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Abstract:

Aims:

Understanding the mechanical performance and applicability of soils is crucial in geotechnical engineering applications. This study investigated the
possibility of application of the Random Forest (RF) algorithm – a popular machine learning method to predict the soil unconfined compressive
strength (UCS), which is one of the most important mechanical properties of soils.

Methods:

A total number of 118 samples collected and their tests derived from the laboratorial experiments carried out under the Long Phu 1 power plant
project, Vietnam. Data used for modeling includes clay content, moisture content, specific gravity, void ratio, liquid limit and plastic limit as input
variables, whereas the target is the UCS. Several assessment criteria were used for evaluating the RF model, namely the correlation coefficient (R),
root mean squared error (RMSE) and mean absolute error (MAE).

Results:

The results showed that RF exhibited a strong capability to predict the UCS, with the R value of 0.914 and 0.848 for the training and testing
datasets, respectively. Finally, a sensitivity analysis was conducted to reveal the importance of input parameters to the prediction of UCS using RF.
The specific gravity was found as the most affecting variable, following by clay content, liquid limit, plastic limit, moisture content and void ratio.

Conclusion:

This study might help in the accurate and quick prediction of the UCS for practice purpose.

Keywords: Unconfined compressive strength (UCS), Unconfined compression test, Random forest, Machine learning, Root mean squared error
(RMSE), Mean absolute error (MAE).
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1. INTRODUCTION

Soil  science  is  a  complex  discipline  that  involves
fundamental and applied aspects of soil biology, soil physics
and soil chemistry [1]. In civil engineering, understanding the
mechanical  properties  of  soils  in  a  relationship  with  the
applications is of fundamental importance [2]. Soil mechanics
allows  engineers  to  explore  the  properties  and  behaviors  of
soils, so that an adequate solution to given problems could be
granted.  While  treating  settlement  or  damage  problems,  soil
science is important as many construction works are directly
affected  by  the  soil  mechanics  studies,  including  building,
bridges,  road,  railway,  tunnels  and  dams.  Various  investig-
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ations related to this field have been conducted, for instance,
soil mechanical properties [3], permeability of fractured porous
media [4 - 6], consolidation of soil [7 - 8] and especially the
compressive strength of soil.

Indeed, soil Unconfined Compressive Strength (UCS) is an
important  factor  which  is  used  to  validate  the  compaction
ability  of  soil  [9].  It  can  be  directly  determined  in  the
laboratory through unconfined compression test. However, this
test  usually  takes  a  long  time  and  is  costly,  which  might
increase construction costs. Moreover, the accuracy of such a
test  depends significantly  on the  quality  of  equipment  or  the
experimenter.  It  is  thus  necessary  to  find  an  alternative  and
effective  way  to  predict  the  soil  UCS.  The  use  of  machine
learning algorithms has spread rapidly over  the last  decades,
especially  in  computer  science.  Such  approach  provides  a
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possibility  to  learn  information  from  data,  which  is  an
attractive alternative compared with “manual” learning [10]. In
civil  engineering,  machine  learning  algorithms  have  been
applied  to  solve  countless  real-world  problems,  such  as
landslides [11 - 13], floods [14], weather and climate [15 - 17],
materials science [18 - 23], engineering structures [24 - 26] or
soil properties [27]. In general, the machine learning approach
is promising and potential for accurate and fast prediction of
soil properties.

Despite  the  fact  that  Random  Forest  (RF)  is  one  of  the
most popular and effective machine learning algorithm, limited
research  has  investigated  the  possibility  of  using  RF  in
predicting the Soil Unconfined Compressive Strength. In this
work,  the  RF  algorithm  was  developed  to  investigate  the
feasibility of applying such a model for quick estimation of the
Soil  Unconfined  Compressive  Strength.  For  this,  a  total
number of 118 samples was collected from Long Phu 1 power
plant  project  and  laboratory  experiments  were  carried  out  to
determine  the  soil  properties.  The  database  included  input
parameters  such  as  clay  content,  moisture  content,  specific
gravity,  void  ratio,  liquid  limit,  plastic  limit  and  one  output
variable,  the  Unconfined  Compressive  Strength  (UCS).  To
validate  the  performance  of  RF,  several  assessment  criteria
were used,  namely the correlation coefficient  (R),  root  mean
square error (RMSE) and mean absolute error (MAE). Using
RF,  feature  importance  analysis  of  input  parameters  in
predicting  the  UCS  was  also  conducted  with  the  aim  of
providing  better  insights  into  the  problem.

2. DATA COLLECTION AND ANALYSIS

In this  study,  soil  samples  were collected from the Long
Phu  1  power  plant  project,  located  in  Soc  Trang  province,
Vietnam. Laboratory tests of 118 soil samples were carried out
to  determine  the  soil  properties  used  for  the  design  and
construction of  the project,  and used to generate  the training
(70%) and testing (30%) datasets for the development of the
RF  model.  In  the  datasets,  there  were  six  soil  properties,
including  the  clay  content  (%),  void  ratio,  liquid  limit  (%),
moisture  content  (%),  plastic  limit  (%),  and specific  gravity.
They were used as input parameters of the RF model. Besides,
the UCS (or qu), determined by using unconfined compression
tests in laboratory conditions, was used as an output parameter.
Detail description of these parameters can be found in the work
of Das and Sobhan [28].  A correlation analysis  of  the inputs
was carried out and presented in Fig.  (1).  It  can be observed
that the value of clay content ranging from 2.4-63.4 mm, with
an  average  and  median  values  of  32.63,  31.55,  respectively,
and  a  standard  deviation  of  13.85.  The  value  of  moisture
content  ranging  from  0.61-75.14%,  with  an  average  and
median  values  of  28.66,  26.42,  respectively,  and  a  standard
deviation of 13.46. The value of specific gravity ranging from
0.01-2.72,  with  an  average  and  median  values  of  2.53,  2.69,
respectively, and a standard deviation of 0.64. The value of the
void  ratio  ranging  from  0.017-2.089,  with  an  average  and
median  values  of  0.83,  0.78,  respectively,  and  a  standard
deviation of 0.36. The value of the liquid limit  ranging from
1.6-74.9%, with an average and median values of 41.54, 42.0,
respectively, and a standard deviation of 14.30. The value of

plastic  limit  ranging  from  0.6-41.0%,  with  an  average  and
median  values  of  20.64,  20.75,  respectively,  and  a  standard
deviation of  6.31.  Finally,  the  UCS ranging from 0.078-4.43
kG/cm2,  with  an  average  and  median  values  of  1.37,  1.21,
respectively, and a standard deviation of 0.87.

It can be seen that for all the variables, the median values
were very close to the average values, representing that such
variables could be approximated by a normal distribution. The
inter-correlation  between  inputs  and  between  input  variables
and the output are depicted (Fig. 1). From such results, it can
be seen that the moisture content is highly correlated with the
void ratio. The plastic limit, with a lower level of correlation, is
in relatively strong relationships with the liquid limit and the
void ratio. Otherwise, no direct relationship is found between
the UCS and the input variables presented in the database.

3. METHODS USED

3.1. Random Forest (RF)

Random  Forest  (RF),  a  well-known  supervised  machine
learning algorithm, is a nonparametric technique derived from
classification  and  regression  trees  (CART),  which  applies
ensemble  learning  method  to  solve  problems  [29].  Since  the
first  introduction  by  Breiman  [29],  RF  has  been  extremely
applied in practice and with a wide range of applications, such
as bioinformatics [30], materials sciences [31], remote sensing
[32]  or  land  cover  classification  [33].  RF  is  referred  to
construction  of  many  trees,  where  each  tree  is  generated  by
bootstrap samples. Then, a certain number of samples is kept
for  the  validation  process,  which  is  called  the  out-of-bag
predictions (OOB).  Each split  of  the tree is  constructed by a
random  process  to  create  a  subset  of  the  predictors  at  each
node.  The  final  output  of  RF  is  the  average  of  the  results
obtained by all the trees [29]. In this study, RF was applied to
predict  the  UCS  in  which  the  number  of  bags  used  for
bootstrapping was set at 500, whereas the optimal leaf size was
set at 20.

3.2. Performance Assessment Criteria

In  this  study,  various  performance  assessment  criteria,
namely Mean Absolute Error (MAE), Root Mean Square Error
(RMSE),  and  Correlation  Coefficient  (R)  were  selected  to
evaluate the prediction capability of the proposed RF model.
MAE, in general, is a statistical metric used for the assessment
of  the  prediction  quality  of  given  soft  computing  algorithm
[34], [35]. MAE measures the absolute difference between the
predicted and experimental data. Besides, RMSE calculates the
square root of the average of squared difference between the
predicted  and  experimental  data  [36],  [37].  R,  the  so-called
Pearson correlation coefficient, is also a statistic measurement
used  to  quantify  the  statistical  relationship  between  the
predicted and actual data [38]– [40]. The three criteria MAE,
RMSE, and R are widely used in prediction problems utilizing
machine learning algorithms. Literally, lower RMSE and MAE
values  mean  better  prediction  capability.  On  the  contrary,
higher R values signify better performance [41]. The formulas
of these criteria are given as below:
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Fig. (1). Correlation analysis between the soil unconfined compression strength and input variables in this study.

(1)

(2)

(3)

where  n  is  the  number  of  data  used,  and  are  the  ML
predicted  and  mean  ML  predicted  values,  while  and  are  the
experimental and mean values of the UCS, respectively.

4. RESULTS AND DISCUSSION

4.1. Prediction Capability of RF

For UCS modeling and prediction, the RF algorithm was
performed 20 times in randomly shuffling the training dataset

(70%  of  the  total  samples)  and  the  results  of  the  best
configuration was taken. The best adopted configuration was
the  one  which  gave  highest  value  of  R  and  lowest  values  of
RMSE and MAE. The results and the corresponding values of
error were presented.

The out-of-bag regression error in predicting the soil UCS
is shown in Fig. (2). It can be seen that the error stabilized from
200 grown trees, so that increasing the number of grown trees
does not seem necessary. This indicated that such number was
sufficient to obtain converged prediction results.

The validation process of RF algorithm was performed and
shown  in  Fig.  (3).  For  the  training  dataset,  it  can  be  clearly
observed  that  the  experimental  data  (continuous,  black  line)
and the predicted UCS values (red circles, discontinuous line)
obtained  by  RF  model  were  in  strong  coherence.  The
maximum  values  of  error  between  the  predicted  UCS  were
about  1  kG/cm2  for  only  3  samples,  whereas  only  4  samples
exhibited an error of about 0.5 kG/cm2. The values of MSE was
0.152,  while  RMSE value  gave  0.390  kG/cm2.  Out  of  these,
smaller  values  of  error  were  in  the  range  around  0  and  the
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probability  density  was  rather  narrow,  with  an  average  of
-0.018 and a standard deviation of 0.392. It is thus universally
concluded that RF method has an effectiveness in finding the
optimal UCS solutions.

Regarding the testing dataset (30%), the predicted results
using  RF  were  highlighted  in  Fig.  (4).  It  can  be  seen  that,
similar  to  the  training  part,  the  experimental  data  and  the
predicted UCS values were in good agreement. In this case, the

maximum  values  of  error  were  close  to  1.5  kG/cm2  (only  1
samples), whereas only 3 samples exhibited an error of about 1
kG/cm2. The values of MSE for the testing dataset was 0.211
while  RMSE  value  gave  0.460  kG/cm2.  The  values  of  error
were centered on 0 with an average of -0.093 and a standard
deviation of 0.457. The accuracy of the testing part was inferior
to  the  training  one,  which  helps  preventing  overfitting
phenomenon.

Fig. (2). Out-of-bag error in function of number of grown trees.

Fig.  (3).  Comparison of  experimental  and predicted values  of  the  UCS using RF model  along with  error  distribution,  mean error  and standard
deviations for the training dataset.
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Fig.  (4).  Comparison of  experimental  and predicted values  of  the  UCS using RF model  along with  error  distribution,  mean error  and standard
deviations for the testing dataset.

Fig. (5). Prediction capability of RF algorithm for the UCS in a regression form for the training and testing datasets.
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Fig. (6). Out-of-Bag feature importance of 6 variables used in this study using RF algorithm.

Validation results of the linear fit line, its equations and the
R  values  are  given  in  Fig.  (5)  for  the  training  and  testing
datasets. The performance of RF in predicting the compressive
strength values was satisfactory with R = 0.914, R=0.848 for
the training and testing parts, respectively. Two linear fits were
proposed  and  plotted  in  Fig.  (5),  where  the  slopes  were
computed as 0.68 and 0.65 for the training and testing datasets,
respectively.  The  values  of  intercept  were  given  as  0.47  and
0.56 for the two datasets.

This  result  demonstrates  that  the  proposed  RF  model  is
suitable and can predict  the soil  compressive strength values
which are, in general, close to experimental values.

4.2. Sensitivity Analysis

Naturally,  the  RF  algorithm  allows  evaluating  the
significance of input parameters.  The estimation of predictor
importance values was conducted by summing changes in the
risk due to splits on every predictor and dividing the sum by
the number of branch nodes. Fig. (6) illustrates the out-of-bag
feature  importance  of  variables  used  in  this  study.  It  can  be
seen  that  the  specific  gravity  (X3)  is  the  most  important
variable in predicting the soil UCS as this factor is related to
the density of particles presenting in soil [42]. Besides, the clay
content (X1) is the second important input parameter, followed
by  the  liquid  limit  (X5),  plastic  limit  (X6)  with  equally
importance, and the moisture content (X2), void ratio (X4), also
with similar level of importance.

CONCLUSION

The soil unconfined compressive strength represents one of
the important mechanical properties in civil engineering. In this
study, the possibility of using the Random Forest algorithm in
predicting  the  unconfined  compressive  strength  of  soil  was
investigated.  A  dataset  containing  118  samples  was
constructed, taking the clay content, moisture content, specific

gravity,  void  ratio,  liquid  limit  and  plastic  limit  as  input
variables. The main objective of the study was to predict the
soil unconfined compressive strength. The verification on the
reliability of the results was firstly conducted through analysis
between the numbers of trees versus the out-of-bag error. The
RF  prediction  process  was  then  conducted  and  it  was  found
that  RF  was  a  good  predictor  with  satisfactory  results  of  R,
RMSE and  MAE as  0.848,  0.460  and  0.093,  respectively.  A
sensitivity  analysis  was  carried  out  in  order  to  reveal  the
importance  of  each  given  input  to  the  predicted  UCS.  The
specific  gravity  was  found  as  most  influential  feature  to  the
UCS,  followed  by  clay  content,  liquid  limit,  plastic  limit,
moisture  content  and  void  ratio.

Many  interesting  perspectives  of  this  study  can  be
envisioned: (i) collection of more data of the UCS as to cover a
wider range of input and output variables, (ii) analysis of the
robustness of the RF algorithm taking into account the random
data splitting using Monte Carlo simulations [43], as it is well-
known that the accuracy of any ML algorithm strongly depends
on the construction of the training dataset;  and (iii)  applying
other  ML  algorithm  or  hybrid  techniques  to  improve  the
prediction  performance.

NOMENCLATURES

UCS = Unconfined Compressive Strength

RF = Random Forest

R = Correlation Coefficient

RMSE = Root Mean Square Error

MSE = Root Mean Square Error

MAE = Mean Absolute Error

CART = Classification and Regression Trees

X1 = Clay Content

X2 = Moisture Content
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X3 = Specific Gravity

X4 = Void Ratio

X5 = Liquid Limit

X6 = Plastic Limit
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