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Abstract:
Background:
In this study , a methodology based on non-destructive tests was used to characterize historical masonry and later to obtain information regarding
the  mechanical  parameters  of  these  elements.  Due  to  the  historical  and  cultural  value  that  these  buildings  represent,  the  maintenance  and
rehabilitation work are important to maintain the appreciation of history. The preservation of buildings classified as historical-cultural heritage is of
social interest, since they are important to the history of society. Considering the research object as a historical building, it is not recommended to
use destructive investigative techniques.

Objective:

This work contributes to the technical-scientific knowledge regarding the characterization of granite masonry based on geophysical, mechanical
and neural networks techniques.

Methods:
The database was built using the GPR (Ground Penetrating Radar) method, sonic and dynamic tests, for the characterization of eight stone masonry
walls constructed in a controlled environment. The mechanical characterization was performed with conventional tests of resistance to uniaxial
compression, and the elastic modulus was the parameter used as output data of ANNs.

Results:

For the construction and selection of network architecture, some possible combinations of input data were defined, with variations in the number of
hidden layer neurons (5, 10, 15, 20, 25 and 30 nodes), with 122 trained networks.

Conclusion:
A mechanical characterization tool was developed applying the Artificial Neural Networks (ANN), which may be used in historic granite walls.
From all the trained ANNs, based on the errors attributed to the estimated elastic modulus, networks with acceptable errors were selected.
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1. INTRODUCTION

The  rehabilitation  of  historic  buildings  is  considered  an
important step in the preservation of historical heritage, with a
global or national dimension. For a well-grounded, lasting and
with least possible damage rehabilitation process, non-destruc-
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tive  testing  techniques  (NDT’s)  are  available,  which  help  in
obtaining characteristics of the object to be analyzed. For this
work, the following NDTs were used: the Ground Penetrating
Radar (GPR) method, sonic tests and dynamic tests.

The  GPR  method  consists  basically  in  using  a  receiving
antenna and an emitting antenna, which respectively, receive
and emit electromagnetic waves to the subsurface and generate
a characteristic radargram of the studied area [1]. Among the
techniques  of  existing  geophysical  investigations,  GPR
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(Ground Penetrating Radar) stands out for its efficient ability to
generate images of the subsurface and the easy applicability to
different  situations.  GPR  was  successfully  used  in
investigations of historic buildings [2, 3]. The sonic tests are
performed with  an  instrumented hammer  and accelerometers
for receiving waves, which can be P, R or S. The sonic tests are
also widely used in  the field  of  rehabilitation [4,  5].  Finally,
there  are  dynamic  tests,  which  provide  the  frequency  and
vibration  modes  of  the  analyzed  structure.  As  the  other
methods  presented,  this  one  is  also  efficient  in  the
characterization  of  structures  [6,  7].

These  techniques  have  been  applied  in  masonry  panels,
built  in  a  lab-controlled  environment,  with  similar  charac-
teristics  to  existing  historical  buildings.  Parallel  to  the
application of NDTs, conventional uniaxial compression tests
have also been carried out in the referred double-leaf granite
stone masonry panels (DSM). These data were correlated with
the results of NDTs with the aid of artificial neural networks
(ANN); the elastic modulus was obtained by NDT’s.

The application of non-destructive tests on DSM, despite
being an advanced technology, could be frustrating because the
interpretation of the result is often difficult, as the masonry is a
highly  heterogeneous  compound.  The  understanding  of  the
mechanical  behavior  of  masonry  has  been  largely
accomplished, due to the complexity of its nonlinear structural
variables [8 - 12]. The combination of geophysical techniques
in heritage buildings’ investigations ensures greater trust and
complementary results.

The ambiguity inherent in the non-unicity of the response
of the geophysical methods applied to masonry has led to the
combined use of more than one of these methods to reduce the
intrinsic  uncertainty  of  the  obtained  models.  The  use  of  a
synergy  of  NDTs,  in  parallel,  in  the  same  structure,  as  a
support for the heritage preservation, brings many benefits to
the  analysis  of  the  materials  and  the  constructive  elements.
Through the analysis of specific parameters’ variations in each
method, it is possible to obtain peculiar characteristics of the
analyzed materials.

Artificial Neuronal Networks (ANN) are used as an option
in this work since they are an efficient tool for correlating the
results  previously  presented.  ANNs  are  computational  tools
composed  of  interconnected  processing  units  (artificial
neurons) capable of solving complex problems in several areas
of  knowledge.  They  are  based  on  the  human  neurological
system behavior and therefore, can develop the ability to learn
and  store  information,  as  well  as  recognize  and  classify
patterns.

The networks have been successfully used in several works
in  the  field  of  engineering  [13  -  17].  ANNs  in  mechanical
characterization analysis have also been used with success, as
modeling  compressive  strength  and  failure  criterion  on  the
behavior of anisotropic materials such as masonry [18], could
be used to predict  the main cutting force component  and the
mean  surface  roughness  during  turning  of  tool  steel  [19],  to
predict the compressive strength of mortars [20, 21], the shear
capacity of concrete beams [22] and the compressive strength
of self-compacting concrete [23].

For each artificial neuron, several input data are defined,
which may be original data or responses from other neurons in
the network. All input data are received through a connection
that  has  weight.  Similarly,  neurons  also  have  a  unique
excitation threshold value,  which is  a  minimum intensity  for
neuron activation. For a given response to exit one neuron and
enter  another,  there  must  be  an  excitation  threshold  for  the
output and an activation function for the input. In this way, the
synapse  occurs  depending  on  the  weight  signal  and  has  an
inhibitory (negative) or excitatory (positive) effect [24].

In general, the ANN trained with the use of a data set that
is representative of the problem domain proves to be successful
in solving new problems with reasonable accuracy. It is clear
that  while  ANNs  have  been  used  successfully  in  numerous
engineering applications, few studies have incorporated the use
of  them  for  the  approach  of  the  mechanical  behavior  of
masonry  [24  -  30].

The nntool (Neural Network Toolbox™) GUI (Graphical
User Interface) neural network interface instrument, available
in MatLab (Matrix Laboratory, 2013), was used to perform the
data analysis since the same software contains a computational
package  for  the  use  of  ANN  in  its  most  diverse  forms  of
processing. This package supports different types of networks,
so it can be used for several areas of science and various types
of problems.

For  the  construction  of  this  ANN,  the  multi-layer  feed-
forward architecture was used as well  as supervised learning
with  a  backpropagation  algorithm.  The  multilayer  ANN was
configured,  trained  and  simulated  using  MatLab  (Matrix
Laboratory, 2013), through a code developed to automate this
process.

The  number  of  neurons  in  the  input  and  output  layer  is
defined by the problem. This setting is made empirically, but
some selection criteria  already presented in  the literature  are
followed, namely: adopting a number of input neurons equal to
the number of problem variables (which are set by the user);
and starting with a hidden layer and with a number of neurons
in that layer equal to the average input and output neurons.

After  the  definition  of  a  set  of  samples  to  be  analyzed,
which  corresponds  to  70%  of  the  samples,  training  data  are
randomly selected by the Matlab function (Matrix Laboratory,
2013)  nntool  for  the  neural  network  training.  15%  of  the
samples are designated as validation data, which measure the
generalization of the network, providing it with data that had
not  been  seen  before.  The  remaining  15%  of  the  samples,
called test data or simulation, provide an independent measure
of  neuronal  network  performance  in  terms  of  error  rate.
Through  an  iterative  and  random  process,  the  weights  are
modified until the iterations converge to acceptable errors. In
the  training  stage,  the  least  possible  mean  square  root  error
must be checked; the test set error and the validation set error
must have similar characteristics and no significant overfitting
should occur by iteration. With the weights already established,
the  network  is  subjected  to  validation  and  generalization
through  the  sim  function,  responsible  for  the  simulation
through ANN. By following these checks, the best validation
performance  point  is  identified.  After  each  training,  the
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software reports the error graphs obtained for all samples, for
each  division.  After  the  analysis  of  these  graphs,  the  user
requests,  or  not,  new  training  of  ANNs.

The  performance  of  the  network  must  be  analyzed
according  to  the  relationship  between  the  outputs  and  the
corresponding  targets.  To  improve  the  results,  the  following
approaches  can  be  used:  restarting  weights  and  re-training,
increasing  the  number  of  hidden  neurons,  increasing  the
number  of  input  data,  and  using  another  algorithm.  In  this
work, the artificial neural networks were used to correlate the
data of the NDT tests with the results of the mechanical tests.
In  this  section,  these  variables  used  for  the  formation  of  the
database  of  entry  of  ANNs  are  presented,  as  well  as,  the
preparation of these data, obtained by the NDT tests, for later
use in the ANN training.

For ANNs application, the user's role is to provide data that
will  be  used  in  each  step,  i.e.  sets  of  information  (input  and
output)  for  training  and  validation  and  the  input  of
generalization.  Inputs  are  organized  into  arrays  with  their
respective  outputs  and  thus,  the  network  recognizes  the
existing  mathematical  relationships  between  the  data.  In  the
present  work,  the  input  data  set  consists  of  samples
corresponding  to  the  results  of  the  non-destructive  tests
organized in a column on an Excel sheet that is later imported
into the workspace MatLab (Matrix Laboratory, 2013).

Fig. (1). DSM, two-leaf regular (one cross block).

2. METHODOLOGY

The  investigations  were  carried  out  in  the  Laboratory  of
Seismic and Structural Engineering (LESE) of the Faculty of
Engineering of the University of Porto (FEUP). Eight double-
leaf stone masonry walls (DSM) were studied (Fig. 1) divided
into  four  types  (Table  1).  The  sequence  of  the  work  in  the
laboratory  was  performed  in  real  scale  masonry,  using  the
parameters  and  techniques  defined  by  the  bibliography  [31,
32].

Table 1. Characteristics of the DSM.

Characteristics Layout (frontal / lateral)

Two-leaf
regular (two
cross block)
PP1 and PP5

Two-leaf
regular (one
cross block)
PP2 and PP6

Two-leaf
regular and

irregular (one
cross block)
PP3 and PP7

Two-leaf
regular and
irregular (no
cross block)
PP4 and PP8

The eight DSM walls [32] are composed of a stone from
the north of Portugal and a mortar consisting of hydrated lime,
gravel,  and  water.  The  vertical  and  horizontal  joints  were
considered approximately 3 cm thick. The masonry walls are
made of granite blocks coarsely regulated, and a non-cohesive
filler  (small  stone  fragments  bound  with  traditional  lime
mortar).  The  granite  blocks  used  were  collected  from  old
masonry buildings located in the north of Portugal and mortars,
composed of lime and clay (1:3 ratio). The masonry specimens
were  built  by  professionals  under  controlled  laboratory
conditions, idealized and constructed to be representative of the
traditional  typologies  of  masonry  construction  in  the
Mediterranean. The eight masonry walls are 0.90 m long, 0.55
m thick and 1.75 m high, leading to a slenderness rate h/t  of
3.18 and a volume of 0.87 m3 each.

Table  2  presents  an overview of  the  tests  performed and
the possible response variables used as input data for the neural
networks.  For  the  use  of  the  GPR test  (Fig.  2)  as  input  data
from  the  network,  the  variable  chosen  was  the  amplitude,
represented by a value obtained after RMS (root-mean-square).
The dynamic tests are represented by the values of the natural
frequencies.  The  sonic  tests  will  only  be  represented  by  the
velocity  values  obtained  with  the  indirect  test  configuration.
The acronym VU represents unique values for the entire wall
and  VC  represents  specific  values  to  each  zone.  Obtaining
these  values  will  be  further  detailed  in  the  following
subsection.

Table 2. Possible variables as input data.

NDT’s Characteristics Results
GPR (900 MHz) amplitude 3 x VC 1

Dynamic natural frequencies VU 1
Sonic (Indirect) wave velocities 3 x VC 2



Non-destructive Method of the Assessment The Open Construction and Building Technology Journal, 2020, Volume 14   87

Fig. (2). GPR test, indicates direction X and Y.

Fig. (3). Uniaxial compression test.

It  is important to note that the selected input data do not
necessarily have to be correlated with each other, for example,
the  velocity  values  of  the  sonic  wave  propagation  do  not
correlate  with  the  values  of  the  electromagnetic  wave
amplitudes.  The  purpose  of  ANN  is  to  correlate  these  input
parameters  with  the  mechanical  test  data,  namely  the  elastic
modulus,  so there is  no need to correlate  the input  data  with
each other, but rather the existence of a correlation between the
input data with the output data.

Information defined as input data should be standardized,
since  the  discrepancy  between  the  values  of  the  information
may  result  in  the  inadequate  performance  of  the  neural
networks.  For a correct  training of the network, the database
should cover as many possible scenarios of the structures, so
that the network can handle the cases that may happen [17].

Table  3  presents  an  overview  of  the  responses  obtained
with the uniaxial compression test that is used as ANN output
data. The variable output is set to E2 (global tangent modulus
panel  -  GPa  -)  resulting  from  compression  testing.  This
variable  was  defined  based  on  the  slope  of  the  graphs,

compressive stress (σ) x Strains (ε), obtained by the results of
the uniaxial compression tests (Fig. 3), for stress corresponding
to the range of 20 to 40% of the maximum stress value (σmax)
applied to each wall.

Table 3. Output data.

Test Characteristics Result
Uniaxial compression

test E2 - Global tangent modulus panel VU 2

The  architecture  of  ANNs  was  defined  based  on  six
variables:  geometric  characteristics  (presence  of  brakes  and
face  characteristic  -  regular  and  irregular  -),  results  of  the
dynamic characterization (vibration frequencies in the X and Y
direction), wave velocity of indirect sonic tests (Ac1, Ac2 or
Ac3) and the RMS values of the amplitudes of the GPR test.
Thus,  we  considered  one  input  layer  with  several  neurons
compatible with the number of input data, one hidden layer and
one layer of output with one neuron. The network consists of
32 input samples (8 walls with 3 zones each, plus the average
of each wall), with 192 data at the input base.

The data used must characterize the actual situation of the
structure because they are strictly mathematical techniques so
that the performance of the processing depends on the correct
supply  of  data.  Data  normalization  in  the  database  (dynamic
test  results,  sonic  tests  and  GPR)  is  also  advisable  since  the
disparity between values can result in the detuned performance
of the networks. This normalization was carried out by dividing
all the values of each parameter by its identified maximum.

The number of neurons, which makes up the intermediate
layers,  was  determined  by  a  trial  and  error  strategy.  The
network structure (number of layers and number of neurons) is
associated  with  the  adequate  responsiveness  of  the  trained
network. To reduce the error obtained in the training phase, the
number of neurons was increased until it  became acceptable,
without great variations. An initial attempt for the number of
neurons in the intermediate layer was made according to Eq.
(1):

(1)

Where: Nnci- number of neurons in the intermediate layer;
Nvar,pe- number of variables in an input pattern; Natr- number of
samples available for training.

In  Eq.  (2),  Nvar,pe  is  number  6  because  it  represents  the
geometric  characteristic  (cross-block  presence  and  irregular
face  presence);  natural  frequencies  (x)  and  (y)  from  the
dynamic  tests;  wave  velocities  from  the  indirect  sonic  tests
(Ac3) and the amplitude from GPR. Natr is number 32, because
the  training  was  with  32  samples  (eight  DSM  plus  with  the
average for each of the three zones). The use of 5, 10, 15, 20,
25 and 30 neurons in  the  middle  layer  of  the  networks (Nnci)
was tested.

(2)

The  development  and  mathematical  details  of  the

 

𝑁𝑛𝑐𝑖 =
𝑁𝑣𝑎𝑟,𝑝𝑒 + 𝑁𝑎𝑡𝑟

2
 

𝑁𝑛𝑐𝑖 =
6 + 32

2
= 19 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 
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implementation of ANNs can be seen in other reference works
[33, 34], which are not debated here. The parameters used for
the training of ANNs are summarized in Table 4.

Table 4. Parameters of ANN used.

Parameter Value
Training algorithm Backpropagation algorithm

Number of hidden layers 1
Number of neurons per hidden layer 5-30 by step 5

Training goal 0
Epochs 100

Cost function MSE (mean square error)
Transfer functions Tansig

After  defining  the  ANN  database,  the  next  step  is  to
perform training of the networks to achieve the most efficient
tool. The efficiency of the trained network is defined in terms
of the lowest error (%) calculated for each sample (Eq. 3).

(3)

Where:  Target-  are  the  values  of  E2;  Output-  the  values
provided by the training.

Network training consists of processing this data set (input
and  output)  so  that  the  tool  can  establish  a  mathematical
relationship between them. Araújo (2017) suggests performing
at least three runs with each test; in this way, the possibility of
overfitting  is  reduced,  and  the  convergence  of  the  results  is
verified. The parameters that minimize the maximum relative
error (Eq. 3) of the training data can be defined as follows:

Data type analyzed: the larger the information in the
input patterns, the more the algorithm establishes valid
relations between input and output patterns;
Network parameters (number of neurons): the number
of neurons has a decisive role in network processing,
since  the  higher  the  number,  the  better  the
performance. However, the exaggerated increase may
lead to divergence of results.

2.1. Data Preparation for ANN’s

In this section, we present the methodology of organization
of the database for six input variables of ANNs, as well as the
adequacy of  the responses of  the NDTs to integrate  into this
base. It is worth mentioning that the responses of the dynamic
characterization  test  did  not  suffer  adequations,  since  their
numerical  values,  which  correspond  to  the  vibration
frequencies of the structure (1st and 2nd frequency), were thus
included in the input database of ANN’s.

The input data were grouped in the matrix form. For the
training  and  validation  stages  of  networks  with  supervised
learning, in the first phase, the input data are supplied together
with  their  respective  outputs,  and,  in  this  way,  the  network
identifies  the  mathematical  relationships  between  the
information. In the second phase, the network parameters for
training are defined, which include the type of algorithm, the

number of neurons, the activation functions, the learning rate
and the number of  iterations.  The algorithm tries  to  estimate
the errors of this connection and, if acceptable, it proceeds to
the validation phase, which is intended to evaluate the behavior
of the trained network, using a set of unpublished data for the
network (Araújo 2017).

It is important to emphasize that ANN is a tool developed
to  work  with  many samples  in  its  database.  This  database  is
divided randomly as  described above.  In  the  last  two phases
(validation and testing), 15% of the data in the present study
must correspond to a minimum of three samples,  enough for
the composition of an error chart. Therefore, a minimum set of
20 samples is required on this basis.

The number of samples (eight DSM) must be greater than
the number of input variables; otherwise, this system will have
more  unknown  data  than  equations  for  its  resolution.
Combination with only eight DSM walls is small  to map the
function  implicit  in  this  problem.  To  optimize  the  network
result, there are two options: to reduce the size of the problem
by  decreasing  the  number  of  variables  or  to  increase  the
number  of  samples.

Another  issue  is  related  to  the  difficulty  in  obtaining  a
large  enough  amount  of  experimental  data  capable  of
adequately training the ANN. It is obvious that producing too
many samples is problematic and costly for sample production
and actual measurement; during this period, it must be stored,
and this requires specific space with the subsequent cost. An
option  was  given  to  increase  the  number  of  samples,  which
should be at least triplicate. According to the configuration of
the  NDTs,  three  vertical  zones  were  defined  for
characterization  of  each  part  of  the  DSM  (Fig.  4).

Fig. (4). Definition of zones of the ANN’s input data.

1st zone: alignment to the left of the cross-block.
2nd zone: cross-block alignment; and
3rd zone: alignment to the right of the cross-block.

The input data refers to the geometric characteristic (cross-
block and irregular face) represented by a number. The DSM
zone with no cross-block is represented as 0, one cross-block
as  1  and  two  cross-block  as  2,  and  also  the  irregular  face
presence is represented as 0 and its absence as 1.

The  output  data  refer  to  the  results  of  the  uniaxial
compression  tests.  According  to  the  instrument  used  for  the

𝐸𝑟𝑟𝑜 (%) =
𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂𝑢𝑡𝑝𝑢𝑡

𝑇𝑎𝑟𝑔𝑒𝑡
× 100 

1st  2nd  3rd  
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uniaxial  compression  test,  we  have  LVDTs  at  both  ends  of
each  face.  The  first  zone  corresponds  to  the  elastic  modulus
obtained  by  the  graph  referring  to  the  mean  of  the  LVDTs
positioned in the left lateral zone (face A and B); the second
zone corresponds to the elastic modulus obtained by the graph
referring to the average of the 4 readings of the global LVDTs,
since there is no instrumentation referring to this region during
the  test,  and  the  3rd  zone  corresponds  to  the  mean  of  the
LVDTs positioned in the right side zone (face A and B). The
input variable for the dynamic test results is repeated 3 times,
according to the characteristics of each vertical zone.

2.2. Sonic Tests Parameters

The  results  of  the  sonic  tests,  which  were  used  as  input
data  for  the  network,  are  those  related  to  the  indirect
configuration.  In  fact,  the  tests  with  the  direct  configuration
were not considered because they give results that characterize
the walls punctually, and in the direction perpendicular to the
application of the loads, reason why a good correlation with the
module of deformability is not expected. It can be said that, for
this type of masonry, the results of the direct sonic test, to some
extent, depend on the compressive stress state in the masonry,
but  can  be  used  to  determine  other  characteristics  of  the
masonry, such as the location of voids, joints and deterioration
[35].  In  this  work,  the  results  of  the  direct  sonic  tests  were,
however, important to frame and validate the results obtained
by the indirect tests.

The accelerometer Ac3 (farthest) has, in the path made by
the wave, 90 cm distance between the receiver and the emitter,
thus  involving  an  interaction  with  a  major  part  of  the  wall
structure.  For  this  reason,  its  result  was  considered  more
characteristic. The accelerometer Ac2 is intermediate and Ac1
is the one with the shortest trajectory because it is closer to the
emitter, involving less strains of masonry crossed by the wave,
which is why the corresponding results are used here, but in a
second sequence (Fig. 5).

2.3. GPR Tests Parameters.

The  GPR  test  offers  the  radargrams  as  a  response,  from
which data can be extracted related to the propagation velocity
of the electromagnetic wave and the amplitude variations in the
medium.  This  varies  from  point  to  point  within  the  same
radargram,  so  this  characteristic  was  defined  to  numerically

represent the results of this assay for ANNs. Based on the three
zones  defined  for  the  walls  (Fig.  4),  the  numerical  data
concerning the distribution of the amplitudes in the radargrams,
referring to the XZ plane, according to Table 5, were exported.

Fig. (5). Positions for obtaining indirect sonic tests.

The  data  of  the  radargrams  chosen  are  exported  as  a
numerical  matrix,  ie  the  values  of  the  amplitudes  vary
according to the length and depth of each wall. These data are
processed in MatLab software (Matrix Laboratory, 2013), with
the  RMS  (root-mean-square)  function.  The  processing
sequence was as follows: first, an RMS is calculated for each
column,  and  then  an  RMS is  obtained  with  the  values  taken
from all columns. This unique value, obtained at the end of the
routine, is used to represent each zone of each wall as an input
variable in the network.

To use the data resulting from the GPR tests as input data
in  the  neural  networks,  it  was  necessary  to  define  a
methodology for converting radargrams into simple numerical
data. In this way, these converted data represent the necessary
variations between the samples for the ANN characterization.
A characteristic  behavior identified for each situation is  thus
obtained,  so  that  a  specific  pattern  can  be  verified.  Table  6
presents the results obtained with the RMS for the amplitude
data of each radar obtained, distributed according to typologies.
The  RMS  values  are  related  to  the  amplitude  values  of  the
radargrams,  i.e.,  higher  amplitudes  are  equivalent  to  higher
RMS values.

Table 5. GPR Radargrams.

1st zone 2nd zone 3rd zone

1st 2nd 3rd 

90 cm 
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The  amplitudes  of  the  radargrams  are  influenced  by  the
attenuations and reflections related to the medium crossed in
the  subsurface,  thus,  smaller  amplitudes  indicate  bigger
attenuations and smaller reflections. From the analysis of Table
6, we identified a variation pattern for the 2nd zone. The values
of this zonewere for all the walls except for PP1, being smaller
than  the  1st  and  3rd  zone.  As  described,  a  lower  RMS  value
indicates higher attenuations and smaller reflections. For this
work,  the  smaller  values  of  amplitudes  can  be  attributed  to
smaller  variations  of  the  medium  (fewer  reflections),  thus
suggesting  greater  structural  regularity.  This  is  justified  for
walls PP5, PP2 and PP6 because in this second zone, there is
an indication of the presence of the brakes, which offer greater
structural stability to the walls.

The  walls  that  have  two  leaves  with  the  regular
composition  of  the  stones  (PP1,  PP2,  PP5  and  PP6)  also
present the lowest values of RMS, except for PP1. This may be
related to the fact that they present greater structural stability
than others, which have irregular leaflets (PP3, PP4, PP7 and
PP8), also indicating greater regularity of the data.

2.4. Analysis Using Ann

In Table 7, the database used in the ANN analysis without
normalization is shown. The six input parameters (geometric
characteristics  -  cross-block  presence  and  irregular  face
presence -;  natural  frequencies -  x and y -  from the dynamic
tests; wave velocities from the indirect sonic tests - Ac3 - and
the  amplitude  from  GPR)  and  the  output  parameter  (E2)  are
listed as previously described.

Varying  combinations  of  DSM characteristics  define  the
input patterns. Random combinations (R 1, R 2, R 3, R 4, R 5,
R 6, R 7, R 8 and R 9) and six combinations according to the
characteristics (RC, RCG, RCD, RES, RGPR and RCGF) were
considered. As RC is a complete network, RCG is composed of
the  geometric  characteristics  (the  presence  and  quantity  of
brakes in the masonry and the distinction between regular and
irregular  faces);  RCD  is  composed  of  the  dynamic
characteristics;  RCGF  is  composed  of  the  characteristics
obtained by the geophysical tests; RES is composed based on
the results of the indirect sonic tests and RGPR is composed of
the  values  of  the  amplitudes  obtained  by  the  GPR  test.  The
activation  function  used  between  the  layers,  constant  in  the
toolbox, was the Hyperbolic Tangent (Tansig) [18, 23, 21, 20].
The number of neurons in the hidden layer was also different
(5, 10, 15, 20, 25 and 30 neurons). The characteristics of these
networks are presented in Table 8.

Random combination networks are shown in Table 9, with
net 3, 2 and 1 referring to the use of the input data of the Ac3,
Ac2  and  Ac1  accelerometer  sonic  tests,  respectively.  All
networks were trained with a change in the number of neurons
in the hidden layer (5, 10, 15, 20, 25 and 30), but the networks
with end 2 and 1 referring to the use of the Ac2 and Ac1 sonic
data, respectively, were trained with alterations of 15 and 30
neurons,  which  will  be  presented  later.  The  number  of  the
neurons for the networks with end 2 and 1 were selected after
several trials.

The  results  of  the  training  of  the  networks  are  presented
below.  It  is  worth  mentioning  that  the  training  results  of  the
networks with the presence of input data from the sonic tests,
namely Ac2 and Ac1, are presented together at the end of the
section. For the artificial neural networks for which the results
are presented, the time required for calculation as a function of
the  number  of  selected  neurons  did  not  change  significantly
and is always less than one minute.

3. RESULTS OF ANN LEARNING

The  RC3  (full  network)  training  was  performed  in  32
samples; these data are comprised of the three zones plus the
average  of  the  three  zones  of  each  wall.  After  defining  the
number of samples, RC3 training was performed. The graph of
Fig. (6) shows the error (%) obtained for each sample, in each
training  done  with  different  numbers  of  neurons.  Table  10
presents the training results in terms of the maximum relative
error obtained (%) for each number of neurons used.

Although  these  error  values  are  still  significantly  large
(28%)  for  training,  they  are  understandable.  Given  that  the
network  must  unveil  an  implicit  behavior  of  a  given
phenomenon, if this phenomenon contains many variabilities,
ANN will repeat this variability. That is, if there is a variability
of  up  to  47%  implied  in  the  input  data,  then  the  network
response  with  a  28% error  is  coherent.  In  addition,  the  RC3
network  with  20  neurons  reached  a  maximum error  of  10%,
which made its use feasible.

The  results  of  the  training  of  five  networks  with  a
combination  of  input  data  by  types  of  tests  (RCG,  RCD,
RCGF3, RES3 and RGPR), with variations in the number of
neurons present in the hidden layer, are presented. The RCG is
the network composed of the geometric characteristics, namely
the presence and quantity of masonry brakes and the distinction
between regular and irregular faces. The RCD is the network
trained with input data regarding the dynamic characteristics,
namely the natural frequency values in the directions x and y.
RCGF3 is the network trained with input data referring to the
characteristics  obtained with  the  geophysical  tests  (GPR and
indirect sonic tests of Ac3), specifically the average value of
the amplitude and the speed of propagation of the wave. RES3
is  the  network  trained  only  with  input  data  concerning  the
results  of  the indirect  sonic assays of the Ac3, i.e.,  the wave
propagation velocity. RGPR is the network trained only with
input data referring to the values of the amplitudes obtained by
the GPR test.

These  trained  networks  RCG,  RCD,  RES3,  RGPR  and
RCGF3, present high error values for all numbers of neurons,
5,  10,  15,  20,  25  and  30.  After  analyzing  the  relative  error
results of these, in the case of the trained networks, presented
in Table 11, it is concluded that the use of this simulation tool,
with  this  distribution  of  input  data,  is  not  feasible  since  the
error rates reached are high, all above 30%. Except for RCD
networks for 5, 20, 25 and 30 neurons, RGPR for 25 neurons
and RCGF3 for 30 neuronspresented errors less than or equal
to  30%.  The  networks  considered  viable  are  highlighted  in
green in this table.
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Fig. (6). Relative RC3 training error graph.

Table 6. Radargrams RMS Results.

Amplitude (dB)
DSM PP1 PP5 PP2 PP6 PP3 PP7 PP4 PP8

1st zone 7.43E+03 6.02E+03 6.21E+03 5.86E+03 8.16E+03 9.40E+03 7.88E+03 8.65E+03

2nd zone 7.00E+03 3.82E+03 5.36E+03 4.55E+03 6.80E+03 6.70E+03 6.31E+03 6.35E+03

3rd zone 5.86E+03 6.97E+03 6.69E+03 5.01E+03 8.31E+03 7.94E+03 7.31E+03 8.12E+03

Table 7. ANN database without normalization.

DSM Zone Cross-Block Irreg. Face Freq. x (Hz) Freq. Y (Hz) Vel. Ac3 (m/s) GPR Amp. (dB) E2 (Gpa)

PP1

1st 0 1 13.30 10.10 421.00 7431.26 0.18

2nd 2 1 13.30 10.10 484.00 6998.95 0.18

3rd 0 1 13.30 10.10 437.00 5858.85 0.20
Avg. 2 1 13.30 10.10 447.33 6763.02 0.19

PP2

1st 0 1 11.60 9.80 1023.00 6208.61 0.19

2nd 1 1 11.60 9.80 1184.00 5363.31 0.17

3rd 0 1 11.60 9.80 938.00 6687.11 0.16
Avg. 1 1 11.60 9.80 1048.33 6086.34 0.17

PP3

1st 0 0 13.10 9.50 511.00 8164.74 0.16

2nd 1 0 13.10 9.50 662.00 6796.37 0.13

3rd 0 0 13.10 9.50 363.00 8312.87 0.10
Avg. 1 0 13.10 9.50 512.00 7757.99 0.13

PP4

1st 0 0 12.30 6.90 634.00 7875.86 0.12

2nd 0 0 12.30 6.90 523.00 6310.56 0.14

3rd 0 0 12.30 6.90 634.00 7306.82 0.19
Avg. 0 0 12.30 6.90 597.00 7164.41 0.15

PP5

1st 0 1 12.60 10.20 865.00 6017.91 0.31

2nd 2 1 12.60 10.20 464.00 3815.68 0.24

3rd 0 1 12.60 10.20 592.00 6972.63 0.19
Avg. 2 1 12.60 10.20 640.33 5602.08 0.25

PP6

1st 0 1 18.00 9.00 1500.00 5860.59 0.30

2nd 1 1 18.00 9.00 1731.00 4549.62 0.27

3rd 0 1 18.00 9.00 1071.00 5005.30 0.26
Avg. 1 1 18.00 9.00 1434.00 5138.50 0.28
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PP7

1st 0 0 14.70 7.70 1250.00 9397.70 0.14

2nd 1 0 14.70 7.70 1154.00 6700.97 0.13

3rd 0 0 14.70 7.70 1184.00 7937.21 0.12
Avg. 1 0 14.70 7.70 1196.00 8011.96 0.13

PP8

1st 0 0 14.60 7.40 1731.00 8649.52 0.22

2nd 0 0 14.60 7.40 1667.00 6352.85 0.19

3rd 0 0 14.60 7.40 1216.00 8118.00 0.17
Avg. 0 0 14.60 7.40 1538.00 7706.79 0.19

Table 8. Comparison of network structures.

ANN Input Number of Neurons Output

RC3 Cross-block presence; Irregular face presence; frequency (x); frequency (y); Sonic Indirect Ac3; Amplitude
GPR 5, 10, 15, 20, 25, 30

E2 (GPa)

RC2 Cross-block presence; Irregular face presence; frequency (x); frequency (y); Sonic Indirect Ac2; Amplitude
GPR

15, 30
RC1 Cross-block presence; Irregular face presence; frequency (x); frequency (y); Sonic Indirect Ac1; Amplitude

GPR

RCG Cross-block presence;
Irregular face presence;

5, 10, 15, 20, 25, 30RCD frequency (x); frequency (y);
RCGF3 Sonic Indirect Ac3; Amplitude GPR
RCGF2 Sonic Indirect Ac2; Amplitude GPR

15, 30
RCGF1 Sonic Indirect Ac1; Amplitude GPR
RES3 Sonic Indirect Ac3; 5, 10, 15, 20, 25, 30
RES2 Sonic Indirect Ac2;

15, 30
RES1 Sonic Indirect Ac1;
RGPR Amplitude GPR 5, 10, 15, 20, 25, 30

Table 9. Combination of construction of random ANN.

ANN Regular/irreg. Leaf Cross-block Presence Dyn. X Dyn. Y Sonic Ac3 Sonic Ac2 Sonic Ac1 GPR Amp.
R1-3 X X X X
R1-2 X X X X
R1-1 X X X X
R2-3 X X X
R2-2 X X X
R2-1 X X X
R3 X X X
R4 X X X X

R5-3 X X X X X
R5-2 X X X X X
R5-1 X X X X X
R6 X X X X X

R7-3 X X X
R7-2 X X X
R7-1 X X X
R8 X X X

R9-3 X X X X
R9-2 X X X X
R9-1 X X X X

(Table 7) contd.....
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Table 10. RC3 network training relative error.

Number of Neurons Relative Error Max. Absolute (%)
05 |-28|
10 |-28|
15 |-19|
20 |10|
25 |-18|
30 |-11|

Table 11. Error from training the combined networks types of tests.

Number of Neurons
Maximum Relative Error Approx. (%)

RCG RCD RES3 RGPR RCGF3
05 -54 -27 -52 -60 -38
10 -65 -31 -41 -42 -33
15 -58 -31 -57 -36 35
20 -59 -30 -45 -62 -41
25 -54 -30 -38 -26 31
30 -65 -30 -54 -35 -25

Fig. (7). Error graphic concerning training of R9-3.

The following are the training results of the nine randomly
combined networks (R1-3, R2-3, R3, R4, R5-3, R6, R7-3, R8
and R9-3), with variations in the number of neurons present in
the  hidden  bed.  R1-3  is  the  trained  network  with  input  data
based  on  the  results  obtained  with  GPR,  sonic  (Ac3)  and
geometric  characteristics.  R2-3  is  the  trained  network  with
input data based on the results obtained with the indirect sonic
tests (Ac3) and the geometric characteristics. R3 is the trained
network with input data based on the results obtained with the
GPR (mean  amplitude  values)  and  geometric  characteristics.
R4 is the trained network with input data related to the results
obtained with dynamic tests (natural frequencies x and y) and
geometric  characteristics.  R5-3  is  the  trained  network  with
input data referring to the results obtained with dynamic tests
(natural  frequencies  x  and  y),  geometric  characteristics  and
indirect sonics (Ac3). R6 is the trained network with input data
related to the results obtained with the dynamic tests (natural

frequencies  x  and  y),  geometric  characteristics  and  the  GPR
(mean amplitude) tests. R7-3 is the trained network with input
data based on the results obtained with dynamic and sonic tests
(Ac3). R8 is the trained network with input data based on the
results obtained with the dynamic tests and the GPR. R9-3 is
the  trained  network  with  input  data  referring  to  the  results
obtained with dynamic tests, GPR and sonic (Ac3) (Fig. 7).

These  trained  networks  R1-3,  R2-3,  R3,  R4,  R5-3,  R6,
R7-3,  R8  and  R9-3  have  error  values  with  large  variations
between -67% and - 8%, for all numbers of neurons, 5, 10, 15,
20,  25  and  30.  Among  them,  networks  with  higher  errors
(above 30%) are not considered for use. The R1-3 network is
not indicated with 20 and 25 neurons. For the R2-3 network,
only its use with 30 neurons is indicated. The R3 network is
not indicated with any number of neurons. The R4 network is
indicated  with  only  20  neurons.  The  R5-3  network  is  not
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indicated only with five neurons. The R6 network is indicated
with  20  and  30  neurons.  The  R7-3  network  is  not  indicated
only with 10 neurons. The R8 network is indicated only with
10  and  30  neurons,  and  the  R9  network  is  indicated  for  all
numbers  of  trained  neurons.  The  indicated  networks  are
highlighted  in  green  in  Table  12.

After  analyzing  the  relative  error  results  of  the  trained
networks presented in Table 12, it is concluded that the use of
the R9-3 tool, with this input data distribution, is feasible and
efficient since the error rate reached was -8%, with the use of
30 neurons.

After  training  of  the  90  nets  mentioned  above,  analyses
were  performed  on  the  results  obtained  to  verify  which
trainings  obtained  the  highest  efficiency  in  relation  to  the
number  of  neurons,  considering  the  error  rates.  The  lowest
error rates were obtained with architectures with 30, 20 and 15
neurons  in  the  hidden  layer  of  the  networks.  For  this  new
training phase, with accelerometer changes (Ac1 and Ac2) in
the sonic tests, 16 types of networks were defined and trained:
RC1, RC2, RCGF1, RCGF2, RES1, RES2, R1-1, R1 -2, R2-1,
R2-2, R5-1, R5-2, R7-1, R7-2, R9-1 and R9-2. After analyzing

the behavior against the number of neurons only for networks
with sonic test inputs, the best results with respect to the error
rates  were  obtained  with  15  and  30  neurons.  Therefore,  the
following procedures were followed for variants of 15 and 30
in the number of neurons.

According  to  the  orientation  described  previously,  the
networks  R1,  R2  and  RES,  using  results  of  Ac1  and  Ac2,
obtained  unsatisfactory  results.  These  networks  have  in
common the absence of dynamic results as input data from the
network. The most efficient networks are R9-1, R7-1 and R5-1
with  30  neurons  and  RC2  with  15  neurons.  These  have  in
common  the  presence  of  dynamic  and  sonic  results  as  input
data.

Table 13 presents the results that present the networks with
more efficient  simulation,  with eras  referring to values of  E2

(GPa) of less than 20%. These simulation tools can be applied
more safely in the final response.

The 44 networks that  presented error  rates  between 20%
and 30% (Table 14) were considered possible tools to use, but
in a secondary way. The other networks, with error rates up to
30%, were not used and were removed .

Table 12. Relative error of the training of the random network.

Number of Neurons
Maximum Relative Error. (%)

R1-3 R2-3 R3 R4 R5-3 R6 R7-3 R8 R9-3
05 -30 -50 -58 -42 -46 -45 -30 -38 22
10 -27 -47 -54 -33 24 -32 -34 24 20
15 24 -37 -55 -32 -29 -53 -30 37 -13
20 -35 -67 38 -29 -25 -29 26 -56 -19
25 -43 -42 -61 38 -28 -53 -25 -33 -13
30 -27 30 -51 -33 -30 -22 -29 23 -8

Table 13. Networks with errors of less than 20%.

ANN Absolute Maximum Relative Error (%) ANN Absolute Maximum Relative Error (%)
R9.30.Ac3 |-8| R9.30.Ac1 |-16|
RC.20.Ac3 |10| RC.25.Ac3 |-18|
RC.30.Ac3 |-11| R9.20.Ac3 |-19|
R9.15.Ac1 |-13| RC.15.Ac2 |19|
R9.15.Ac3 |-13| RC.15.Ac3 |-19|
R9.25.Ac3 |-13| R5.30.Ac1 |-20|
R7.30.Ac1 |16| R9.10.Ac3 |20|

Table 14. Networks with errors between 20 and 30%.

ANN Absolute Maximum Relative Error (%) ANN Absolute Maximum Relative Error (%)
R6.30 |-22| R5.25.Ac3 |-28|

R7.15.Ac1 |22| R7.15.Ac2 |-28|
R9.05.Ac3 |22| RC.05.Ac3 |-28|

R8.30 |23| RC.10.Ac3 |-28|
R1.15.Ac3 |24| RC.30.Ac1 |28|
R5.10.Ac3 |24| R1.30.Ac2 |-29|
R5.15.Ac1 |-24| R4.20 |-29|

R8.10 |24| R5.15.Ac3 |-29|
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ANN Absolute Maximum Relative Error (%) ANN Absolute Maximum Relative Error (%)
RC.30.Ac2 |-24| R6.20 |-29|
R5.20.Ac3 |-25| R7.30.Ac3 |-29|
R7.25.Ac3 |-25| RCGF.15.Ac1 |29|

RCGF.30.Ac3 |-25| R1.05.Ac3 |-30|
R7.20.Ac3 |26| R2.30.Ac3 |30|
R9.15.Ac2 |26| R5.15.Ac2 |-30|
R9.30.Ac2 |-26| R5.30.Ac3 |-30|
RGPR.25 |-26| R7.05.Ac3 |-30|
R1.10.Ac3 |-27| R7.15.Ac3 |-30|
R1.30.Ac3 |-27| RCD.20 |-30|
R5.30.Ac2 |-27| RCD.25 |-30|
RC.15.Ac1 |27| RCD.30 |-30|

RCD.05 |-27| RCGF.30.Ac1 |-30|
RCGF.15.Ac2 |-27| RCGF.30.Ac2 |30|

Although  these  error  values  are  high  (30%),  they  are
understandable.  The  network  must  translate  an  implicit
behavior of a given phenomenon, if this phenomenon contains
many variabilities, the ANN will repeat this variability. That is,
there is a variability of up to 47% implicit in the input data, so
the network response with 30% error is coherent. In addition,
R9.30.Ac3 network with 30 neurons reached a maximum error
of 8%, which made its use feasible.

CONCLUSION

The  networks  were  used  to  develop  a  simulation  tool
capable  of  mechanically  characterizing  (namely  elastic
modulus)  the  double-walled  granite  wall  samples  with  some
variations, such as the presence of brakes and the regularity of
the  faces.  In  addition,  variations  in  input  data  and  network
architecture  (number  of  neurons)  were  tested,  with  122
networks  trained.

With  the  analysis  of  the  training  performed,  it  was
concluded  that  only  10%  of  the  trained  networks  (without
variation 1 and 2, corresponding to Ac1 and Ac2 respectively)
presented  satisfactory  results,  that  is,  (<20%),  namely  R9-3
(with 10, 15, 20, 25 and 30 neurons) and RC3 (with 15, 20, 25
and 30 neurons).  These networks considered to be “optimal”
were  obtained  with  the  use  of  all  the  tests  as  input  data.
However,  the  trained  networks  with  only  one  input  variable
presented  the  highest  error  values  (RCG,  RGPR,  RES  and
RCD). This corroborates the idea that the synergy of the tests
used was essential to efficiently translate the characteristics of
the granite masonry samples into these networks.

It  was  also  possible  to  conclude  that  the  increase  in  the
number of neurons present in the hidden layer leads to a better
performance  of  the  network  since  all  trained  networks  with
only  five  neurons  obtained  unsatisfactory  results.  Moreover,
for  the  networks  trained  with  the  Ac2  accelerometer  variant
(sonic  tests),  only  the  RC2  network  (with  15  neurons)  that
obtained an error of less than 20%, can then also be used as a
simulation tool  to  characterize  these  structures.  On the  other
hand,  the  networks  trained  with  the  Ac1  accelerometer
variation  (sonic  tests)also  obtained  error  values  lower  than
20%,  which  were  R5-1,  R7-1  and  R9-1,  for  which  data  was
obtained  by  sonic  and  dynamic  tests.  This  highlights  the

importance  of  using  these  types  of  nondestructive  tests  to
characterize  the  study  material.

After  performing  this  series  of  ANN  training,  it  was
possible  to  verify  that  the  variables  defined  as  input  data  to
numerically  represent  the  results  of  each  NDT  test,  ie,  the
velocity of the sonic wave as a response of the indirect sonic
tests  (Ac1,  Ac2  and  Ac3),  the  RMS  of  the  radargrams
amplitudes  obtained  by  the  GPR  test,  the  natural  vibration
frequencies (1st and 2nd frequency) in response to the dynamic
characterization tests, were convincing because they achieved
relevant results. The simulation tools obtained in this work can
be  used  for  several  case  studies,  since  these  present  similar
characteristics to the samples that compose this database.

This  study  might  help  in  overcoming  costly  and  time-
consuming  experiments.  The  proposed  tool  is  better  than
mechanically characterizing masonry panels with conventional
mechanical  tests,  because  in  the  case  of  historical  masonry,
their structural preservation is essential in the maintenance and
rehabilitation  work  of  the  historical  buildings.  Conventional
mechanical tests damage structures, and this problem has been
eradicated  by  using  ANN  with  the  aid  of  NDTs,  being  the
novel contribution of the study.

The main advantage of a trained ANN over conventional
numerical  analysis  procedures  is  that  the  results  can  be
produced  with  much  less  computational  effort.  The  use  of
ANNs  can  assist  decisively  in  the  design  of  a  restoration
masonry,  minimizing  time  and  resources.  However,  it  is
important to highlight that the extension of the database used in
this  project  with  more  DSM  entries  will  further  increase
accuracy.

These tools were applied in some case studies that showed
efficient use of this simulation, as it  exhibited a deviation of
less  than  5%,  since  the  ANN  input  data  have  been  obtained
correctly.  This  confirms  the  feasibility  of  using  these
simulation  tools  to  assist  the  characterization  processes  of
traditional and historical buildings with granite stone masonry.
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