 0.34

3.2. Example 2: Taranto Clay

The  second  example  uses  a  CPT  measurement  from
Taranto, Italy [37]. The G1 borehole of the lower clay data is
used for comparison purposes, as de-trended (see section 2.1)
by Cafaro and Cherubini (2002) [37]. This de-trended data is
shown in (Fig. 2).

Fig. (2). The de-trended CPT for qc of borehole G1 as per Cafaro and Cherubini (2002).
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Cafaro  and  Cherubini  (2002)  [37]  used  the  variance
function  method  to  measure  the  scale  of  fluctuation  and
obtained a value of 0.536 m for the specific borehole, with an
average measurement of 0.40 m over the five boreholes. The
auto.arima function determined an ARMA (2,1)  model  to  be
the  best  fit  for  borehole  G1,  the  coefficients  of  which  are
shown in Table 4. The estimated scale of fluctuation was found
to  be  0.40  m.  This  is  in  close  agreement  with  the  estimated
measurement for the given borehole as well as the average over
the five boreholes.

Table  4.  The  ARMA  coefficients  determined  for  the
linearly  de-trended  Taranto  CPT.

AR Coefficients, αi MA Coefficients, θi

1.98 -0.90
-0.98 -

3.3. Example 3: Simulated Data

Finally, the third example uses data that was simulated to
have  a  scale  of  fluctuation  of  5  m.  This  was  done  using  the
spatial  variability  field  option  in  the  Slide2  software  [38],
which uses Markovian and Gaussian autocorrelation functions
together with a method known as Local Average Subdivision

(LAS) to generate the field. The simulated field is a spatially
variable cohesion parameter with a mean of 10 kPa, a standard
deviation of 2 kPa, and a normal distribution. The spatial field
with a mesh size of 0.2 m in a typical slope with a unit weight
of 19 kN/m3 and a friction angle of 23 degrees is shown in (Fig.
3).

Five  relatively  equi-spaced  vertical  samples  were  taken
from the field, at x=1.1 m, x=20 m, x=50.1 m, x=75.1 m, and
x=98.3 m. The scale of fluctuation was measured using both
ARMA  and  an  autocorrelation  fitting  method  along  with
Markovian  and  Gaussian  autocorrelation  models.  Since  this
data is simulated, de-trending was not necessary. The results
are summarized in Table 5.

This  simulated  example  has  attempted  to  replicate  what
might happen in the field, where only a handful of boreholes
are taken and must be used in order to characterize the field. It
is  seen  that  although  all  methods  in  Table  5  tend  to  deviate
from the true value at  specific  locations,  when averaged,  the
ARMA  model  gives  a  value  that  is  much  closer  to  the  5  m
measurement.  This  is  due  to  the  fact  that  ARMA defines  an
autocorrelation  model  for  each  of  the  five  locations  exactly,
instead of assuming the Markovian or Gaussian autocorrelation
model.

Fig. (3). Random cohesion field generated with an isotropic scale of fluctuation of 5 m.

Table 5. Scale of fluctuation measurements for simulated data.

Measurement Location Autocorrelation Fitting with Markovian Model Autocorrelation Fitting with Gaussian Model ARMA
1.1 3.32 m 3.36 m 5.58 m
20 1.77 m 1.36 m 1.65 m

50.1 5.32 m 6.41 m 6.60 m
75.1 3.51 m 3.92 m 6.27 m
98.3 2.26 m 2.47 m 3.58 m

Average 3.24 m 3.51 m 4.73 m
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These three average scales of fluctuations were input into a
spatial variability analysis for the slope in (Fig. 3) using 500
Latin-Hypercube  samples  and  Morgenstern-Price  limit
equilibrium method in order to get a rough idea of the expected
difference in probability of failure when the scale of fluctuation
is misrepresented.

Table 6. Probability of failure values for the slope in (Fig.
3) using the three scale of fluctuations in Table 5.

Markovian Model
(3.24 m)

Gaussian Model
(3.51 m)

ARMA
(4.73 m)

16.8% 17.6% 18.4%

It  can  be  seen  in  the  table  that  the  scale  of  fluctuation
parameter  has  a  considerable  effect  on  the  probability  of
failure.

4. DISCUSSION

The  ARMA  model  is  a  commonly  used  method  in  time
series  analysis  which  has  not  yet  entered  the  geotechnical
sphere. This may be due to the relatively recent introduction of
statistics into geotechnical engineering, as well as the efforts
required  to  determine  the  values  of  p  and  q.  However,  with
statistics  becoming  a  more  integral  part  of  a  geotechnical
analysis,  and  with  open-source  algorithms  automating  the
determination  of  p  and  q,  it  is  time  that  the  ARMA  model
enters the geotechnical sphere.

This  study  serves  as  an  introduction  to  ARMA  in
geotechnical engineering through an overview of the theory as
well as real and simulated examples. While the results in this
study  have  been  positive,  a  considerable  amount  of  research
remains to be done.

CONCLUSION

In this study, the ARMA model is introduced as a means of
measuring  the  scale  of  fluctuation.  The  advantage  of  this
method is that it allows the autocorrelation model to be defined
exactly,  instead  of  forcing  the  data  to  fit  into  a  pre-defined
model such as Gaussian or Markovian. Additionally, an open-
source algorithm is available for finding the coefficients of the
model quickly and easily.

Two case studies and a simulation are used to compare the
scale  of  fluctuation  values  from  the  ARMA  model  to  the
estimates of the method of moments. In the first case study, the
ARMA  model  estimated  a  value  of  0.26  m  while  the  other
methods ranged from 0.22-0.29 m. In the second case study,
the ARMA model estimated a value of 0.40 m while the other
methods ranged from 0.40-0.54 m. In the simulated example,
where the true value was 5.0 m, the ARMA model estimated a
value of 4.73 m while the other methods ranged from 3.24-3.51
m (Table 6).  This  has a considerable effect  on the computed
probability of failure.
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