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Abstract: The application of Carbon Fiber Reinforced Polymer (CFRP) strips according to the Near Surface Mounted 
(NSM) technique has proven to be a promising shear strengthening strategy for RC beams, in terms of effectiveness and 
executability. Nevertheless, several aspects concerning the underlying resisting mechanisms and their mechanical inter-
pretation still need to be clarified and organized in a comprehensive model. By a critical overview of the relevant research 
findings available to date in the analytical modeling domain, it emerges that most of the efforts carried out are mainly de-
voted to quantify parameters related to the NSM debonding failure mechanism, on the basis of test set-ups whose geome-
try often greatly differs from the actual conditions met in a common T-cross section beam. To give some contribution for 
the discussion of these subjects, an experimental program was carried out, on T-beams of quasi-real scale and with a given 
ratio of existing steel stirrups. The main results are presented and analyzed in the present work. 

In the second part of this work, a new analytical predictive model is proposed. It assumes as possible failure mechanisms: 
debonding, tensile rupture of the strip and the concrete tensile fracture and allows the interaction between strips to be ac-
counted for. The comparison between the results determined by the application of the proposed model and those obtained 
from experimental research reveals the high predictive accuracy of this model. 

Keywords: Near Surface Mounted, CFRP, Shear Strengthening, Debonding, Concrete, Critical Diagonal Crack. 

INTRODUCTION 

The possibilities of a technique, designated as Near Sur-
face Mounted (NSM), for the shear strengthening of rein-
forced concrete (RC) beams was started being explored at 
the beginning of this century [1]. This technique consists on 
fixing, with epoxy adhesive, fiber reinforced polymer (FRP) 
bars into grooves opened in the concrete cover of the beam 
lateral faces. In this exploratory work round bars were used 
but, recently, the higher effectiveness of square bars was 
proved [2]. To assess the effectiveness of the NSM technique 
for the shear strengthening of RC beams, using carbon FRP 
(CFRP) strips of rectangular cross section, Barros and Dias 
[3] carried out an experimental program to analyze the influ-
ences of the strips’ inclination, beam depth and longitudinal 
tensile steel reinforcement ratio on the effectiveness of the 
externally bonded reinforcement (EBR) and NSM strength-
ening techniques. Amongst the CFRP strengthening tech-
niques, the NSM with strips at 45º resulted to be the most 
effective, not only in terms of shear resistance increment but 
also in terms of deformation capacity at failure of the beams. 
The NSM was also faster and easier to apply than the EBR 
technique. To simulate the contribution of the NSM strips for 
the shear strengthening of tested beams, those authors ap-
plied the debonding-based formulation proposed by Nanni  
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et al. [4], with some adjustments in order to take into ac-
count the specificities related to the use of strips instead of 
round bars [5]. The predictive performance of this model can 
be found elsewhere [5]. Despite the improvements intro-
duced, the existing Debonding-based analytical predictive 
Model (DM) systematically provided an overestimation, the 
higher the smaller the spacing, of the experimentally re-
corded shear strengthening contribution by NSM CFRP 
strips. Such overestimation, as further confirmed by experi-
mental evidence, can be ascribed to the erroneous assump-
tion that the expected failure mechanism is debonding, re-
gardless of the influence of concrete tensile strength, interac-
tion between consecutive strips, and existing stirrups/strips 
interaction. 

The analysis of the failure modes of the beams of the ex-
perimental programs carried out by Barros and Dias [3] and 
Dias and Barros [6], has made clear that it is not possible to 
extend the debonding-based analytical predictive models to 
NSM. In fact, in the beams with smaller strip spacing the 
lateral concrete cover of the web separated from the beam 
concrete core, indicating that the concrete tensile strength 
plays a paramount role, by limiting the contribution of these 
systems to the shear strengthening of RC beams. To give 
some contribution for the discussion of these subjects, an 
experimental program was carried out, with T-beams of 
quasi-real scale and with a given ratio of existing steel stir-
rups. The main results are presented and analyzed in the pre-
sent work. At the same time a new model is proposed in this 
work, able of capturing the essential phenomena involved in 
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this strengthening technique, namely: debonding; interaction 
between strips; concrete tensile fracture; tensile rupture of 
the strips. This model is described in this work and its per-
formance is assessed taking the obtained experimental re-
sults. 

EXPERIMENTAL PROGRAM 

Test Series, Strengthening Technique, Test Setup and 
Material Properties 

The T-cross section of the twelve RC beams composing 
the experimental program is represented in Fig. (1). The re-

inforcement was designed to activate shear failure for all 
tested beams. To have shear failure in only one half-span, a 
non-symmetric three point load configuration with two dif-
ferent shear spans was chosen and high transverse rein-
forcement (steel stirrups of 6 mm diameter spaced at 75 mm 
- φ6@75mm) was placed in the larger beam span Lr, as (Fig. 
2) shows. The monitored shorter beam span (Ll) where shear 
failure should occur, had a “shear span-to-depth” ratio of 
Ll/d=2.5, where d is the beam effective depth (Fig. 1). 

The experimental program (see Table 1) was composed 
of one beam with no shear reinforcement (C_R beam), one 

 

 

 

 

 

Fig. (1). Beam prototype: geometry, steel reinforcements, load and support conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Tested beams: position of the steel stirrups (thick line) and strips (dashed line). 
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beam with steel stirrups φ6@300mm (2S_R beam, with stir-
rups ratio fw!  = 0.10%), one beam with steel stirrups 
φ6@130mm (6S_R beam, fw!  = 0.24%), and nine beams of 
φ6@300mm with different CFRP strengthening arrange-
ments on the Ll beam span: three different CFRP ratios 
(! fw ) and, for each CFRP ratio, three different strips angles 
( ! , angle between CFRP fibers direction and beam axis, 
(Fig. 6) namely, 90º, 45º and 60º. The CFRP shear strength-
ening ratio ! fw  (see Table 2) was obtained from 

( )2 . . . . .100fw f f w fa b b s sin! "=  where af = 1.4 mm 
and bf = 10 mm are the strip cross section dimensions, 
bw = 180 mm is the width of the beam’s web, and sf is the 
strips spacing. For the three series of beams with different 
strips angles, the maximum fw!  in each series was evalu-
ated to ensure that the beams presented a maximum load 
similar to the 6S_R reference beam, reinforced with the 
highest sw!  ( ( ). .100fw sw w wA b s! = , where Asw is the 
cross sectional area of the two arms of a steel stirrup and sw 

is the stirrups spacing). In the evaluation of the maximum 
fw!  it was assumed that CFRP works at a stress level corre-

sponding to 0.5% strain, which is a compromise between the 
value 0.4% recommended by ACI [7] for EBR and the 
0.59% value obtained in pullout bending tests on NSM bars 
[8]. For the intermediate and minimum fw! , the spacing sf 
for beams with !  equal to 90º, 60º and 45º was evaluated to 
obtain a similar strips contribution for each fw! . With refer-
ence to (Fig. 1), the strips were distributed along the AB line, 
where A is the beam support at the “test side” and B was 
obtained assuming a 45º load transfer. To avoid concrete 
spalling at A, a confinement system made from wet lay-up 
CFRP sheets (three layers, with fibers aligned with the beam 
axis) was applied, as shown in Fig. 1. The strengthening pro-
cedures are detailed elsewhere [3]. 

Three point beam bending tests (see Fig. 1) were carried 
out using a servo closed-loop control equipment, taking the 
signal read in the linear variable differential transducer 
(LVDT) placed at the loaded section to control the test at a 
deflection rate of 0.01 mm/s. 

Table 1. Shear Reinforcement and Strengthening Systems in the Tested Beams 

Shear reinforcement/strengthening in the smaller shear span (Ll) 

Beam label Age at beam test 
[days] Reinforcement/ 

Strengthening Quantity (ratios sw!  and fw! ) 
Spacing 
[mm] 

Angle 
[º] 

C_R 65 - - - - 

2S_R 61 Steel stirrups 2φ6 with two legs (0.10) 300 90 

6S_R 62 Steel stirrups 6φ6 with two legs (0.24) 130 90 

Steel stirrups 2φ6 with two legs (0.10) 300 90 
2S_3LV 72 

CFRP strips 2x3 strips with 1.4x10 mm2 (0.06) 267 90 

Steel stirrups 2φ6 with two legs (0.10) 300 90 
2S_5LV 71 

CFRP strips 2x5 strips with 1.4x10 mm2 (0.10) 160 90 

Steel stirrups 2φ6 with two legs (0.10) 300 90 
2S_8LV 70 

CFRP strips 2x8 strips with 1.4x10 mm2 (0.16) 100 90 

Steel stirrups 2φ6 with two legs (0.10) 300 90 
2S_3LI45 66 

CFRP strips 2x3 strips with 1.4x10 mm2 (0.06) 367 45 

Steel stirrups 2φ6 with two legs (0.10) 300 90 
2S_5LI45 64 

CFRP strips 2x5 strips with 1.4x10 mm2 (0.10) 220 45 

Steel stirrups 2φ6 with two legs (0.10) 300 90 
2S_8LI45 68 

CFRP strips 2x8 strips with 1.4x10 mm2 (0.16) 138 45 

Steel stirrups 2φ6 with two legs (0.10) 300 90 
2S_3LI60 71 

CFRP strips 2x3 strips with 1.4x10 mm2 (0.06) 325 60 

Steel stirrups 2φ6 with two legs (0.10) 300 90 
2S_5LI60 67 

CFRP strips 2x5 strips with 1.4x10 mm2 (0.10) 195 60 

Steel stirrups 2φ6 with two legs (0.10) 300 90 
2S_7LI60 68 

CFRP strips 2x7 strips with 1.4x10 mm2 (0.16) 139 60 

( )( ) 100dbAñ wswsw !=  (stirrups ratio); ( )2 . . . . .100fw f f w fa b b s sin! "= . 
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The concrete compressive strength was evaluated at 28 
days and at the age of the beam test, carrying out direct com-
pression tests on cylinders of 150 mm diameter and 300 mm 
height, according to EN 206-1 Standard [9]. Deformed steel 
bars of 6, 12, 16 and 25 mm diameter were used in the tested 
beams. The main properties were obtained from uni-axial 
tensile tests performed according to the recommendations of 
EN 10002 [10]. The tensile properties of the S&P strips, 
CFK 150/2000, were characterized by uni-axial tensile tests 
carried out according to ISO 527-5 [11]. These strips had a 
cross section of 10×1.4 mm2. Table 2 lists the mean values 
obtained from these experimental tests. 

Main Results and Discussion 

Table 3 includes the values of the RS
maxmax FF !

"
2  and 

RS6
maxmax FF !  ratios, where 2

max max max
S RF F F !

" = ! , and 

maxF , RS
maxF !2  and RS

maxF !6  represent, respectively, the load 
carrying capacity of a tested beam, of the 2S_R and of the 
6S_R reference beams. 

 The force-deflection relationships at the loading point of 
the tested beams are depicted in Fig. (3). If RS

maxF !2  is used as 
a basis of comparison, Table 3 and Fig. (3) show that, apart 

Table 2. Material Properties 

Compressive strength 
Concrete fcm = 26.0 MPa  

(at 28 days) 
fcm = 31.1 MPa  

(at 70 days - age of beam tests) 

Tensile strength φ6 φ12 φ16 φ25 

fsym * 533 MPa 446 MPa 447 MPa 444 MPa Steel 

fsum ** 592 MPa 564 MPa 561 MPa 574 MPa 

Tensile strength Young’s Modulus Maximum strain *** Thickness 
CFRP strips 

ffum = 2952 MPa ** Efm = 166.6 GPa εfum = 1.77% 1.4 mm 

* Mean value of the yield stress; ** Mean value of the maximum stress; *** Obtained from Hooke’s law. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Force vs. deflection at the loaded-section of the beams strengthened with: (a) minimum; (b) intermediate and (c) maximum CFRP 
shear strengthening ratio. 
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from the 2S_3LV beam, all adopted CFRP strengthening 
configurations provided an increase in the beam load carry-
ing capacity, for any ! fw  and ! . The load decay observed 
in the 2S_R reference beam, when a shear crack formed, did 
not occur in CFRP shear strengthened beams, revealing that 
strips delayed the formation of the shear failure crack. The 
strengthening arrangements with the lowest ! fw  presented 
the smaller increments in terms of beam load carrying capac-
ity: 0.3%, 4.1% and 18.7% for the beams strengthened with 
strips at 90º, 45º and 60º, respectively, see Fig. 3a. However, 
the increment in the beam load capacity that these strength-
ening systems provided for deflections above the one corre-
sponding to the formation of the shear failure crack in the 
2S_R reference beam was appreciable, even for 2S_3LV 
beam. 

The strengthening configurations of strips at 90º, 45º, and 
60º, for intermediate 

fw
ñ , provided an increase in the 

maximum load of 13.3%, 21.9% and 24.4%, respectively 
(see Fig. 3b and Table 3). Amongst the beams strengthened 
with the highest 

fw
ñ , the strengthening configuration with 

!  = 60º was the most effective in terms of peak load: a 
28.9% increase was obtained, while increments of 25.7% 
and 21.3% were recorded for !  = 90º and !  = 45º, respec-
tively. 

As mentioned above, the highest 
fw

ñ  for each strength-

ening arrangement was designed to achieve a peak load close 
to that of the 6S_R reference beam. The obtained experimen-
tal results show that, in general, this was attained, since the 
maximum load of the beams with !  = 90º, 45º and 60º 
reached 97%, 93% and 99%, respectively, of the maximum 
load of the 6S_R reference beam (see Fig. 3c and Table 3). 
The most notable aspect is, however, the larger load-carrying 
capacity of the strengthened beams with respect to the 6S_R 
reference beam, after shear crack initiation of the 2S_R beam 
(see Fig.3c). This improved performance of the strengthened 
beams can be ascribed to the stiffness contribution provided 
by the strips. 

It is worth pointing out that in the beams strengthened 
with higher strips’ shear strengthening ratio, a layer of con-
crete, approximately as thick as the cover, and containing the 
glued strips, progressively detached from the core of the 
beam web (see Figs. 4e and 4f). 

Moreover, the effective strain, exp
f! , i.e. the average of 

the strains recorded along the monitored strip for each beam, 
presented a general tendency to increase by increasing the 
spacing between strips, '

fs , measured orthogonally to their 
inclination (see Fig. 5). Further details about both the ob-

Table 3.     Summary of Relevant Results of the Tested Beams 

Beam 

label 
maxF  

[kN] 

RS2
maxmax FF !

"

[%] 

RS6
maxmax FF !  

C_R 243 - 0.59 

2S_R 315 0.0 0.77 

6S_R 410 30.2 1.00 

2S_3LV 316 0.3 0.77 

2S_5LV 357 13.3 0.87 

2S_8LV 396 25.7 0.97 

2S_3LI45 328 4.1 0.80 

2S_5LI45 384 21.9 0.94 

2S_8LI45 382 21.3 0.93 

2S_3LI60 374 18.7 0.91 

2S_5LI60 392 24.4 0.96 

2S_7LI60 406 28.9 0.99 

 

 

 

 

 

 

 

 

 

Fig. (4). Some details of the failure zones: beam (a) 2S_R; (b) 2S_3LV; (c) 2S_3LI45; (d) 2S_3LI60. And observed failure mechanisms: 
beams (e) 2S_8LV;(f) 2S_8LI45. 
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served failure modes and the strains measured in the moni-
tored steel stirrups and CFRP strips can be found elsewhere    
[6, 12]. 

NEW MODEL 

Model Physical Fundamentals 

By searching the technical literature available to date, the 
analogy arises between the NSM technique and the fastening 
technology to concrete by means of adhesive anchors [13-
16]. This latter consists in fixing anchors into holes drilled in 
the soffit of whatever RC structure by different kinds of 
structural adhesives. As for the NSM strips, the stress trans-
fer of anchors strongly relies on the bond characteristics. The 
experimental evidence in the field of fastening technology 
reported three possible failure modes: tensile rupture of the 
anchor, debonding and another failure mode designated as 
“concrete cone failure” [14, 15]. This latter is characterized 
by a cone-shaped spalling of the concrete surrounding the 
anchor originating at a certain point of the embedded length 
of the anchor and propagating towards the external surface of 
the concrete [5]. This failure occurs when the applied force is 
such as to induce, in the surrounding concrete, principal 
stresses exceeding its tensile strength. The resulting concrete 
fracture conical surface, envelope of the tension isostatics, 

shows, at its vertex, an angle of about 45° with the anchor 
axis. 

In the case of NSM strips, the critical diagonal crack can 
be schematized like a plane slicing the web of the beam in 
two parts sewn together by the crossing strips that can be 
regarded as fastenings (see Fig. 6a). The strips may fail 
along their “available bond length” (is the shorter length on 
either side of the crossing crack [5]) by: debonding, tensile 
rupture or concrete tensile fracture. The different and asym-
metric geometrical features support the assumption that, in 
the case of the strips glued into thin slits in the concrete web 
face, the concrete fracture surface, envelope of the principal 
tensile stresses induced in the surrounding concrete, has a 
semi-conical shape propagating from the inner tip of the strip 
embedded length. The concrete average tensile strength, 

ctmf , is distributed throughout each of the resulting semi-
conical surfaces orthogonally to them in each point (see Fig. 
6b). 

The NSM shear strength contribution, fV , can be calcu-

lated by adding the contribution ascribed to each strip, p
fiV , 

parallel to its orientation, and projecting the resulting force 
orthogonally to the beam axis, according to the following 
formula: 

 

 

 

 

 

 

 

 

 
Fig. (5). Influence of the CFRP percentage on the recorded effective strain. 

 

 

 

 

 

 

 

Fig. (6). Main features of the proposed model: a) crack plane crossed by strips and their semi-conical fracture surfaces; b) detail of the semi-
conical fracture surface and the distribution of the average tensile strength. 
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1

2 . sin .
fN

p
f fi

i

V V!
=

= "           (1) 

where fN  is the number of the strips crossing the shear 

crack. The contribution provided by each strip, p
fiV , can be 

assumed as the minimum among the three possible contribu-
tions ascribed respectively to debonding, ,p db

fiV , tensile rup-

ture of the strip, ,p tr
fiV , or concrete tensile fracture, ,p cf

fiV , 
i.e.: 

{ }, , ,min ; ;p p db p tr p cf
fi fi fi fiV V V V=             (2) 

The debonding-based term, ,p db
fiV , ascribed to the i-th 

strip and parallel to its orientation can be computed like fol-
lows: 

( ), ( ) .2 . . b f f
p db

f ffi L LV a b != +          (3) 

where ( )b fL!  is the length-dependent value of the average 
bond strength. The adopted relationship between average 
bond strength (in MPa) and bond length (in mm) is the fol-
lowing (Fig. 7) [17, 18]: 

( )
( )

-0.60233
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= $
+ %#&

   (4) 

The tensile rupture-based term, ,p tr
fiV , ascribed to each 

strip and parallel to its orientation is equal to: 

, . .p tr
f f fufiV a b f=            (5) 

where fuf  is the tensile strength of the adopted CFRP strips. 

The concrete fracture-based term, ,p cf
fiV , ascribed to each 

strip and parallel to its orientation, can be calculated distrib-
uting the component of the concrete average tensile strength 
parallel to the strip, i.e., sinctm fif ! , throughout the resulting 
relevant semi-conical surface and integrating, according to 
the following formula (Fig. 6b): 

( )
( )

,

;

. sin .
fi fi fi

p cf
ctm fi fifi

C L

V f dC
!

!= "         (6) 

where ( );!fi fi fiC L  concisely denotes the semi-conical sur-

face associated to the i-th strip and fi!  is the angle between 
the generatrices and the axis of the semi-cone attributed to 
the i-th strip. 

The angle between the axis of the semi-conical surface 
and its generatrices, f! , calibrated on the basis of the inter-
pretation of some experimental results available to date [5, 
18], ranges approximately between 20° and 30° and shows a 
length-dependency on the available bond length, fL , but, in 
this respect, further investigations are required. The relation-
ship between the angle, fi!  (in degrees), and the available 

bond length, fiL  (in mm), assumed in the present work is the 
following: 

32.31                          for    0 30

33.973 0.0587 .             30 < 150 

25.17                                        150

fi

fi fi fi
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L L

L
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" # #
$$

= % #&
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  (7) 

Further details can be found elsewhere [5]. If attention is 
focused on one strip only, in the case in which it results to be 
orthogonal to the crack plane and in complete absence of 
interaction with the contiguous ones, the shear strength con-
tribution parallel to its orientation p

fiV  can be calculated by: 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Average bond strength vs. bonded length [19, 20]. 
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( ) 2 2( ) . ;min 2 . . . ; . . .
2b fi fi

p
f f f f fu ctm fi fifi L LV a b a b f f tg L!

"
#

$ %& '
= +( )* +

, -. /

 (8) 

that, for the materials regarding the experimental program 
presented in the companion paper, is plotted in Fig. 8. It 
arises that: for a value of the available bond length up to 
200 mm the prevailing failure mode is the concrete 
semi-conical fracture; for a value between 200 and 310 mm 
the failure mode is debonding, and for an available bond 
length higher than 310 mm the strips are expected to fail by 
tensile rupture. Due to the interaction between contiguous 
strips, the curve regarding the concrete tensile fracture opens 
downwards or upwards (when strips spacing decreases and 
increases, respectively) thus changing the range of length 
values in correspondence of which debonding is expected to 
be the commanding failure mode. The terms ,p tr

fiV  and 
,p db

fiV , based on the phenomenon of tensile rupture and 
debonding of the strip, respectively, are intrinsically inde-
pendent of the interaction between subsequent strips that, on 
the contrary, affects the concrete fracture-based term, ,p cf

fiV .  

As the spacing between subsequent strips is reduced, 
their semi-conical fracture surfaces overlap and the resulting 
envelope area progressively becomes smaller than the mere 
summation of each of them (see Fig. 9a). This detrimental 
interaction between strips can be easily taken into account by 
calculating the resulting semi-conical surface ascribed to 
each strip accordingly. For very short values of the spacing, 
the resulting concrete failure surface is almost parallel to the 
web face of the beam, which is in agreement with the failure 
mode observed experimentally, consisting in the detachment 
of the concrete cover from the underlying core of the beam 
(see Figs. 4e and 4f). Since the position of those semi-
conical surfaces is symmetric with respect to the vertical 
plane passing through the beam axis, the horizontal outward 

components of the tensile strength vectors distributed 
throughout their surfaces are balanced only from an overall 
standpoint but not locally (see Fig. 9b). This local unbalance 
of the horizontal tensile stress component orthogonal to the 
beam web face justifies the outward expulsion of the con-
crete cover in both the uppermost and lowermost parts of the 
strengthened sides of the web. The post-test photographic 
documentation (see Figs. 4e and 4f) clearly spotlights this 
local occurrence. 

Analytical Formulation 

In Eq. (6), the operation of integrating the component of 
the concrete tensile strength parallel to the strip, sinctm fif ! , 
throughout the relevant semi-conical surface is equivalent to 
projecting the surface on a plane orthogonal to the strip and 
multiplying it by the absolute value of the concrete average 
tensile strength [11] i.e.: 

. sinfi fi fid dC !" =               (9.1) 

Introducing (9.1) in (6) results: 

( )
( ) ( )

( ),

; ;

. sin . . . ;
fi fi fi fi fi fi

p cf
fi fi ctm ctm fi ctm fi fi fifi

C L L

V dC f f d f L
! !

! !

"

= = " = "# #
  (9.2) 

where ( );fi fi fiL !"  is the area, function of both the avail-

able bond length fiL  and the angle fi! , obtained by project-
ing the semi-conical surface on a plane orthogonal to the 
strip (see Fig. 10). 

Since the intersection of each semi-conical surface with 
the crack plane is constituted by a semi-ellipse, that becomes 
a semi-circle in the particular case in which the strip is or-

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (8). Expected failure mode as function of the available bond length. 
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thogonal to the crack plane, the above area ( );fi fi fiL !"  

can be evaluated by calculating the area of the semi-ellipse 
and then projecting this latter on the plane orthogonal to the 
strip (see Fig. 10). Hence, the main point of the calculation 
of the contribution ascribed to the i-th strip parallel to its 
length, ,p cf

fiV , is reduced to the evaluation of the area under-
lying the relevant semi ellipse, i.e.: 

( )
( )

,

;

sin .
fi fi fi

p cf
ctm fifi

E L

V f dE
!

" #= + $       (10) 

where ( );!fi fi fiE L  is the equation of the semi-ellipse, inter-

section of the i-th semi-conical surface with the assumed 
shear crack plane. This simplification is extremely powerful 

from a computational standpoint since allows the interaction 
between strips to be easily accounted for. In function of the 
main geometrical parameters wh , wb , fs , fiL  and 

( )fi fiL! , see Fig. 6, that interaction can be either mono-

directional, longitudinal or transversal, or bi-directional. The 
longitudinal interaction can occur when, due to the reduced 
spacing with respect to the height of the web, the semi-cones 
associated to adjacent strips located at the same side of the 
web, and consequently their relevant semi-ellipses, overlap 
along their major semi-axis (see for instance the semi-
ellipses 5 and 6 of the example of Fig. 11). The transversal 
interaction can occur when, for slender beam cross sections 
of high w wh b  ratio, the semi-ellipses symmetrically placed 
on the opposite sides of the web, intersect each other along 
their minor semi-axis (see the semi-ellipse 1 of Fig. 11). In 

 

 

 

 

 

 

 

 

 
 
 
Fig. (9). Interaction between strips and outward expulsion of the strengthened concrete cover: a) inside view of the fracture surface resulting 
from the overlapping of semi-conical fracture surfaces on one side of the web; b) local unbalance of the components of the concrete tensile 
strength orthogonal to the web faces on a section parallel to the crack plane. 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Projection of the semi-conical surface on a plane orthogonal to the strip. 
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this latter case, the area of the i-th semi-ellipse is limited, 
upwards, by the line 2wY b= , i.e. the trace, on the shear 
crack plane, of the vertical plane passing through the beam 
axis. In the most general case, in which bidirectional interac-
tion might occur, the area on the shear crack plane associated 
to the i-th strip, would be composed of two terms: one, 

nlin
fi! , limited upwards by the non-linear branch of the rele-

vant semi-ellipse ( )iY X  and another, lin
fi! , limited by the 

line 2wY b=  (see the semi-ellipses 1, 6 and 7 of Fig. 11). 
Hence, due to the bi-directional interaction, the area of the 
semi-ellipse associated to the i-th strip is calculated as fol-
lows: 

( )
( )

;fi fi fi

nlin lin
fi fi fi

E L

dE
!

= " +"#         (11) 

Ultimately, the equation (1) can be re-written as follows: 

In the following, the model is developed taking into con-
sideration the three geometrical configurations, for 1,2,3k =  
(see Fig. 12). Three different configurations of the strips 
with respect to the assumed crack origin are considered in 
order to get a general approach for the relative position be-
tween the shear failure crack and the intersected strips. More 
details can be found elsewhere [5]. 

The configuration is reflected by the digit after comma 
present in the subscript of each configuration-dependent 
quantity. 

Input Data 

The input parameters taking part in the developed ana-
lytical model are the following (see Fig. 6): 

• wh , the height of the web in the case of a T cross sec-
tion beam. For a rectangular cross section beam, wh  
is the vertical component of the strip length, i.e., 

sinw fh L != , where fL  is the strip length; 

• wb , the width of the web of the beam cross section in 
the case of a T beam. For a rectangular cross section 
beam, wb  is the cross section width; 

• ! , the inclination of the strips with respect to the 
beam axis; 

• fs , the spacing of the strips along the beam axis; 
• ! , the assumed crack angle; 

• ( )fi fiL! , the relationship between the angle, formed 

by the axis and the generatrices of the i-th semi-
conical surface, and the available bond length of the 
strip; 

• ctmf , the concrete average tensile strength; 

• fa , the thickness of the strip cross section; 

• fb , the width of the strip cross section; 

• fuf , the strip tensile strength; 

• ( )b fL!  relationship between the average bond 
strength and the available bond length of the strip. 

• The formulation requires the use of the following two 
Cartesian reference systems (see Fig. 6): 

• oxyz  global reference system whose origin is placed 
in the assumed crack origin and whose plane oxy  
lies on the intrados of the prism schematizing the 
beam web; 

( ) ( ) ( ) ( ){ }
1

2 . sin . min 2 . . . ; . . ; . sin .
fN

nlin lin
f f f fi b fi f f fu i i ctm

i

V a b L L a b f f! " # !
=

= + $ +$ +%        (12) 

 

 

 

 

 

 

 

Fig. (11). Definition of half crack plane and linear and non-linear range of integration for each ellipse. 
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• OXYZ  the crack plane reference system whose origin 
is placed in the assumed crack origin and whose 
plane OXY  lies on the plane schematizing the crack. 

Definition of the Geometric Quantities in oxyz  

The output of this block of calculation is composed of 
two matrices summarizing the prominent geometrical quanti-
ties defined in the global reference system: 

• x  is a 3 2!  dimension matrix, the first column of 
which stores the position of the first strip with re-
spect to the assumed crack origin, for the three pos-
sible strips’ configurations, 1,f kx , see Fig. 12, while 
the second column includes the corresponding num-
ber of strips crossing the shear failure crack, ,f kN ; 

F  is a 3fN !  dimension matrix. For a generic k-th con-

figuration, the first column of kF  includes the position of 
the strips ,fi kx , the second column stores the available bond 

length of the strips, ,fi kL , and the third column includes the 

values of the angle ,fi k! . In the present model, the i  char in 
the subscript of any symbol refers the i-th strip and its asso-
ciated semi-ellipse. For the generic k-th configuration it is 

,1,......, f ki N= . 

The pair 1, ,( ; )f k f kx N can assume the following values, 

as function of 3,2,1=k : 

( )

,int

,
1, , ,

,
,

;

( 1)sin ( )
( ; ) ;

2 sin 2

( 1)
cot cot ;

2 2

. .

. .

l
f f

f f ev
f k f k f f ev

f oddw
f f odd

s N

L N
x N s N

Nh
s N

! "

!

! "

#+
= #

#
+ #

$
%& '
( )%
%& '%
*+ ,
( )%
%& '%+ ,%( )-

 (13) 

The above three pairs include, respectively: the possibil-
ity for the strips to attain the minimum total available bond 
length (Fig. 12a); the possibility that an even number of 
strips be disposed symmetrically with respect to the intersec-
tion point between the longitudinal axis of the beam’s web 
and the shear crack plan (point P in Fig. 12b); the case in 
which one strip has the maximum length i.e., it intersects the 
crack at its mid-length (Fig. 12c). 

The position of each strip along the assumed x-axis is 
(see Fig. 12): 

( ), 1, ,1 .        for         1;......;fi k f k f f kx x i s i N= + ! =    (14) 

and its available bond length, i.e. the shorter length on either 
side of the crossing crack, is obtained by: 

1, ,

,

1, ,

sin
[ ( 1) . ] .          for      . (cot cot )     

sin( ) 2

sin
[ ( 1) . ] .     for      . (cot cot )

sin( ) 2

w
f k f fi k

fi k
w

f f k f fi k

h
x i s x   

L
h

L x i s x  

!
! "

! "

!
! "

! "

+ # < +
+

=

# + # $ +
+

%
&
&
'
&
&(

(15) 

Definition of the Geometric Quantities in OXYZ  

To easily determine the equations of the semi-ellipses in 
the crack plane reference system, the prominent geometrical 
quantities, for each i-th strip, are stored in the corresponding 
i-th row of the kG  matrix, that is, the G  matrix in the k-th 
configuration, of , 8f kN !  dimensions. The first column of 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (12). The (a) first, (b) second and (c) third considered configu-
rations for the strips [5]. 
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the kG  matrix has the position of each strip singled out 
along the OX  axis of the crack plane reference system, fiX  

(see Fig. 13). For a generic i-th strip, ,fi kX  can be evaluated 
by: 

( )
( ), 1,

sin . 1 .
sinfi k f k fX x i s!

! "
# $= + %& '+

              (16) 

The second column includes the length of the major 
semi-axis of the semi-ellipse, a . For a generic i-th strip, ,i ka  
can be determined from: 

( ) ( )
,

, ,
, ,

1 1. sin
2 sin sin
fi k

i k fi k
fi k fi k

L
a !

! " # # " !

$ %
& '= +
& '+ + + (
) *

(17) 

The third column stores the values of the position, along 
the OX  axis, of the center of the i-th ellipse oX . For a ge-
neric i-th semi-ellipse, ,oi kX  can be calculated from: 

The fourth column includes the values of the abscissa, in 
the local reference system of the i-th semi-ellipse 1 2 3i i ioe e e  
of an auxiliary point P  necessary to write the equation of 
the relevant ellipse, 1Pie . For a generic i-th ellipse of the k-th 
configuration, 1 ,Pi ke can be calculated from: 

1 , , ,Pi k fi k oi ke X X= !            (19) 

The fifth column stores the values of the ordinate, in the 
local reference system of the semi-ellipse, 1 2 3i i ioe e e , of an 
auxiliary point P  necessary to write the equation of the 
relevant ellipse, 2Pie . For a generic i-th ellipse of the k-th 
configuration, 2 ,Pi ke  can be calculated from: 

2 , , ,. tanPi k fi k fi ke L !=           (20) 

The sixth column includes the values of the length of the 
minor semi-axis of the semi-ellipse, b . For a generic i-th 
semi-ellipse ,i kb  can be calculated from: 

( )

2 2
, 2 ,

, 2 2
, 1 ,

.i k Pi k
i k

i k Pi k

a e
b

a e
=

!
          (21) 

The seventh column includes the values of the position, 
along the OX  axis, of the leftward vertex of the semi-ellipse 
along its major axis, 1v . For a generic i-th semi-ellipse 1 ,i kv  
can be calculated from: 

1 , , ,i k oi k i kv X a= !                 (22) 

The eight column includes the values of the position, 
along the OX  axis, of the rightward vertex of the 

semi-ellipse along its major axis, 2v . For a generic i-th semi-
ellipse 2 ,i kv  can be calculated from: 

2 , , ,i k oi k i kv X a= +            (23) 

Determination of the Coefficients of the Semi-Ellipses 

The equation of a generic i-th semi-ellipse of the k-th 
configuration, in the crack plane reference system has to be 
determined i.e.: 

( )
( )2

1, 3, 4,
,

2,

. .i k i k i k
i k

i k

E X E X E
Y X

E

+ +
= + !         (24) 

 

 

 

 

 

 

 

Fig. (13). Definition of the geometrical quantities in OXY and the ellipse local reference system oie1ie2i. 
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For this purpose, the coefficients of the semi-ellipses are 
stored in the E  matrix that, for the k-th configuration ( kE ) 
has , 4f kN !  dimensions. The first to fourth columns of the 

E  matrix store the values of the coefficients of the semi-
ellipses. For a generic i-th semi-ellipse of the k-th configura-
tion, these coefficients can be calculated from: 

Determination of the Auxiliary Matrices of Integration 
Points 

It is worth determining, even if they are not strictly nec-
essary for the implementation of the algorithm, some auxil-
iary matrices i.e. 1p

kX , 2p
kX , q

kX , e
kY , kM , kN , 

k
Q  since 

they condense some operations that, otherwise, should be 
repeated several times. 1pX  and 2pX  are two f fN N!  di-
mensions symmetric matrices containing, respectively, the 
abscissa of the first, 1p

ijX , and second, 2p
ijX , intersection 

points, if actually existing, between the i-th and j-th semi-
ellipses. For the k-th configuration, the generic terms 1

,
p

ij kX  

and 2
,

p
ij kX  of the 1p

kX  and 2p
kX  matrices are determined, 

respectively, from Eq. (27.1) and (27.2) if the following 
conditions, Eqs. (26.1-2), are satisfied: 

( )1, 2, 1, 2,. . 0j k i k i k j kE E E E! "              (26.1) 

( )
( )

2, 3, 2, 3, ,1
,

1, 2, 1, 2,

. .

2 . . .
i k j k j k i k ij kp

ij k
j k i k i k j k

E E E E
X

E E E E

! ! ! "
=

!
    (27.1) 

( )
( )

2, 3, 2, 3, ,2
,

1, 2, 1, 2,

. .

2 . .
i k j k j k i k ij kp

ij k
j k i k i k j k

E E E E
X

E E E E

! ! + "
=

!
    (27.2) 

Otherwise, if the following condition is satisfied: 

( )1, 2, 1, 2,. . 0j k i k i k j kE E E E! =         (28) 

the i-th and j-th semi-ellipses are intersecting in only one 
point, and the abscissa in the OX axis is given by: 

( )

( )

2, 4, 2, 4,1
,

2, 3, 2, 3,

. .

. .

i k j k j k i kp
ij k

i k j k j k i k

E E E E
X

E E E E

!
= !

!

      (29) 

In this case a “non-value”, represented by an asterisk, is 
assigned to the corresponding cell of the 2p

kX  matrix, i.e.: 

2
, *p

ij kX =               (30) 
Note that a “non-value” term is not zero since this latter 

has a physical meaning representing the position, in OXZ , 

of the assumed crack origin. The general term 1/ 2
,

p
ij kX  (repre-

sents both 1
,

p
ij kX  and 2

,
p

ij kX ) calculated as above specified, 
will be stored in the j-th column of the i-th row of the rele-
vant auxiliary matrix 1/ 2p

kX  if it is such as to satisfy the fol-
lowing condition: 

( ) ( )
21/ 2 1/ 2

1, 3, 4,, ,

2,

. .
0

p p
i k i k i kij k ij k

i k

E X E X E

E

! "
+ +# $% &' >    (31) 

If for the general solution 1/ 2
,

p
ij kX , neither the conditions 

of Eqs. (26 and 31) nor Eqs. (28 and31) are satisfied, the 
corresponding cell of the relevant matrix 1/ 2p

kX  has to be 
filled with a “non value”, e.g., an asterisk. Throughout the 
following calculations, each time neither the existence nor 
acceptance conditions of a real value are fulfilled, the corre-
sponding cell has to be filled with a “non-value”. qX  is a 

2fN !  dimensions matrix containing, in each i-th row, the 

abscissa of the left 1
q
iX  and right 2

q
iX  intersection, if actu-

ally existing, of the relevant i-th semi-ellipse with the 
straight line 2wY b= . For the general k-th configuration, 

the first column term of the i-th row, 1,
q
i kX , and the second 

column one, 2,
q
i kX , of the q

kX  matrix are calculated, respec-
tively, from the following Eqs.: 

( )2 2
3, 3, 1, 2, 4,

1,
1,

4 . . 4

2 .
i k i k i k i k w i kq

i k
i k

E E E E b E
X

E

! ! ! +
=  (32.1) 

( )2 2
3, 3, 1, 2, 4,

2,
1,

4 . . 4

2 .
i k i k i k i k w i kq

i k
i k

E E E E b E
X

E

! + ! +
=  (32.2) 

if the following condition is satisfied: 

( )2 2
, 3, 1, 2, 4,4 . . 4 0i k i k i k i k w i kE E E b E! = " + #    (33) 

eY  is a 2fN !  dimensions matrix containing, in each i-
th row, the ordinate assumed by the i-th semi-ellipse in cor-
respondence of 0X = , and in correspondence of dX L= , if 
the semi-ellipse actually passes through those abscissa val-
ues. For the generic k-th configuration, the first term 1,

e
i kY  of 

the i-th row of the e
kY  matrix is a real number, indicating 

2
, 2, 3, 3, 2, 1, 2, 1, 2, 2, 3, 2, 3,. . 4 . . . . . . 0ij k i k j k i k j k j k i k i k j k i k j k j k i kE E E E E E E E E E E E! " ! " ! "# = $ $ $ $ >% & % & % &           (26.2) 

2
1, ,i k i kE b= ; 2

2, ,i k i kE a= ; 2
3, , ,2 . .i k i k oi kE b X= ! ; 2 2 2 2

4, , , , ,. .i k i k oi k i k i kE b X a b= !               (25) 
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that the relevant semi-ellipse effectively passes through 
0X =  if the following condition is satisfied: 

4,

2,
0i k

i k

E
E

! "              (34) 

and in that case the corresponding value 1,
e

i kY  is equal to: 

4,
1,

2,

i ke
i k

i k

E
Y

E
= + !            (35) 

Likewise, the second term 2,
e

i kY  of the i-th row of the ma-

trix e
kY  is constituted of a real value, meaning that the rele-

vant i-th semi-ellipse of the k-th configuration effectively 
passes through dX L=  if the following condition is satis-
fied: 

( )2
4, 3, 1,

2,

. .
0

i k i k d i k d

i k

E E L E L

E

+ +
! "       (36) 

and the corresponding value 2,
e

i kY  is determined by the fol-
lowing expression: 

( )2
1, 3, 4,

2,
2,

. .i k d i k d i ke
i k

i k

E L E L E
Y

E

+ +
= + !     (37) 

M , N , Q  are f fN N!  dimensions matrices contain-

ing, respectively, the coefficients ijM , ijN  and ijQ  with 

, 1,...., fi j N= . For the generic k-th configuration, the gen-

eral terms ,ij kM , ,ij kN , ,ij kQ  of the kM , kN  and 
k

Q  ma-

trices are calculated as follows: 

1,1,
,

2, 2,

j ki k
ij k

i k j k

EE
M

E E

! "# $
% &= '( )
( )% &* +, -

; 3,3,
,

2, 2,

j ki k
ij k

i k j k

EE
N

E E

! "# $
% &= '( )
( )% &* +, -

; 

4,4,
,

2, 2,

j ki k
ij k

i k j k

EE
Q

E E

! "# $
% &= '( )
( )% &* +, -

         (38) 

where 1,i kE , 2,i kE , 3,i kE , 4,i kE  and 1,j kE , 2,j kE , 3,j kE , 

4,j kE  are, respectively, the coefficients of the i-th and j-th 
semi-ellipses in the k-th configuration stored in the relevant 
rows of the kE  matrix. 

Determination of the Integration Points in the Non Lin-
ear Range nlin

kX  

nlinX  is a nlin
fN n!  dimensions matrix containing, in 

the i-th row, the couples of abscissa values constituting lim-
its of the integration intervals for the relevant i-th semi-
ellipse equation ( )iY X . For the k-th configuration, the ma-

trix nlin
kX  has ,

nlin
f k kN n!  dimensions where nlin

kn  is the 

maximum number of real values of integration limits 
amongst all the ,f kN  ellipses of that configuration (an even 

number). To evaluate nlin
kX , five other auxiliary matrices 

1nlin
kX , 2nlin

kX , 3nlin
kX , 4nlin

kX , 5nlin
kX  have to be deter-

mined, based on both the auxiliary ones 1p
kX , 2p

kX , q
kX , 

e
kY , kM , kN , 

k
Q , output of the previous block of calcula-

tions, and the matrix of the semi-ellipses geometrical proper-
ties, kG . 

1nlinX  and 2nlinX  are two f fN N!  dimensions matrices 

containing, in the i-th row, the abscissa values, amongst 
those already calculated and stored in the corresponding i-th 
row, respectively, of the auxiliary matrices 1pX  and 2pX , 
that, according to the acceptance conditions hereafter speci-
fied, effectively constitute useful integration limits for the 
relevant i-th semi-ellipse equation. For the k-th configura-
tion, the general j-th term 1/ 2

,
nlin
ij kX  of the i-th row of the 

1/ 2nlin
kX  matrix is set equal to the corresponding term 1/ 2

,
p
ij kX  

of the corresponding auxiliary matrix 1/ 2p
kX , i.e.: 

1/ 21/ 2
, ,

pnlin
ij k ij kX X=             (39) 

if 1/ 2
,

p
ij kX  is such as to satisfy, for the i-th semi-ellipse, the 

following acceptance conditions: 
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in which the term X!  indicates an infinitesimally small 
length along the OX  axis. If at least one of the above condi-
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tions is not fulfilled by the auxiliary value 1/ 2
,

p
ij kX , the corre-

sponding effective term 1/ 2
,

nlin
ij kX  has to be set equal to “non-

value”. 3nlinX  is a 2fN !  matrix containing, in the first and 

second column of the i-th row, 3
1
nlin
iX  and 3

2
nlin
iX , the ab-

scissa values of the left and right intersection points of the 
relevant semi-ellipse with the straight line 2wY b=  that 
result effective for the integration of the corresponding equa-
tion ( )iY X . For the k-th configuration, the term 3

1,
nlin
i kX  of 

the i-th row of the 3nlin
kX  matrix is set equal to the corre-

sponding term 1,
q
i kX , i.e.: 

3
1, 1,

qnlin
i k i kX X=             (41) 

if 1,
q
i kX  is such as to satisfy the following acceptance 

conditions: 

Likewise, the term 3
2,
nlin
i kX  is set equal to the correspond-

ing auxiliary term 2,
q
i kX , i.e.: 

3
2, 2,

qnlin
i k i kX X=             (43) 

if 2,
q
i kX  meets the following acceptance condition: 

4nlinX  is a 2fN !  dimensions matrix containing, in the 

first cell of the i-th row, the null abscissa value, 4
1 0nlin
iX = , 

and the dL  value in the second cell, 4
2
nlin
i dX L= , if those 

values result to be effective integration limits for the relevant 
semi-ellipse ( )iY X . For the generic k-th configuration, the 

first column term of the i-th row, 4
1,
nlin
i kX , of the 4nlin

kX  ma-
trix has to be set equal to zero, i.e.: 

4
1, 0nlin
i kX =                  (45) 

if the ordinate value, 1,
e

i kY , contained in the correspond-

ing cell of the e
kY  matrix satisfies the following conditions: 

  

0 < Yi1,k
e <

bw
2

Qij,k ! 0   "   j = 1,....., N f ,k

0 < Yi,k #X( ) <
bw
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2

+ Nij,k . #X( ) + Qij,k < 0 " j = 1,....., N f ,k j $ i

%

&

'
'
'
'

(

'
'
'
'

(46) 

Likewise, the second column term of the i-th row, 
4

2,
nlin
i kX , of the 4nlin

kX  matrix has to be set equal to dL , i.e.: 

4
2,
nlin
i k dX L=                   (47) 

if the ordinate value, 2,
e

i kY , contained in the correspond-

ing cell of the e
kY  matrix satisfies the following conditions: 
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5nlinX  is a 2fN !  dimensions matrix containing the ab-
scissa of the vertices of the major semi-axis of the 
semi-ellipse that constitute effective integration extremities 
for the ellipses. 

For the k-th configuration, the first column term of the i-
th row, 5

1,
nlin
i kX , of the 5nlin

kX  matrix has to be set equal to the 
term 7,i kG , stored in the seventh column cell of the corre-

sponding i-th row of the matrix kG  i.e.: 

5
1, 7,
nlin
i k i kX G=             (49) 

if 7,i kG  satisfies the following conditions: 

Likewise, the second column term of the i-th row, 
5

2,
nlin
i kX , has to be set equal to the term 8,i kG , stored in the 

8-th column cell of the i-th row of the previously determined 
kG  matrix i.e.: 

5
2, 8,
nlin
i k i kX G=             (51) 

if 8,i kG  satisfies the following conditions: 

nlinn  is a 1fN !  vector containing, in the i-th row, the 
maximum number of real abscissa values constituting effec-
tive integration limits for the relevant i-th semi-ellipse equa-

tion (the integrand function is nonlinear in the X variable). 
For the k-th configuration, the general i-th term, ,

nlin
i kn , of the 

nlin
kn  vector is equal to the number of real values present 

amongst all the terms stored in the corresponding i-th row of 
all the auxiliary matrices, i.e.: 

{ }1 2 3 4 5
, , , , , ,real numbers ; ; ; ;nlin nlin nlin nlin nlin nlin

i k i k i k i k i k i kn X X X X X=  (53) 

The number of columns of the nlin
kX  matrix, nlin

kn , is 
equal to the maximum number of effective values among all 
the semi-ellipses for the k-th configuration, i.e.: 

{ }, ,max  with  1;...;nlin nlin
k i k f kn n i N= =      (54) 

The nlin
kX  matrix is then built by joining, for each i-th 

row corresponding to the i-th semi-ellipse, the effective 
terms, discarding the “non-values”, present in the corre-
sponding i-th row of the auxiliary matrices 1nlin

kX , 2nlin
kX , 

3nlin
kX , 4nlin

kX , 5nlin
kX  and sorting them in increasing order. 

For instance, the transpose ( )
Tnlin

kX  of the final nlin
kX  ma-

trix for the example of Fig. 11 is as follows (see also Fig. 
14): 
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Determination of the Integration Points in the Linear 
Range lin

kX  

linX  is a lin
fN n!  dimensions matrix containing, in the 

i-th row, the couples of abscissa values constituting limits of 
the integration intervals, in correspondence of the i-th semi-
ellipse, of the equation 2wY b= . For the generic k-th con-

figuration, the matrix lin
kX  has ,

lin
f k kN n!  dimensions where 

lin
kn  is the maximum number of real values of integration 

limits amongst all the ,f kN  semi-ellipses of that configura-

tion (an even number). To evaluate lin
kX , four other auxil-

iary matrices 1lin
kX , 2lin

kX , 3lin
kX , 4lin

kX  have to be deter-

mined, based on the auxiliary ones 1p
kX , 2p

kX , q
kX , e

kY , 

kM , kN , 
k

Q , already built. 1linX  and 2linX  are two 

f fN N!  dimensions matrices containing, in the i-th row, 
the abscissa values, amongst those already calculated and 
stored in the corresponding i-th row of the auxiliary matrices 

1pX  and 2pX , respectively, that, according to the accep-
tance conditions hereafter specified, effectively constitute 
useful integration limits for the linear range ascribed to the 
relevant i-th semi-ellipse. For the k-th configuration, the 
general j-th term 1/ 2

,
lin
ij kX  of the i-th row of the 1/ 2lin

kX  ma-

trix is set equal to the corresponding term 1/ 2
,

p
ij kX  of the cor-

responding auxiliary matrix 1/ 2p
kX , i.e.: 

1/ 21/ 2
, ,

plin
ij k ij kX X=             (56) 

if 1/ 2
,

p
ij kX  is such as to satisfy, for the i-th semi-ellipse, the 

following acceptance conditions: 

  

0 < Xij,k
p1/ 2 < Ld and Yi,k Xij,k

p1/ 2( ) >
bw
2

Mih,k . Xij,k
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+ Nih,k . Xij,k
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(57) 

Note that 1/ 2
,

p
ij kX  in Eq. (57) represents the two possible 

solutions, 1
,

p
ij kX  and 2

,
p
ij kX . 3linX  is a 2fN !  matrix con-

taining, in the first and second columns of the i-th row, 
3

1
lin
iX  and 3

2
lin
iX , respectively, the abscissa values of the left 

and right intersection points of the relevant semi-ellipse with 
the straight line 2wY b=  that result effective for the inte-
gration of the corresponding equation 2wY b= . For the k-th 

configuration, the first column term of the i-th row, 3
1,
lin
i kX , of 

 

 

 

 

 

 

 

 

Fig. (14). Determination of the effective matrix of the integration points in the non-linear range nlin
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the 3lin
kX  matrix is set equal to the corresponding term 

1,
q
i kX of the auxiliary matrix q

kX , i.e.: 

3
1, 1,

qlin
i k i kX X=              (58) 

if 1,
q
i kX  satisfies the following conditions: 

Likewise, the second column term of the i-th row 3
2,
lin
i kX  

is set equal to the corresponding auxiliary term 2,
q
i kX , i.e.: 

3
2, 2,

qlin
i k i kX X=              (60) 

if 2,
q
i kX  meets the following acceptance condition: 

4linX  is a 2fN !  dimensions matrix containing, in the 

first cell of the i-th row, the null abscissa value, 4
1 0lin
iX = , 

and the dL  value in the second cell, 4
2
lin
i dX L= , if those 

values result to be effective integration limits for the linear 
range ascribed to the relevant i-th semi-ellipse. For the ge-
neric k-th configuration, the first cell of the i-th row, 4

1,
lin
i kX , 

of the 4lin
kX  matrix has to be set equal to zero, i.e.: 

4
1, 0lin
i kX =               (62) 

if the ordinate value, 1,
e

i kY , contained in the correspond-

ing cell of the e
kY  matrix satisfies the following conditions: 
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Likewise, the second column term of the i-th row, 4
2,
lin
i kX , 

of the 4lin
kX  matrix has to be set equal to dL , i.e.: 

4
2,
lin
i k dX L=              (64) 

if the ordinate value, 2,
e

i kY , contained in the correspond-

ing cell of the matrix e
kY  satisfies the following conditions: 
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linn  is a 1fN !  vector containing, in the i-th row, the 

maximum number of real abscissa values constituting effec-
tive integration limits for the corresponding i-th semi-ellipse 
in the linear ranges (the integrand function is independent of 
the X variable). For the k-th configuration, the general i-th 
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term, ,
lin
i kn , of the lin

kn  vector is equal to the number of real 
values present amongst all the terms stored in the corre-
sponding i-th row of all the auxiliary matrices, i.e.: 

{ }1 2 3 4
, , , , 1,real numbers ; ; ;lin lin lin lin lin

i k i k i k i k i kn X X X X=     (66) 

The number of columns of the lin
kX  matrix, lin

kn , is equal 
to the maximum number of effective values among all the 
semi-ellipses for the k-th configuration, i.e.: 

{ }, ,max  with  1;...;lin lin
k i k f kn n i N= =       (67) 

The lin
kX  matrix is then built by joining, for each i-th 

row corresponding to the i-th semi-ellipse, the effective 
terms, discarding the “non-values” present in the correspond-
ing i-th row of the auxiliary matrices 1lin

kX , 2lin
kX , 3lin

kX , 
4lin

kX , and sorting them in increasing order. For instance, the 

transpose ( )
Tlin

kX  of the final matrix lin
kX  for the example 

of Fig. 11 is as follows (see also Fig. 15): 
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61 76

1
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0 * * * *
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q pTlin
k q p q
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X
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! "
= # $
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Determination of the Areas k!  

!  is a 1fN !  dimension vector containing, in the i-th 
cell, the area ascribed to the i-th semi-ellipse. For the k-th 
configuration, the term ,i k!  of the k! matrix is equal to: 

, , ,
nlin lin

i k i k i k! = ! +!            (69) 

where ,
nlin
i k!  is determined by the following equation: 

For the sake of brevity, the expression of the exact inte-
gration of the equation of the semi-ellipse is omitted but it 

can be found elsewhere [5]. The term ,
lin
i k!  can be obtained 

from: 

( )

( ),2, 4,

1, 3, 1 ,

, . . ..... .
2 2 2

lin
linlin lin i n kki k i k

lin lin lin
i k i k lini n kk

X
X X

lin w w w
i k

X X X

b b b
dX dX dX

! "#$ %
& '

( = + +) ) )   (71) 

Note that in the above Eqs. (70) and (71) the abscissa 
values, already stored in the corresponding i-th row of nlin

kX  

and lin
kX , respectively, have to be considered integration 

limits by pairs in sequence. 

Determination of the Shear Strength Contributions p
kV  

and V  

pV  is a 1fN !  dimension vector containing, in the i-th 

cell, the shear strength contribution ascribed to the i-th strip 
and parallel to its orientation. For the k-th configuration, the 
general i-th term, ,

p
fi kV , of the p

kV  vector is calculated by the 
following equation: 

( ) ( ) ( ){ },, min 2 . . . ; . . ; . . sinp
f f fi b fi f f fu i k ctmfi kV a b L L a b f f! " #= + $ +

( ) ( ) ( ){ },, min 2 . . . ; . . ; . . sinp
f f fi b fi f f fu i k ctmfi kV a b L L a b f f! " #= + $ +       (72) 

V  is a 1k !  dimension vector containing, in the k-th cell, 
the NSM shear strength contribution ,f kV  corresponding to 
the k-th configuration. The k-th term is equal to: 

,

, ,
1

2 . sin .
f kN

p
f k fi k

i

V V!
=

= "          (73) 

ASSESSMENT OF THE MODEL PERFORMANCE 

The Proposed Model (PM) was used to predict the NSM 
contribution for the shear resistance of the beams of the ex-
perimental program. The average tensile strength of the con-
crete of the tested beams was estimated from the concrete 
average compressive strength at the age of the beam tests, 
and using the expressions proposed by the CEB-FIP model 
code 1993 [19], resulting ctmf  = 2.45 MPa. The results are 

 

 

 

 

 

 
Fig. (15). Determination of the effective matrix of the integration points in the linear range. 
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listed in Table 4. For each beam of the experimental pro-
gram, the values obtained from the developed mode (PM) 
are compared to the experimentally recorded shear strength-
ening contribution of the distinct strips’ arrangements, exp

fV , 
with the corresponding ranges of possible analytical values. 
For the analysis of (Table 4), the analytical values were ob-
tained assuming for the shear crack angle, ! , the values 
measured in the tested beams, exp! , and also listed in Table 
4. The model performance was also assessed by means of the 
ratios: 

• exp
,min

PM
ffV V  of the experimental recording to the 

minimum value obtained by means of the PM; 

• exp
,max

PM
ffV V  of the experimental recording to the 

maximum value obtained by means of the PM; 

The performance of the PM is absolutely satisfactory. In 
fact, for the series of beams with vertical strips the average 
of the ratios exp

,min
PM
ffV V  and exp

,max
PM
ffV V  (see Table 4) 

are respectively 0.99 and 0.56 meaning that, on average, the 
recorded values fall just on the lower bound of the analytical 

range ,min ,max;PM PM
f fV V! "# $ . For the series of beams with strips 

at 60° the average value of the above two ratios are respec-
tively 1.01 and 0.77 meaning that, on average, the experi-
mental recordings fall in between the lower and upper bound 
of the analytical values. For the series of beams with strips 
disposed at 45° the average value of the ratio exp

,min
PM
ffV V  

results to be less than unity because, the experimental value 
obtained in 2S_8LI45 beam was probably affected by some 
disturbance that did not allow the shear strengthening contri-

bution of this NSM configuration to be fully mobilized. In 
fact, provided that, due to the interaction between subsequent 
strips the rate exp

f fV s! !  decreases by diminishing fs , it 

is unrealistic that passing from fs  of 220 mm (2S_5LI45 
beam) to 138 mm (2S_8LI45 beam) the shear strength con-
tribution decreases from 41.40 to 40.20 kN. At most, it 
should assume the same value of 41.40 kN. 

CONCLUSIONS 

The purposely intended experimental program on NSM-
strengthened beams, spotlights the possibility that a failure 
mechanism, other than debonding, occurs, i.e. the separation 
of the concrete cover from the beam core. Besides, it 
emerges that the effectiveness of the NSM shear strengthen-
ing system may be strongly influenced by the mutual posi-
tion between steel stirrups and strips. Despite the improve-
ments introduced, the existing debonding-based model sys-
tematically provides an overestimation, the higher the 
smaller the spacing, of the experimentally recorded shear 
strengthening contribution by NSM CFRP strips. Such over-
estimation, as further confirmed by experimental evidence, 
can be ascribed to the erroneous assumption that the ex-
pected failure mechanism is debonding, regardless of the 
influence of both concrete tensile strength and existing stir-
rups/strips interaction. 

A new predictive model, originated from the need for a 
rational explanation to the features of the above failure 
mechanism affecting the behavior at ultimate of RC beams 
shear strengthened by NSM CFRP strips, was proposed. This 
model assumes as possible failure mechanisms: debonding, 
tensile rupture of the strips and the concrete tensile fracture 
and allows the interaction between strips to be accounted for. 

Table 4. Values of fV  Obtained from the Developed Model ( ,
PM
f kV ) and Experimental Recordings ( exp

fV ) for the Experimental Pro-

gram by Dias & Barros 12 

Beam label fs  !  exp!  ,1
PM
fV  ,2

PM
fV  ,3

PM
fV  ,min

PM
fV  ,max

PM
fV  exp

,min
PM
ffV V  exp

,max
PM
ffV V  

 [mm] [°] [°] [kN] [kN] [kN] [kN] [kN] [ ] [ ] 

2S_3LV 267 90 40 20.88 13.61 49.28 13.61 49.28 1.63 0.45 

2S_5LV 160 90 40 48.80 46.38 51.78 46.38 51.78 0.54 0.49 

2S_7LV 100 90 36 65.41 61.71 66.76 61.71 66.76 0.79 0.73 

average         0.99 0.56 

2S_3LI45 367 45 45 32.62 22.96 49.83 22.96 49.83 1.28 0.59 

2S_5LI45 220 45 45 47.69 47.11 62.06 47.11 62.06 0.88 0.67 

2S_8LI45 138 45 36 83.41 83.16 88.63 83.16 88.63 0.48 0.45 

average         0.88 0.57 

2S_3LI60 325 60 33 42.16 29.36 44.20 29.36 44.20 1.21 0.80 

2S_5LI60 195 60 36 47.21 47.20 60.04 47.20 60.04 0.98 0.77 

2S_7LI60 139 60 37 72.36 65.35 74.18 65.35 74.18 0.84 0.74 

average         1.01 0.77 
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The comparisons with the debonding-based model showed 
that the proposed model provided a better estimation of the 
experimentally recorded NSM shear strength contribution. 
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