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Abstract:

Background:

Shear strength of soil, the magnitude of shear stress that a soil can maintain, is an important factor in geotechnical engineering.

Objective:
The main objective of this study is dedicated to the development of a machine learning algorithm, namely Support Vector Machine (SVM) to
predict the shear strength of soil based on 6 input variables such as clay content, moisture content, specific gravity, void ratio, liquid limit and
plastic limit.

Methods:
An important number of experimental measurements, including more than 500 samples was gathered from the Long Phu 1 power plant project’s
technical reports. The accuracy of the proposed SVM was evaluated using statistical indicators such as the coefficient of correlation (R), Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE) over a number of 200 simulations taking into account the random sampling effect.
Finally, the most accurate SVM model was used to interpret the prediction results due to Partial Dependence Plots (PDP).

Results:

Validation results showed that SVM model performed well for prediction of soil shear strength (R = 0.9 to 0.95), and the moisture content, liquid
limit and plastic limit were found as the three most affecting features to the prediction of soil shear strength.

Conclusion:

This study might help in quick and accurate prediction of soil shear strength for practical purposes in civil engineering.

Keywords: Machine learning, Partial Dependence Plot (PDP), Root Mean Squared Error (RMSE), Support Vector Machine (SVM), Soil shear
strength, Vietnam.
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1. INTRODUCTION

Research in the field of soil mechanics has been the subject
of miscellaneous studies over decades [1]. Being considered as
a discipline of civil engineering, soil mechanics is concerned
with the investigation of the behavior and application of soil as
materials  for  construction  [2].  The  nature  of  soil  mechanics
involves  the  application  of  mechanical,  hydraulic,  or  even
chemical laws to deal with engineering problems. Moreover, a
multiphase composition of soil containing particles, water and
air, making soil unique engineering properties [3]. Many soil-
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related  researches  have  been  performed,  focusing  on  the
mechanical  properties  [4],  transport  properties  [5  -  7],  soil
consolidation [8, 9] and especially the shear behavior of soil.

Indeed,  the  shear  strength of  the  soil  is  a  very important
parameter  in  geotechnical  engineering  for  assessment  of  the
stability of retaining walls, embankments and determination of
the bearing capacity of highway construction foundations. The
determination  of  this  parameter  is  often  carried  out  in  the
laboratory by different kinds of tests, such as triaxial shear test,
direct  shear  test  and  unconfined  compression  test.  However,
conducting these tests  usually takes time and is  often costly.
Thus,  accurate  prediction  of  this  parameter  is  a  crucial  and
important  task  for  saving  time  and  reducing  the  cost  of
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construction projects. Numerous studies have been carried out
to forecast the shear strength of soils using various approaches.
Motaghedi and Eslami [10] introduced an analytical approach
for  predicting  the  unit  cohesion  (c)  and  friction  angle  (φ)  in
considering the bearing capacity mechanism of failure at cone
tip  and  direct  shear  failure  along  the  penetrometer  sleeve.
Multiple  linear  regression  was  developed  by  McGann  et  al.
[11] to develop a Christchurch-specific empirical correlation to
forecast  the  soil  shear  wave  velocities  (Vs)  derived  from the
Cone Penetration Test (CPT) data. Besides, the various effects
of shear strength in the disturbed zone were investigated on the
time-dependent behavior [12]. Last but not least, constitutive
models  were  developed by Oliveira  et  al.  [13]  to  predict  the
shear  strength  of  natural  soil  and stabilized  soil  by  chemical
agents.

In  recent  decades,  machine  learning  methods  have  been
widely  applied  to  solve  many  civil  engineering  [14  -  28],
especially  in  geotechnical  problems  [4],  [29  -  37].  As  an
example, Samui [38] introduced the Support Vector Regression
(SVR) method to predict the friction capacity of driven piles.
Kuo  et  al.  [39]  used  Artificial  Neural  Network  (ANN)  to
predict  the  behavior  of  shallow  foundations,  including  the
bearing  capacity.  Machine  learning  methods  namely
generalized linear (GENLIN), linear regression, classification,
regression  tree  (CART)  analysis,  Chi-squared  Automatic
Interaction Detection (CHAID), ANN and SVR were used to
identify the factors influencing the shear strength and to predict
the  peak  friction  angle  of  soil  [40].  Other  investigations  to
predict  the  shear  strength  of  soil  were  carried  out  by  using
ANN  and  CART  techniques  in  the  work  of  Kanungo  et  al.
[41].  Probabilistic  Neural  Network  (PNN)  for  predicting
different  parameters  of  shear  strength  (i.e.,  c  or  φ)  from
different  soil  properties  such  as  water  content  (w),  plasticity
index (PI), dry density (DD), gravel % (GP), sand % (SP), silt
% (STP), and clay % (CP) was applied by Kiran et al. [42]. In
addition,  Khan  et  al.  [43]  used  a  new  model  called  the
Functional Network (FN) to predict the residual strength of the
soil. In general, there are various methods and approaches to
predict the shear strength of soil. Overall, the approaches based
on  machine  learning  algorithms  are  superior,  in  terms  of
accuracy,  compared  with  traditional  approaches.

In this study, a popular machine learning method, namely
Support Vector Machines (SVM), was proposed and applied to
predict  the  shear  strength  of  the  soil.  A  database  including
input variables (moisture content (%), clay content (%), void
ratio,  plastic  limit  (%),  liquid limit  (%) and specific  gravity)
and  output  variable  (shear  strength  of  soil)  of  538  samples
collected from the Long Phu 1 power plant project, Soc Trang
province, Vietnam was used. Popular validation indicators such
as R, RMSE and MAE were used to validate the performance
of  the  model.  The dependence between the  shear  strength  of
soil and input variables was finally investigated with the help
of partial dependence plots analysis.

2. MATERIALS AND METHODS

2.1. Data Collection and Preparation

In  this  study,  experimental  data  from  the  Long  Phu  1
power plant project (longitude of 9°59'07.3”N and latitude of

106°04'48.0”E),  Soc  Trang  province,  Vietnam were  used.  In
this  project,  a  total  of  538  soil  samples  were  collected  and
tested in the laboratory to determine the soil properties used for
the  design  and  construction  of  the  project.  The  Union  of
Engineering  Geology,  Construction  & Environment  (UGCE)
were  the  two  units  who  carried  out  these  laboratory  tests.  A
total of seven variable were extracted from the project reports
including one output variable (shear strength of soil)  and six
input variables (moisture content (%), clay content (%), void
ratio, plastic limit (%), liquid limit (%) and specific gravity).
Summary of the statistical values of the inputs and output are
given  in  Table  1,  whereas  the  correlation  between  input
variables and output is displayed in Fig. (1). It can be seen that
the moisture ratio was highly correlated with the void ratio (R
= 1), followed by the plastic limit (R = 0.88), liquid limit (R =
0.78) and the shear strength of soil (R = -0.65). The void ratio
correlated with the output at R = -0.64. Detailed descriptions of
these variables are given in the following sections.

2.1.1. Output Variable

In  the  simulation  process,  the  shear  strength  of  soil  was
considered as an output variable. It is a linear function of the
normal stress at the time of failure [44] which can be expressed
as below (Eq. 1):

(1)

where c is defined as unit cohesion (kG/cm3), φ is defined
as the angle of internal friction (o), σ is defined as the normal
stress on the failure plane (kG/cm3), and τ represents the shear
strength  of  soil  (kG/cm3).  To  calculate  the  shear  strength  of
soil, the parameters such as c and φ are often determined in the
laboratory through three common experiments:  triaxial  shear
test, direct shear test, and unconfined compression test [44]. In
this  study,  these  parameters  were  determined  by  the  direct
shear tests on the samples collected from the study area, and
then the shear strength of soil was calculated using Eq. (1) with
unit  normal  stress  on  the  failure  plane  (σ  =  1  (kG/cm3).  The
values of the shear strength of soil used in this study vary from
0.0368 to 0.9307 (kG/cm3) (Table 1).

2.1.2. Input Variables

To  predict  the  shear  strength  of  soil,  the  input  variables
related  to  the  shear  strength  of  soil  should  be  selected  and
validated. In this study, a total of six input variables considered
in  the  prediction  of  the  shear  strength  of  soil  included:  clay
content (%), moisture content (%), specific gravity, void ratio,
liquid  limit  (%),  and  plastic  limit  (%).  Description  of  these
variables are given in the following sections:

2.1.2.1. Clay Content

Particles of clay are defined as the ones with a size smaller
than 0.005 mm [45]. The content of clay affects the plasticity
of  the  soil,  and  the  shear  strength  decreases  as  the  plasticity
increases [46]. Thus, it is reasonable to select clay content as
an  input  variable  for  the  prediction  of  shear  strength  in  this
study.  Clay  content  (Cc),  in  the  laboratory,  is  usually
determined based on the analysis of grain composition by Eq.
(2) [45]:

tan c     
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(2)

where m0.005 is defined as the mass of soil particles falling
through the 0.005 mm sieve size, m is defined as the mass of
the soil sample. In this study, the values of clay content vary
from 0.2 to 77.6% (Table 1).

2.1.2.2. Moisture Content

Moisture content (Mc) is defined as the ratio in percent of
the  mass  of  water  and  the  mass  of  the  soil  particle  in  the
sample expressed by Eq. (3) [45]:

(3)

where mw infers the mass of water in the soil sample and
ms  infers  the  mass  of  particle  in  the  soil  sample.  In  the
laboratory,  there  are  two  common  methods,  namely  oven
drying  and  alcohol  burning  used  to  determine  the  moisture
content of the soil. Moisture content affects the shear strength
of  soil  as  the  higher  the  moisture  content,  the  less  cohesion
between soil particles, and the weaker the soil becomes. In this
study, the values of moisture content vary from 0.72 to 75.14%
(Table 1).

2.1.2.3. Specific Gravity

Specific gravity is defined as the ratio between the density
of the particles and the density of the water in the soil sample
[45] expressed by Eq. (4) [47]:

(4)

where  ρs  infers  the  density  of  soil  particles  whereas  ρw

infers  the  density  of  water.  With  the  soil  with  high  specific
gravity,  the  shear  strength  is  also  high  as  it  contains  heavy
minerals,  compact  structure.  In  this  study,  values  of  specific
gravity vary from 0.01 to 2.75 (Table 1).

2.1.2.4. Void Ratio

Void  ratio  (e)  -  a  ratio  of  the  volume  of  voids  to  the
volume of solids in the soil sample [45], is an important factor
to evaluate the shear strength of soil as the higher the void ratio
shows the lower the shear strength of soil. It can be calculated
by Eq. (5) [45]:

(5)

where Vv infers the volume of voids in the sample whereas
Vs  infers  the  volume  of  the  particles  in  the  sample.  In  this
study,  the  values  of  the  void  ratio  vary  from  0.21  to  2.089
(Table 1).

2.1.2.5. Liquid Limit

Liquid  Limit  (LL)  is  known  as  the  limited  moisture  at
which the state of soil is changed from plastic to liquid [45]. It

affects the shear strength of soil as an increase of liquid limit
leads  to  decreases  in  the  shear  strength  of  soil  [46].  Two
methods, namely Cassagrande and Vasiliev, are often used to
determine  the  liquid  limit  in  the  laboratory  [45].  It  can  be
calculated by Eq. (6):

(6)

where mliquid infers the mass of water in the sample at that
the state of soil changed from plastic to liquid and ms infers the
mass of soil particles. In this study, the values of liquid limit
vary from 0.7 to 74.9% (Table 1).

2.1.2.6. Plastic Limit

Plastic Limit (PL) is the limited moisture at that the state of
soil is changed from solid to plastic [45]. It  affects the shear
strength  of  soil  as  an  increase  of  the  plastic  limit  leads  to  a
decrease in the shear strength of the soil [46]. Atterberg tools
are often used to determine the plastic limit in the laboratory
[45], and it can be calculated by Eq. (7):

(7)

where mplastic infers the mass of water in the sample at that
the state of soil changed from solid to plastic and ms infers the
mass of the particles in the sample. In this study, the values of
plastic limit vary from 0.6 to 41% (Table 1).

3. SUPPORT VECTOR MACHINE

Firstly introduced by Vapnik [48], support vector machine
(SVM) is a common machine learning method and widely used
to  solve  many  real-world  problems,  including  soil-related
properties prediction. The main concept of SVM is to map the
original input space into a high-dimensional feature space by
using a hyperplane [49, 50]. Let x = xi defined as a set of input
factors  used  in  the  models,  and  y  is  the  output  (predicted
variable).  The  SVM  function  is  expressed  by  Eq.  (8):

(8)

where  b  infers  the  bias  of  the  model,  w  is  the  weight
matric, and θ (x) is defined as the feature mapped nonlinearly
from  the  input  space  x.  In  this  study,  the  choice  of  SVM  to
predict the soil shear strength was relied on many advantages
of such machine learning algorithm, for instance, the ability of
minimization of outliers and noise [51], the higher prediction
capability of SVM compared with other algorithms [48] or the
possibility  to  be  used  in  a  wide  range  of  civil  engineering
related problems even they are highly unrelated [52]. The SVM
algorithm  was  coded  in  Matlab,  based  on  the  Machine
Learning  toolbox  and  adapted  to  the  problem  with  several
modifications,  such  as  taking  into  account  the  random
sampling  effect  or  tuning  the  SVM  parameters.

In  this  study,  various  statistical  indicators,  namely  R,
RMSE  and  MAE,  were  used  to  evaluate  the  performance  of
SVM. A description  of  these  indicators  can  is  present  in  the
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published papers [53 - 59]. In general, higher R illustrates the
better predictive capability of the model, whereas lower RMSE
and MAE show the worse predictive capability of  the model
[60 - 65].

4. RESULTS AND DISCUSSION

4.1. Prediction Performance of SVM

In the first step, the performance of SVM is evaluated in
performing 200 simulations taking into the random sampling
strategy to construct the training and testing datasets. As it is
well-known that the data appear in the training dataset greatly
affects  the  performance  of  machine  learning  models,  the
random indexing  process  of  samples  aimed  to  fully  evaluate
the performance and robustness of SVM under the presence of
variability  in  the  input  space.  The  prediction  results  are
evaluated  by  the  goodness  of  fit  between  predicted  and
experimental values of soil shear strength. The assessment of
the prediction capability is based on the goodness of fit in the
testing  dataset.  Fig.  (2)  shows  the  statistical  results  for  R,
RMSE  and  MAE  for  testing  SVM  for  200  different
simulations. It is worth noticing that 70% of the experimental
data was randomly taken to construct the SVM model, thus the
corresponding R,  RMSE and MAE values  were  different  for
each  simulation.  As  can  be  seen,  the  values  of  R  were
satisfactory and stable, ranging from R = 0.9 to 0.95, with only
several outliers. Similar observations were also noticed for the

values of RMSE and MAE, ranging around 0.08 (for RMSE)
and 0.055 (for MAE). It can be concluded that SVM is a good
predictor for estimating the shear strength of the soil.

The  values  of  R,  RMSE  and  MAE  over  200  random
sampling  simulations  are  presented  in  Table  2.  It  was  found
that the SVM algorithm is a very potential predictor candidate
as the variation of all error criteria was small.

The best  performance of  SVM, represented by the simu-
lation,  where  the  highest  value  of  R  was  obtained  with  the
training dataset, is presented in Fig. (3). It is observed that the
predicted and experimental soil shear strength values were in
good agreement, clearly proven by the satisfying relative errors
(RMSE  =  0.091).  Only  a  few  data  points  were  observed  as
outliers, whereas the remaining results were oscillated around
0.

With  respect  to  the  testing  dataset,  the  comparison  and
error are displayed in Fig.  (4).  As can be seen,  the predicted
soil shear strength values were close to the experimental ones.
The relative errors were found mostly in the 10% of error with
RMSE = 0.0641, close to the min values over 200 simulations.
The  maximum error  was  found  as  Error  =  -0.23,  which  was
better  than  the  maximum  error  found  in  the  training  dataset
(Error = -0.58). The linear fit lines and correlation results for
both  training  and  testing  parts  are  plotted  in  Fig.  (5).  The
correlation result for the training set were R = 0.893, whereas
that of the testing part was satisfying, i.e., R = 0.954.

Table 1. Summary of the statistical values of the database.

Clay Moisture content Specific gravity Void ratio Liquid limit Plastic limit Soil shear strength
Unit (mm) (%) - - (%) (%) kG/cm3

Min 0.20 0.72 0.01 0.02 0.70 0.60 0.04
Average 33.25 31.83 2.61 0.91 42.36 22.17 0.48
Median 33.20 26.55 2.69 0.79 42.50 21.40 0.50

Max 77.60 75.14 2.75 2.09 74.90 41.00 0.93
SD* 16.14 15.27 0.43 0.39 13.26 6.14 0.20

SD* = Standard deviation

Table 2. Summary of the prediction performance over 200 random simulations for the training and testing datasets.

Part Values RMSE MAE R Error Std
Train dataset Average 0.0988 0.0580 0.8824 0.0989

- Min 0.0707 0.0494 0.5088 0.0708
- Max 0.3050 0.0764 0.9399 0.3051

Test dataset Average 0.0820 0.0555 0.9164 0.0818
- Min 0.0616 0.0451 0.7220 0.0615
- Max 0.1788 0.0790 0.9537 0.1780
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Fig. (1). Correlation analysis between input variables and output in this study.

Fig. (2). Results of R, RMSE, MAE for the testing part simulated by SVM for 200 simulations.

 

.  
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Fig. (3). Comparisons between predicted and experimental soil shear strength for the training dataset and the corresponding relative errors.

Fig. (4). Comparisons between predicted and experimental soil shear strength for the testing dataset and the corresponding relative errors.
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Fig. (5). Correlation analysis between input variables and output in this study: (a) Training dataset and (b) testing dataset

Fig. (6). Partial dependence plots (PDP) of the input variables used in this study.

In the discussion, Dao et al. [66] predicted the mechanical
properties of geopolymer concrete using ANN. Although the
method gave satisfactory values of R2 around 0.75, it was also
noticed  in  many  cases  that  these  values  were  close  to  0.  In
another attempt, Nguyen et al. [27] compared the performance
of SVM with two hybrid machine learning methods to simulate
the Marshall properties of stone matrix asphalt mixtures. The

SVM performance over 1000 simulations was found superior
to the other hybrid artificial intelligence methods, especially no
negative values of R were found. Thus, the use of SVM in this
study was reasonable and the results were proven to be stable
and reliable.

(a) R = 0.893 (b) R = 0.954 
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4.2. Importance of Input Factors Using Partial Dependence
Plots (PDP)

Partial  dependence  plots  (PDP)  is  an  efficient  way  to
represent  the  dependence  between  the  target  response  of
machine  learning  algorithm  and  a  set  of  the  selected  input
variable, marginalizing over the values of remaining variables
to evaluate the importance of input factors to be selected for
better  prediction problems.  In  this  study,  PDP of  the  6  input
variables was derived from the best configuration of SVM, as
presented in Fig. (6).

The clay content and the void ratio were found to be the
less  important  variables  throughout  PDP  analysis,  as  the
variation of the predicted soil shear strength was insignificant.
The value of the latter was varied from 0.4585 to 0.4839 with
respect to clay content and from 0.4827 to 0.5295 with respect
to  the  void  ratio.  Considering  now  the  specific  gravity,  the
predicted  output  ranged  in  the  0.4486  to  0.6409  range,
classified as a more important variable comparing with the clay
content and void ratio. The liquid limit was considered to have
more effect than the plastic limit to the predicted shear strength
of soil, as the latter varied from 0.2218 to 0.7051 (for plastic
limit)  and  from  0.1216  to  0.6885  (for  liquid  limit).  Finally,
when  varying  the  moisture  content,  the  value  of  soil  shear
strength was found significantly fluctuated, from 0.035 to 1. It
could  be  concluded  that  the  order  of  importance  of  the
variables in this study could be: moisture content > liquid limit
> plastic limit > specific gravity > void ratio > clay content.

In general, the factors related to water were found as the
important  variables  for  the  prediction  of  soil  shear  strength.
The  presence  of  water  in  soil  reduces  the  friction  and  link
among particles, thus reducing the shear strength of soil. The
PDP results and classification were found in good agreement
with previously published works in the literature [67, 68].

CONCLUSION

Prediction and analysis of soil shear strength, an important
parameter in geotechnical engineering, has been investigated in
this study. To this aim, the development of a machine learning
algorithm, SVM was conducted. The database used to predict
the shear strength of soil contained 6 input variables, namely
the clay content, moisture content, specific gravity, void ratio,
liquid  limit  and  plastic  limit.  The  accuracy  of  the  proposed
SVM was successfully proved via statistical error criteria such
as R, RMSE and MAE over 200 simulations. Finally, the most
accurate SVM model was selected for the interpretation of the
results using partial dependence plots (PDP). Validation results
showed that SVM models performed well for prediction of soil
shear  strength  (R  =  0.9  to  0.95),  and  the  moisture  content,
liquid  limit  and  plastic  limit  were  found  as  the  three  most
affecting features to the prediction of soil shear strength.

In machine learning problems, data is crucial to construct a
reliable prediction tool. Gathering an additional dataset is one
perspective of this study. Moreover, the accuracy improvement
of the prediction algorithm is also critical and will be shortly
investigated, which helps avoid costly on-field experiments.
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