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Abstract: Interaction domains for the buckling of isolated R.C. columns are an efficient and versatile instrument for the 

assessment of the resistance at Ultimate Limit State, and allow the optimization of the structural geometry and reinforce-

ment ratio. 

The paper presents the procedure for deriving interaction domains for rectangular symmetrically reinforced columns, pro-

viding a detailed analysis of the load-carrying capacity for various classes of concrete and reinforcement steel bars. Do-

mains have been obtained according to the “model-column method”, taking into account the uncertainties both in geome-

try and in the position of axial loads. Effects related to short-term creep are ignored.  

In order to facilitate the practical utilization, the generic domain has been approximated by a two-branch curve, parabolic 

and elliptic. The first-one is related to the collapse dominated by axial load, and the second one to flexural crisis. This ap-

proximation leads to simple closed-form expressions, particularly suitable for engineering preliminary design. 
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1. INTRODUCTION 

In RC framed buildings, columns are the most important 

primary structural elements, and have a crucial role both 

under vertical and seismic loads. A column is typically sub-
jected to axial force and bending moment which can be in-

duced by the continuity with the beams and/or by the eccen-

tricity due to the imperfect alignment between beam and 
column. The cross section is designed in order to guarantee 

that the actions are compatible with the resisting capacity, 

represented by the N–M (axial force-bending moment) inter-
action diagram. 

In the last few decades, the use of slender RC columns 

has become more and more widespread in civil buildings and 
infrastructures (especially bridges). This is often the conse-

quence of architectural and aesthetic needs, but also of the 

availability of high strength materials, that has boosted the 
effort towards the structural optimization. Obviously, the 

collapse of slender RC columns is not strictly dependent on 

the strength of the section, but can be driven by instability 
phenomena, and this would require that the numerical mod-

elling is particularly attentive and rigorous, including – 

among other aspects - second order effects. As a significant 
example, it is worth mentioning the case of bridge piers, 

which are a typical example of structures particularly sensi-

tive to buckling, and for which a number of research studies 
and applications have been developed [1].  

It is evident that the availability of simplified procedures 
for the qualitative assessment of materials [2, 3] and for the  
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seismic assessment can be very helpful in order to reduce the 
computational burden and allows an effective management 
of engineering problems. 

In the literature, several research studies about the behav-
iour and design of slender RC columns can be retrieved. Ba-
zant et al. [4, 5] analytically calculated the resistance capac-
ity of slender RC columns on the basis of the balance equa-
tion and the strain compatibility condition, by assuming a 
deflection curve with a sinusoidal function. Kim et al. [6, 7] 
proposed a numerical method that considers the material and 
geometric nonlinearities. Yalcin and Saatcioglu [8] devel-
oped an analytical model which considers the influence of 
lap splice failure and the length of the plastic hinge on the 
nonlinear behaviour of RC columns. 

Most building codes, such as Eurocode 2 [9] and ACI-
318 [10], and technical standards, in order to guarantee an 
adequate versatility, provide the indications about the col-
umn resistance independently from the slenderness ratio and 
then take into account the possible instability effects in 
"long" columns by increasing the applied first-order mo-
ment. The increase is based on the moment magnification 
factor derived from elastic stability theory and the method is 
called "Magnified Moment Method". Its accuracy depends on 
the effective flexural stiffness EI of the column, which is 
influenced by cracking, creep and non-linear behaviour of 
the material. Over the last three decades, many authors and 
national codes have proposed different methods to determine 
the column stiffness for short and long-term loads. Eurocode 
2, ACI-318 and most authors, such as Mirza et al. (1987), 
Mirza (1990), Bonet et al. (2004), Tikka and Mirza (2005 
and 2008)[11-15], claim that the flexural stiffness EI de-
pends on the loads applied by means of the relative eccen-
tricity or else through the axial load. In a recent study by 
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Bonet et al. (2011) [16], the different formulations EI pro-
posed in the technical literature and in the technical codes 
are discussed and compared, showing that there is a great 
variability and dispersion of the different proposal with re-
gard to the variables involved and the functions used. Con-
sequently, the application of different technical codes may 
result in the underestimation of the resistance, which is more 
accentuated if the slenderness increases. 

It is evident that the construction of reliable interaction 
domains for RC columns characterized by high slenderness 
ratio is fundamental, but requires a rigorous analysis (be-
cause of nonlinearities due to cracking and 2

nd
 order effects) 

which is time consuming, and whose use in design practice 
requires much experience [17]. 

This paper presents a simplified analytical model for as-
sessing the resistance of isolated RC rectangular columns. 
The model takes into account material and geometric nonlin-
earities, and a graphical approach is adopted to define the 
interaction domains at the Ultimate Limit State. These do-
mains are built by means of dimensionless parameters that 
define the different parts of the domain. The aim of the study 
is to define an efficient tool that can be used for the simpli-
fied, preliminary design/assessment of the structural geome-
try and of the reinforcement ratio of isolated columns. 

It should be noted that the proposed simplified model is 
reliable in all those cases in which the static and geometric 
assumptions are coherent with the "model column method" 
[9]. The entire proposed model can be easily automated in 
order to allow an immediate use. 

2. THEORETICAL BASIS 

The cantilever column shown in (Fig. 1) is the simplified 
model widely used in the literature in order to assess buck-
ling effects. A similar model has been recently studied by 
Krauberger et al. (2011) [18] for an ideal RC column with-
out any imperfection. However, in the presence of softening 
induced by the micro-cracking in the concrete, the buckling 
load of the perfect column may significantly overestimate 
the limit load of the imperfect column (where the terms, per-
fect and imperfect, identify, respectively, the column without 
and with cracking). In order to account for the effects caused 
by micro-cracking, an additional eccentricity of the axial 
load must be introduced. 

Let us consider an isolated column (Fig. 1a) having con-
stant section and reinforcement along its longitudinal axis. 
At the generic abscissa z, the balance equation between in-
ternal and external actions is given by Eq. 1: 

            (1) 

If the boundary conditions are known, according to the 
Eulerian theory, the elastic deformation is obtained by inte-
grating Eq. 1 twice: 

 
           (2)

 

 
           (3)

 

By introducing the mechanical slenderness , the mo-
ment M0 at the base section (z=0) of the column is given 
below:  

 

           (4)

 

The instability collapse of the column is driven by the 
collapse of the most stressed section (i.e. the base section). 
After defining the corresponding resistance domain at the 
Ultimate Limit State (Fig. 1b), for an assigned axial stress, 
the maximum load (Pu

*
) that the column can support can be 

easily evaluated.  

In the (Fig. 1b), point A identifies the generic ultimate 
limit load Pu

*
 and ultimate bending moment Mu

*
 that cause 

the collapse of the column. The moment value consists of 
two different contributions:  

the first order moment              (5) 

the second order moment MII given by the following 
equation: 

 

            (6)

 

The balance equation (Eq. 1) takes into account only the 
geometrical non-linearity, because the material is considered 
as perfectly elastic (i.e. the flexural stiffness EI is constant). 
The presence of mechanical non-linearity induces, instead, 
variations in the first member of Eq. 1 (internal moment) 
because the bending stiffness EI changes with stress and 
curvature. In this case, the problem can be numerically 
solved, by assuming that the moment/curvature law, under 
the actual axial load P, is known. 

 

 

Fig. (1). Structural scheme of the model column (a) and resistance 

domain for the base section (b). 

 
If the exact solution of the problem is desired, a more 

general method should be used. For example, the column 
shall be divided into a convenient number of sub-elements 
and then iterative procedures based on finite difference 
method will be applied. Although conceptually simple, this 
approach is very laborious because it requires - for each sec-
tion - the knowledge of the moment/curvature diagram and 
of the longitudinal actions (and, consequently, the evaluation 
of the curvature on the basis of the bending moment assumed 
in the iterative step). In the case of statically determinate 
elements with a constant cross section, loaded by steady lon-
gitudinal forces (with no limitation for other external ac-
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tions), the “model column method” is often used and it is also 
allowed by Eurocode 2 [9]. 

In this method, it is assumed in advance that the de-
formed configuration of the element (Fig. 1a) is a sinusoidal 
semi-wave of undetermined amplitude: 

 
           (7)

 

After deriving equation (Eq. 7) twice, the following ex-
pression of the curvature is obtained: 

 
           (8)

 

The effective buckling length is equal to 2L. Therefore, 
for z=0 (base section, indicated by the subscript “0”), the 
curvature y”(z) = 0 is given by: 

  
            (9)

 

This equation can be expressed as a function of the slen-
derness (  =2L/i): 

 
         (10)

 

Eq. 10 represents a linear relationship between the curva-
ture 0 and the deflection amplitude a at the top of the col-
umn. In restrained section, the balance equation can be writ-
ten as follows: 

  
(11)

 

In Fig. (2), the plot of Eq. 11 in the moment-curvature 
plane is shown for the base section, for a fixed value of the 
buckling force (P). The points A and B in which it intersects 
the curve M

INT
( 0), defining the internal moment of the base 

section, identify the balance conditions. In detail: 

- Point A identifies a stable balance condition, since any 
increase in the curvature would bring a greater increase 
in the internal moment M

INT
( 0). 

- Point B identifies an unstable balance condition, since 
any increase in the curvature would bring a greater in-
crease in the external moment M

EST
( 0). 

 

 

Fig. (2). Moment/curvature diagram of the base section and identi-

fication of maximum first order moment at the limit condition of 

stable balance. 

For the base section, the maximum first order moment 
MI,max is given by the intersection of the tangent to the curve 
M

INT
( 0) and the vertical axis. The tangent is parallel to MII, 

which is the moment that represents the variation of the sec-
ond order moment according to the curvature of the section. 
If other conditions do not change, MII only varies with the 
slenderness . Therefore MI,max is also called: “reduced flex-
ural resistance” of the analysed structure. The point D repre-
sents the limit condition of stable balance. The couple MI – 
P, just obtained, represents one limit point of the “reduced 
resistance domain” of the examined column for an assigned 
value of the slenderness .  

Although it is conceptually simple to define, the con-
struction of the “reduced resistance domain” presents some 
numerical difficulties, which have been pointed out in the 
last years by many researchers [6, 8, 17]. The major diffi-
culty lies in the evaluation of the maximum value of the 
available first order moment MI for a sequence of possible 
slenderness values of the column, loads P and reinforcement 
arrangements. These difficulties highlight that the availabil-
ity of “reduced resistance domains” – even in an approxi-
mate form - would actually provide a very effective tool for 
professionals, in order to immediately solve design problems 
related to compressed reinforced concrete columns.  

3. REDUCED RESISTANCE DOMAINS 

In order to formulate the equilibrium equation and define 
the dimensionless domains for columns with rectangular 
cross-section symmetrically reinforced, the starting assump-
tions were made and reported in the list below and in  
(Table 1). 

- Cross sections remain plane (Bernoulli-Navier hypothe-
sis), i.e. the strain distribution on any section is linear. 

- There is perfect adherence between concrete and steel. 

- Sections are subjected to normal stress only. 

- Shear deformations are neglected. 

- Tension stiffening and concrete tensile strength are ne-
glected. 

 
Table 1.  Symbols and Assumptions for the Geometrical and 

Mechanical Parameters 

geometrical dimensions of the 

rectangular cross-section 
b, h 

Longitudinal reinforcement  

(constant and symmetric)  

concrete cover 0.10 h 

mechanical reinforcement ratio 
 

dimensionless values of axial load 

and bending moment  

 
Fig. (3) shows the simplified function (one of the sides of 

the overall interaction domain) that allows to evaluate the 
longitudinal reinforcement of the section, once the dimen-
sionless design (subscript “d”) stress d

*
 and moment μd

*
are 
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Fig. (3). How to use the reduced interaction domains?. 

 
given. The procedure, basically, is the same indicated by 
Eurocode 2 for isolated columns in braced systems: in order 
to account for uncertainties (in the geometry and position of 
axial loads through an additional eccentricity ea=l0/400 – see 
§5.2.(9) in EC2), interaction domains are further reduced by 
a specific limitation imposed on the first-order moment: 

 (12) 

It should be pointed out that the parameter 800 3/  rep-
resents the angular coefficient of the lines delimiting the 
reduced domain, and, additionally, that Eq. 12 is only valid 
for rectangular sections. 

The difference μd
*I

=μ*I
-μo

*I
 shown in (Fig. 4) is the 

maximum available dimensionless I order moment. 

 

 

Fig. (4). Simplified interaction domain for an isolated rectangular 

column (for assigned values of  and ). 

4. CLOSED-FORM APPROXIMATION OF DOMAINS 

 As previously mentioned, the practical use of “re-
duced resistance domains” is often limited because of a 
number of difficulties and drawbacks: 

- Need of interpolating the values of slenderness and rein-
forcement ratio which are not directly represented in the 
domains. 

- Need of a “graphical determination” of the resistance 
values. 

An analytical formulation of the domains, even approxi-
mate, appears therefore particularly interesting for its sim-
plicity and rapid application.  

For slenderness values in the range 50< <150 and me-
chanical reinforcement ratios in the range 0.5< <1.5, the 
generic interaction domain can be approximated by a two-
branch curve: “parabolic” and “elliptic”. The first curve rep-
resents the case of a prevalently axial collapse and; the sec-
ond branch is related to the flexural failure of the column 
(Fig. 4).  

The parameter that marks the boundary between the two 
different branches is PE*, that is, the dimensionless axial 
limit force. PE*depend on  and . It is defined by analyti-
cal expressions that are reported in APPENDIX. 

In the following section, the analytical expression of each 
curve is obtained, taking into account, roughly, the influence 
of all geometrical and mechanical parameters (  ,  , fyk ). 

Table 2 contains a summary of the parameters involved 
in the calculation of the parabolic and elliptic branches 
which approximate the “reduced interaction domain” for 
isolated columns with rectangular section and symmetrical 
reinforcement.  

kx=kx( , ) and ky=ky( , ) represent the coordinates of 
the points of the parabolic branch of the domain. Fig. (5a) 
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Table 2.  Main Parameters for Assessment of Parabolic and Elliptical Branch 

Parabolic branch (
*
> PE

*
) Elliptical branch (

*
PE

*
) 

 
or  

or 

 

 

 

 

Fig. (5). Plot of the parameter which defines the parabolic curve (a) and the elliptic curve (b). 

 
shows the plots of kx and ky vs  and , whereas their ana-
lytical expressions are explicated in APPENDIX. 

Fig. (6) reports the function = ( , fyk). Table 2 reports 
the analytical expressions of the main parameters defining 
the parabolic and elliptical branch. Numerical analyses have 
shown that the coefficient  essentially depends on the slen-
derness  of the column characteristic yield strength of steel 
reinforcement (fyk). Its value can be assumed equal to 1 if the 
slenderness values are less than 20.  

In Eqs. 16’ and 16”, ka= ka( , ) and kb= kb( , ) are the 
values of the semi-axes of the ellipse in the μ* and * direc-
tions; kab=ka/kb; k0 is the ordinate of the ellipse center with 
variation of  (see Fig. 5b and APPENDIX).  

The dimensionless axial limit force PE
*
 marks the transi-

tion from the parabolic to the elliptic branch. In a few words, 
the parabolic branch will be used if Sd

*
PE

*
, while the el-

liptic branch will be used if Sd
*

PE
*
 (the subscript Sd indi-

cates the design value). The analytical expressions of PE
*
 

are reported in the APPENDIX, whereas the plot of the 
function PE

*
( , ) is shown in (Fig. 7). It should be noted 

that the slenderness equal to 100 is a discontinuity point of 
the function PE

*
= PE

*
( , ), which is linear for < 100, 

whereas is parabolic for > 100 PE
*
. 

 

Fig. (6). = (fyk, ): scaling factor of *. 

 

In Fig. (8), the domains obtained through the “rigorous” ap-

proach (black curve) [19](Raffaele, 2004) and the “approxi-

mate” method (red curve) are compared. 

Domains have been obtained for the steel class 
fyk=450N/mm

2
 (450C class of the Eurocode 2 [9] (CEN 

2004)). 
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Fig. (7). Plot of the dimensionless axial limit force PE
*
 as a func-

tion of the slenderness . 

 
It is evident from Fig. (8) that the difference between the 

two approaches is very small for the whole range of variation 
considered for the slenderness ratio, which is quite large (be-
tween 50 and 150).  

The comparison points out that the proposed simplified 
analytical approach, based on dimensionless parameters, can 
be very useful for practical applications and preliminary de-
sign, without the need to resort to more refined methods. 
 

5. NUMERICAL APPLICATIONS 

As an example, the cantilever beam shown in (Fig. 9) is ana-

lysed by applying the proposed procedure.  
The mechanical parameters used in the examples are as 

follows: 

- Concrete class 28/35: fcd= 0.83 Rck/ c =18.16 MPa 
( c=1.5); 

- Steel class B450C [9], fyd=fyk/ s=391.3 MPa ( s=1.15). 

The mechanical reinforcement ratio assumes the follow-
ing value: 

The slenderness  is equal to 2L/i=104>100 (i=8.66 cm).  

According to (Eq. 15), the parameters  and  are given 
by =0 and =1 for all the slenderness ratios  (see Eq. 14). 

 

Fig. (8). Interaction domains for columns having rectangular section and symmetric reinforcements: comparison between the rigorous 

“model-column” method and the approximate parabola-ellipse formulation. 
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For >100 and <1, it is: PE 
*
x 10

2
 = 23.13 (see Appen-

dix - Eq. A.3). 

 

 

Fig. (9). Geometric data and reinforcement arrangement of the nu-

merical example. 

 

5.1. Example 1 

As a first example, an axially-dominated collapse is con-
sidered: Nsd=2300kN. 

In fact, it is obtained: 

In this hypothesis the branch of interest is the parabolic 
one. The related coefficients are provided by Eqs. A.6, (for 

>100 and <1): kx=73·10
-2

; ky=-53.12·10
-2

. 

Equation 13’’ gives: 

 

At this point, the effect of geometric uncertainties is pro-
vided by (Eq. 12): μ0

*I
= sd

*
/800 3=3.16·10

-2
. 

Eventually, the maximum available I order moment is: 
μd

*I
= μ*I

- μ0
*I

=2.84·10
-2

, and Md
I
=μd

*I
·b·h

2
·fcd=46.49kNm. 

For the same example, the application of the rigorous 
“model-column” method gives the value: Md

I
 = 46.33 kNm, 

with a difference lower than 0.5%.  

The dimensionless abacus (Fig. 10) provides the value 
Md

I
 = 45.10kNm, with a difference of about 3%. 

5.2. Example 2 

As a second example, a bending collapse is considered: 
Nsd=800kN. 

 

Under this hypothesis, the branch of interest is the elliptic 
one. 

The allowable I order-moment is obtained by Eq. 16’’. 

The ka, kb and k0 coefficients are provided by Eqs A.10 
(for >100; <1): ka=12.41·10

-2
; kb=47.78·10

-2
 and 

k0=4.54·10
-2

. 

 

The reduction related to the geometric uncertainties, ac-
cording to Eq. 12, gives: μ0

*I
= sd

*
/800 3=1.10·10

-2
 

and, finally, the maximum available I order moment is: 
μd

*I
= μ*I

- μ0
*I

=11.02·10
-2

. 

Finally, Md
I
=μd

*I
b h

2
fcd=180.17 kNm. 

This value is in a perfect agreement both with the one de-
rived by using the abacus (Fig. 10): Md

I
 = 180.43kNm and 

with the one provided by the rigorous “model-column” 
method: Md

I
 = 179.94 kNm, demonstrating the robustness of 

the proposed procedure.  

 

 

Fig. (10). Plot of the approximated interaction domain of the canti-

lever column of the examples 1 and 2.  

 
6. CONCLUSION 

This paper presents a simple but effective procedure for 
the design and assessment of slender isolated R.C. columns 
with rectangular cross section. The proposed procedure is 
tested by a comparison with results provided by previous 
studies of the authors [19], based on a numerical approach 
which simulate the material and geometric nonlinearities 
through the so called “model-column” method. The formula-
tion derived has shown a good reliability even for a wide 
excursion of mechanical slenderness and reinforcement ratio. 

The essential steps of the procedure can be summarized 
as follows: 

1. Starting from geometric, reinforcement and material data 
(b, h, L, AS, fck, fyk) the mechanical reinforcement ratio  
and the column slenderness  are obtained. 

2. From Eq. 14 and from the relationships reported in Ap-
pendix,  and PE

*
 are respectively calculated, in order to 

define the limit of the two branches of the domain. 

3. If Sd
*
> PE

*
, the problem is governed by the “parabolic” 

branch, otherwise it is governed by the “elliptic” one;  

4. APPENDIX provides the coefficients i related to the 
selected branch; 

5. The allowable I-order moment μ*I
 is obtained from Eq. 

13 or Eq. 16; 
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6. The effect of uncertainties related to the geometry and 
the position of the axial load is calculated by Eq. 12 , 
providing the reduced moment μ0

*I
 from; 

7. Finally, the effective resistant moment μd
*I

= μ*I
- μ0

*I
 is 

obtained. 

The approach is particularly interesting because it over-
comes some difficulties connected with the use of numerical 
approaches deduced from other methods. In fact, although 
conceptually simple, the use of “reduced resistance do-
mains” is often characterised by difficulties and mistakes 
essentially due to: 

- the need of interpolating the values of slenderness and 
reinforcement not directly reported in the domains; 

- the need of a graphical determination of the resistance 
values.  

The major advantage of the procedure is represented by 
the possibility of analysing in a very simple way the re-
sponse of isolated R.C. columns (rectangular, constant sec-
tion and symmetrical reinforcements), loaded by steady lon-
gitudinal forces, and characterised by material of any value 
of resistances, under the only condition that the constitutive 
laws fulfil those suggested by Eurocode 2. 
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LIST OF SYMBOLS 

a = Deflection of the top section of column 

A = Transversal area section 

Abottom, = Total area of steel reinforcement bars at the 
base section 

Atop, = Total area of steel reinforcement bars at the 
top section 

e0 = Eccentricity of the applied load 

EI = Effective flexural stiffness of the slender RC 
column 

fcd = Design value of concrete compressive 
strength 

APPENDIX 

The synoptic table (Fig. 11) containing the fundamental relationships required for defining the parabolic-elliptic domain are 
here explicated. 

 

Fig. (11). Synoptic table. 
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fyk = Characteristic yield strength of steel 

i = Radius of inertia 

I = Moment of inertia of A at the base section of 
the column 

k0 = Ordinate value of the center of the ellipse 

ka, kb, kab = Coefficient values that define the elliptic 
branch of the domain 

kx, ky = Coefficient values that define the parabolic 
branch of the domain. 

L = Column length 

 = Coefficient for assessing the ellipse semi-
axis kb 

l0 = Effective buckling length 

M0 = Moment at the base section of the column 

Mu = Ultimate moment 

P = Buckling load 

Pu* = Maximum load that that the column can sup-
port 

y(z) = Displacement function along the longitudinal 
axis 

z = Reference abscissa along the longitudinal 
axis of the column 

= (fyk, ) = Scaling factor of the dimensionless axial 
force * 

0 = Curvature of the base section of the column 

 = Column slenderness ratio. 

μ*I
 = Dimensionless bending moment of the first 

order 

μd
*I

 = Design value of the dimensionless bending 
moment of the first order (i.e. maximum 
available dimensionless I order moment) 

μ0
*I

 = Dimensionless bending moment of the first 
order at the base section of the column 

pE
*
 = Dimensionless axial limit force that marks 

the boundary between parabolic and elliptic 
branch 

 = Mechanical reinforcement ratio 
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