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Abstract: A derivation is given of simplified, exact stability design rules according to limit 

analysis, applied to timber beam-columns. These rules are lacking but are necessary to be able 

to provide real and calculable reliability as is required according to European pacts and laws. 

Necessary therefore are the obtained exact combined bi-axial bending, compression and shear 

strength equations with the exact equilibrium equations under biaxial loading. As for other 

materials the elastic-full plastic limit design approach is applied, which is already known to 

precisely explain and predict uniaxial bending strength behavior. The strength derivation is 

based on choosing the location of the neutral line. This provides the stress distribution in the 

beam cross section in the ultimate state for that case, providing the possibility to calculate the 

associated ultimate bending moments in both main directions combined with the ultimate 

normal- and shear forces.  

The derived general strength and equilibrium equations are simplified to possible elementary 

design equations, applicable for building regulation.  
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1. Introduction  
The exact lower bound equilibrium method of limit analysis is based on finding an allowable 

equilibrium system, (given in Chapter 3), which nowhere surmounts the failure criterion. This 

failure criterion, derived in Chapter 2, is an applicable and systematized extension of [1]. 

Buckling is a three-dimensional problem due to initial eccentricities and because it never is 

possible to have deformations and loading actions to be precisely zero and thus to get exactly 

an two-dimensional planar structure and thus to get the 

possibility of bifurcation. All deformations start at the 

beginning of loading. Calculations of large deflections 

of beam-columns by third order theory ([2] p 188) 

show that there always is a rise of the loading-curve at 

increasing torque and out of plane deformation, as 

given by Fig. 1.  

It thus is necessary to have plastic flow, causing 

stiffness decrease, to bend down the loading curve and 

the top of the loading curve then represents the 

ultimate strength which thus is always determining for 

buckling in practice. Although for a compact strong 

material, as steel, it should be possible, by machine  

Fig.1. Deformation of a beam column  

according to 3
rd

 order analysis 

 

testing, to go over the top of the loading curve when the test rig - specimen assembly could be 

made stiff enough, this unloading is not possible by the in practice occurring dead load 

loading and total failure is shown to occur at the top of the curve (see Fig. 2). Testing at 

Stevin Laboratory on full structural scale and semi-full scale glulam beams with perfect 

boundary conditions confirmed this behavior. To investigate buckling behavior at different 



 

loading conditions, very slender beams, with very low 

bearing capacities, also were tested. The tests of these 

slender beams was stopped off at a very small lateral 

deformation at the point where the lateral rate of 

deformation started to increase strongly. This point was 

supposed to be the starting point of bifurcation. However it 

appeared by the first tests, by the cracking sound and the 

afterwards measured decrease of the lateral modulus of 

elasticity, that damage had occurred. This means that the 

elastic limit (the start of compressional “flow”), thus the 

start of decrease of the modulus of elasticity, determines 

buckling behavior and biaxial buckling is plastically and a 

common ultimate strength problem. The solution thus has to satisfy equilibrium and 

compatibility conditions, (given  

 

Fig. 2. Scheme of elastic-plastic buckling.  

 

                in Chapter 3), and as stress-strain relation, 

the elastic-full plastic behavior applies, according to 

limit analysis (thus with an averaging effect of some 

hardening). For design the ultimate state is important 

and it is not necessary to follow the loading history 

dependent loading curve (line EA of Fig. 2) by the 

descriptive tangent stiffness approach. In practice the 

linear elastic line DA or 0A of Fig. 2 is followed. For 

the bending strength of lateral supported beams, the 

elastic-plastic stress diagram or the ultimate state at  

Fig 3. Bending and shear strength   point A, is given by the drawn lines in Fig. 3. 

  At unloading the behavior is linear elastic 

according to the dashed line in Fig. 3 and the stress difference between the dashed and drawn 

lines of Fig. 3 gives an internal equilibrium system of the residual stresses after unloading. 

After reloading, the dashed stress diagram is again superposed, giving the definition of the 

apparent bending stress 
m

!  with the possibility of a linear elastic calculation, according to the 

dashed line in Fig. 3, up to the ultimate failure state mf . It however is necessary to correct the 

deformation in accordance with the real deformation given by tensile gradient of the drawn 

lines in Fig. 3. This means that the linear elastic modulus of elasticity has to be reduced by a 

factor 2 / (1 / )
t c

! !+ , where 
t

!  and 
c

!  are the real occurring maximum tensile and 

compression stresses along the beam. In Fig. 3, of the ultimate state, this factor is: 

2 / (1 / )t cf f+ =  2/(1+3) = 0.5, showing the real elastic-plastic rotation to be a factor 2 higher 

with respect to the dashed bending stress diagram. In [3] different possibilities are discussed 

to account for this compliance increase. In the past this factor 2 was safely accounted for any 

load distribution in the Building Codes  

 

2. Exact biaxial bending strength equations 

 

2.1. Introduction  

It is a prescribed custom to transform the ultimate strength state of timber beams to linear, 

quasi isotropic, behavior for the loading case of bending, compression with shear and to apply 

common beam theory. The consequence of this choice is that fictive bending strength mf , 



 

based on the linearized bending stress in the failure state, given in [4], therefore only applies 

for rectangular cross-sections (and not for profiles) for the most elementary loading case. For 

combined loading cases and to explain measurements, the elastic-full plastic diagram (of Fig. 

3) has to be used as shown e.g. in [3], where the derivation is given of the uniaxial bending, 

compression and shear strength of timber beams. For profiles this elastic-plastic approach has 

to be applied to obtain the necessary profile factors on the fictive linear bending strength mf . 

The elastic-full plastic approach is the basis for limit design and is an exact approach which 

applies for all materials as is extensively shown for other materials as steel and concrete [2] 

and provides a critical loading path for real strength prediction. For wood this necessary 

design method was already generally applied since 1930 (see [5]). Necessary for stability 

design and for the prescribed calculable reliability, is the hereupon based exact bi-axial 

bending strength criterion, combined with normal compression and shear loading which is 

mathematically derived in [6]. The resulting elastic-plastic stress diagram, with a negligible 

plastic range for tension, as applied in the figures below, represents an admissible equilibrium 

system, satisfying equilibrium and boundary conditions, violating nowhere the yield criterion, 

and thus is a lower bound solution of limit analysis. The highest lower bound solution is equal 

to the real strength and this is reached in this case when the neutral line is a straight line and 

when unlimited flow in pure compression is possible, thus when the shear stress is carried in 

the elastic part of the cross section. Thus, as confirmed in [3], the uniaxial ultimate combined 

bending-compression strength is determined by the ultimate tensile stress tf  and by unlimited 

“flow” in compression at the flow compression stress cf . Bending failure thus always is an 

ultimate tension failure at tf . This therefore is the starting point for the derivations in [6] and 

is an improvement with respect to the old model, applied in [7], which was based on a limited 

ultimate compression strain and therefore did not explain and fit precisely to the data.  

The derivations in [6] of the following equations are based on choosing the location of the 

neutral line and calculate the associated ultimate bending moments and normal and shear 

forces. There are three cases to regard for the location of the neutral line. The neutral line may 

go through two opposite planes of the cross section (Case I) as given in Fig. 4, or the neutral 

line goes through two adjacent planes, at the tension side (Case II) or at the compression side 

(Case III) as given by respectively Fig. 5 and 6. Mathematically simpler is not to choose the 

location of the neutral line but of the parallel border line of the full plastic compression 

plateau of the cross section as is the basis of the following equations.  

 

2.2. Bi-axial bending strength cases  

 

2.2.1. Dominating bending in the stiff direction (Case I: Y b!  ; Z h!   in Fig. 4)  

 

The ultimate state of the determining cross-section of 

a beam loaded under biaxial bending, given in Fig. 4 

for Case I. The line EF in Fig. 4 is the boundary of the 

full plastic, ultimate compression strength area of the 

cross-section of a beam. Fig. 4 thus gives an 

equilibrium state of a beam with dimension b and h, 

loaded in “double” bending. For the analysis, the 

bending stresses of the ultimate state are regarded to 

be a superposition of compression force u cN f bh=  of 

the uniform ultimate compression stress cf  over the 

Fig.4 - Compression with bi-axial bending  



 

 entire cross-section and a tension force by the linear 

increasing tensile stresses in the plane ABEF with a maximal tensile stress t cf f+  in point A 

(see the derivation in [6]). 

 

2.2.1.1. Normal forces (Case I)  

The ultimate normal force 
u
N , with (for convenience) a positive sign for compression, is: 

( ) ( )
2 2

2 2
1 1 1 1

2 3 2 3
u c c t c c

bZ b b Z b b
N f bh T f bh f f f bh s

Y Y h Y Y

! "# $ # $
= % = % + % + = % + % +& '( ) ( )

* + * +, -
… (1) 

where /= t cs f f . Thus, with the maximal possible value of 
.u m cN f bh=  follows for /Z h :  

( )
2

2

,

1 1 1
2 3

u

u m

NZ b b
s

h Y Y N

! "
+ # + = #$ %

& '
… (2) 

For uniaxial bending in the stiff direction, Y !"  (or: / 0b Y ! ), this equation agrees with 

Eq.(2) of [3], where it was shown that the theory precisely fits the data of [7]. This case is 

determining for the possible extreme values of Case I: 

( ),
1 / 1 / 2

u u m
N N s! ! " " … (3) 

with a tension limit (negative sign) when 1s > .  

 

2.2.1.2. Bending moments (Case I) 

The bending moment by the tensile stress pyramids in the cross section with respect to the 

resultant compression force 
,u m cN f bh= , thus with respect to the center of the cross-section 

of the beam, gives:  
2 2 2 3

2 2 3
( ) 1 ( ) 2 3 2

4 3 12 2
y t c t c

bZh b b bZ b b b
M f f f f

Y Y Y Y Y

! " ! "
= + # + # + # + #$ % $ %

& ' & '
… (4) 

and thus Case I applies when: 
2( 1)

0
2 6

y c

s bh
M f

+
! ! " . 

Substitution of Z according to Eq.(2) in Eq.(4) gives: 

( )

2 2 2 3 3
,

2
2 2

,

1 / 4 6 / 4 / /
1 3

6 1 1 / / (3 )

u u mu
y c

u m

N NNbh b Y b Y b Y
M f

N s b Y b Y

! "# $ % % + %& '= % % () *) * & '+ % ++ , - .

… (5) 

Eq.(5) can be written:   
2

,

1

,

1 /
1 3

6 1

u u mu
y c

u m

N NNbh b
M f

N s Y

! " #$ %! "
= # # &'( ) ( )* +( ) + , -. /, -

    (6) 

with: ( )
( )

2 2 3 3

1 2
2 2

4 6 / 4 / /
/

1 / / (3 )

b Y b Y b Y
b Y

b Y b Y

! + !
" =

! +
.  

In the applying range (Z h!  and b/Y  between 0 to 1),  ( )1
/b Y!  is a bend curve which 

precisely can be approximated e.g. by parabola: 2

1( / ) 4 / 4( / )b Y b Y b Y! = + + ,  

or by a power form:  ( )
1.8

1( / ) 4 5 /b Y b Y! = + … (7) 

Thus:  

1.82
,

,

1 /
1 3 4 5

6 1

u u mu
y c

u m

N NNbh b
M f

N s Y

! "# $# $ % # $
= % % & +' () *) * ) *) * ) *+ + ,' (+ , + ,- .

… (8) 

and b/Y is directly known from: y
M  and N , where y

M  is the component in the stiff direction.  



 

The condition for application as Case I is:  

( )2 2
,

,

3 1 4 / ( 1)
0 1

6 1 2 6

u u mu
y c c

u m

s N Nbh N s bh
M f f

N s

!"! # +" +
$ $ # $ %&'&' &' &+( )( )

  

The other component in the weak direction of the biaxial moment is 
z

M :  

3

( ) 1
12 2

z c t

b Z b
M f f

Y Y

! "
= + #$ %

& '
… (9) 

According to the Case I boundary conditions is: ( )2
0 1 / 24z cM f hb s! ! + … (10) 

By substitution of Z according to Eq.(2), Eq.(9) becomes: 
2

2 2

,

/ (1 / 2 )
1

6 1 / / 3

u
z c

u m

Nhb b Y b Y
M f

b Y b Y N

! "#
= $ $ #% &% &# + ' (

… (11) 

This equation can be simplified to: 
1.82 2

2

, ,

1 ( / ) 1 0.5
6 6

u u
z c c

u m u m

N Nhb hb b b
M f b Y f

N N Y Y

! "! " ! " ! "
= # $ #% = # $ # +& '& ' & ' & '& ' & ' & '( )( ) ( ) ( )

…   (12) 

because 2 3

2

1 / 2
( / ) / 0.644( / ) 0.144( / )

1 / / 3

b Y
b Y b Y b Y b Y

Y b b Y

!
" = # + !

! + +
,  

that also  can be approximated by the power form: 1.8

2 ( / ) / 0.5( / )b Y b Y b Y! = + … (13) 

Because for Case I: Y b!  ; Z h! , is:  

( )
2 2

,

1 1
4 24

u
z c c

u m

hb N hb
M f f s

N

!"
# $ % # +&' &

( )
  

For Y !" , 0
z

M =  as follows from Eq.(9) or (11) and thus uniaxial bending occurs and 

Eq.(2) then becomes: ( ) ,1 / (2 ) 1 /
u u m

s Z h N N+ = ! .  

When this is substituted in Eq.(4) for Y !" , the uniaxial bending strength becomes:  
2 2

,

,

,

1 3 4 /
( ) ( ) 1

4 6 6 1

u u m u
y t c t c c

u m

s N N NbZh bZ bh
M f f f f f

s N
!

" #$ + +
= + $ + = % % $& '& '+ ( )

… (14)  

as found before in [3], verified by the precise fit to the data of [7]. 

The fictive linear elastic design bending stress, applied in the Building Codes, thus is: 

, ,

2

,

6 1 3 4 /
1

1

y u u m u
m c

u m

M s N N N
f

bh s N
! " # $% + +

= = & & %' (' (+ ) *
…  (15)) 

which is equal to the uniaxial bending strength mf , given in Fig. 3, when 0N = , Thus: 

,

2

6 3 1

1

y

m c

M s
f f

bh s

! "
= =

+
… (16) 

In [3], the value of 1.3s =  was found for the mean strength, while 2s =  for the 95th 

percentile and 0.77s =  for the 5th percentile of the uniaxial combined bending - 

compression strength, given in Fig. 3, 4 and 5 of [3], where 2
6 /u mm M f bh=  and 

/u cn N f bh= . These values are based on the data of [8] and apply for the total wood 

population at standard test conditions. For North European wood 1.56s =  was found in [9] 

for timber and 2.15s =  for veneer wood. In [3], 1.67s =  is arbitrarily assumed for stability. 

Higher values apply at high moisture contents. Important is, that these values of s are 

independent of the load-combination, showing that there is no, (or no strong), volume effect 

due to tensile stress distribution, but only for volume alone. Tensile failure thus shows some 



 

plasticity and the volume effect is explained by a decrease of quality with volume increase. 

This also explains why by not brittle compression failure a volume effect is possible (as 

reported in literature). Values of s should be controlled by the exact failure criterion [10]. 

 

2.2.1.3. Shear force (Case I) 

The total ultimate resulting shear force 
u
V  ( )2 2

x y
V V= +  in the elastic region of eq.(19) the 

cross section is: 

2
1

3 2
u v

b
V f bZ

Y

!"
= #$ %

& '
… (17) 

based on the parabolic shear stress distribution in the elastic region. The the possible range of 

u
V is: 0 2 / 3u vV f bh! !  for Case I.  

Substitution of Z of Eq.(2) into Eq.(17) gives: 

,

2 2

1 /2 2
1

3 2 1 / / (3 ) 1

u u m

u v

N Nb
V f bh

Y b Y b Y s

!" #" #
= ! $ $% &% &

! + +' ( ' (
… (18) 

( )0, ,

2 2 2
1 /

3 1 3
v u u m vV f bh N N f bh

s
! " # "

+
 

or with uniaxial 
0,
V

!  according to Eq.(20): 

,

2 2

0,

1 /
1
2 1 / / (3 )

u u mu
N NV b

V Y b Y b Y!

"# $# $
= " % &% &

" +' (' (
… (19) 

The shear strength 
0,
V

!  is determined at ultimate uniaxial bending, for N = 0 and Y !"  and 

is given for design as a fictive linear elastic parabolic stress distribution over the total depth h, 

with topvalue 
,v ff , according to Fig. 3. Thus  

0, ,

2 2 2

3 1 3
v v fV f bh f bh

s
!
= =

+
… (20) 

For Y !" , Eq.(19) represents the uniaxial loading case (see [3]) giving: 

,

0, ,

1
u u

u m

V N

V N

!

!

= " . … (21) 

According to Eq.(19) is for biaxial loading :  

3

0, ,

1 ( / )u u

u m

V N
b Y

V N!

" #
= $ %& '& '
( )

 with: 2
3 2 2

( / )1 / 2
( / )

1 / / (3 ) /

b Yb Y
b Y

b Y b Y b Y

!"
! = =

" +
. 

Thus: 
0.8

0, ,

1 1 0.5u u

u m

V N b

V N Y!

" #" # " #
= $ % +& '& ' & '& ' & '( )( ) ( )

… (22) 

 

2.2.2. Dominating bending in the weak direction  (Subcase I): Z h!  and Y b! ) 

 

For Z h!  and Y b! , the same equations of Section 2.2.1 apply with interchange of z and y; 

Z and Y, b and h.  

Again one component of the biaxial moment shows the linear relation with (1 - 
,

/
u m

N N ).  

 

2.2.3. Dominating high compression and high biaxial bending ( Case II: Y b! ;  Z h!  in 

Fig. 5)  



 

 

2.2.3.1. Normal forces (Case II)  

 

1 1 1
( ) 1

2 3 6
u c t c c

s YZ
N f bh ZY f f f bh

bh

+! "
= # $ + = # $% &

' (
      or:    

,

1
1

6

u

u m

Ns YZ

bh N

+
! = " … (23) 

According to the boundary conditions is ( ) ,(5 ) / 6 / 1
u u m

s N N! " " … (24) 

 
Fig. 5. Dominating compression with bi-axial bending for Z h!  and Y b!  

 

2.2.3.2. Shear force (Case II)  

 

For the ultimate total shear force applies: 

2

3 2 3
u v v

YZ YZ
V f f= =  = 

,

2
1

1

u
v

u m

N
f bh

s N

! "
#$ %$ %+ & '

… (25) 

Thus, for determining shear strength, is, due to the boundary conditions Z h!  and Y b! :.  

/ 3u vV f bh! … (26) 

because 
,

/
u u m
N N  cannot be lower than: ( ),/ (5 ) / 6

u u m
N N s! " , according to Eq.(24).  

 

2.2.3.3. Bending moments (Case II)  

 

As before, the resultant force of the tensile stress pyramid times the distance to the resultant 

compression force in the center of the cross section determines the bending moment.  

For bending applies, using Eq.(23): 

( ) ( )
2

, ,

1 1 1
6 2 4 2 4 4 24

u u
y c t c c c

u m u m

YZ h Z h Z N h N bh
M f f f bh f bh f s

N N

! !" "! !" "
= + # = # # $ # $ +% %& && % & % % %' '( (' '( (

..(27) 

( ) ( )
2

. .

1 1 1
6 2 4 2 4 4 24

u u
z c t c c c

u m u m

YZ b Y b Y N b N hb
M f f f bh f bh f s

N N

! !" "! !" "
= + # = # # $ # $ +% %& && % & %

' '( (' '( (
   (28) 

Knowing y
M , N and 

z
M , Y and Z are known and the found product YZ  should be smaller 

for determining bending failure than the value of YZ for shear failure according to Eq.(25), 

thus ( ) (3 / )bending u vYZ V f! … (29) 

 

2.2.4. Dominating high biaxial bending with moderate normal force (Case III: Y b! ;  

Z h!  in Fig. 6)  

 

For dominating tension, the condition Y b!  and  Z h!  may apply according to Fig. 6.  

 



 

 
Fig. 6. Dominating tension with bi-axial bending for Z h!  and Y b!  

 

2.2.4.1. Normal forces (Case III)  

 

From the equilibrium equations follows that the ultimate normal compression force is: 
3 3

1
1 1 1 1

6
u c u c

s YZ b h
N f bh T f bh

bh Y Z

! "! "+ ! " ! "
= # = # # # # #$ %$ %$ % $ %$ %$ %& ' & '& '& '

… (30) 

To replace YZ in other equations, this can be written with 
,u m cN f bh= : 

3 3

,

1
1 1 1 1

6

u

u m

Ns YZ b h

bh Y Z N

! "+ ! " ! "
# # # # = #$ %$ % $ %$ %& ' & '& '

… (31) 

For applicability in this range:

3 3

,

5 1 1
1 1 1 1

6 6 2

u

u m

s N s YZ b h s

N bh Y Z

!"# + #! !" "
$ = # # # # # $ #%& & % & %& %' '( (' (

  

In the limit case of Eq.(31) is for: h Z= ,  Y ! "  (or / 0b Y ! ): 

3 2 3

,

1 1 1
1 1 1 1 3 3 1

6 6 2

u

u m

s Y b s Y b b b s N

b Y b Y Y Y N

!"! !" "+ + +! ! !" " "
# # = # # + # $ = #%&% %& && % & % & %& % & %& %' ' '( ( (' '( (' (

… (32) 

The same applies for b Y= , Z !" . 

 

2.2.4.2. Shear force (Case III)  

 

The ultimate shear force is: 

2
1

3 2
u v

Z h Y b
b Y h Z

Z Y
V f bh

bh

! ! "# " "# #
! !$ %$ % %$

& &' ' %$= ! =
%$

$ %
& '

2 2 2

3 2
v

bh Y Z hY bZ ZY
f

b h bZ hY bh

!"
+ # # #$ %

& '
… (33) 

In the limit case is for: (h Z= ,  Y !" ) or for (b Y= , Z !" ): 2 / 3u vV f bh= , and 

/ 3u vV f bh=  for (h Z= , b Y= ). Thus when shear is determining is: 2 / 3 / 3v u vf bh V f bh! !  

 

2.2.4.3. Bending moments (Case III) 

 

The ultimate bending moment is: 
3 3 4 3

( 1) 3
1 1 1 1 1

2 6 2 2 2 2
y c

s YZh b h Z Z b h Z
M f

Y Z h h Y Z h

! "+ ! " ! " ! " ! " ! "
= # # $ $ $ $ $ + $ + $ +% &% & % & % & % & % &% &' ( ' ( ' ( ' ( ' (' (

… (34) 

For the limit case in accordance with Eq.(36): h Z= ,  Y ! "  applies for y
M , giving:  



 

2
1

2 6
y c

s bh
M f

+
= , or half this value when b Y= , h Z= … (35) 

The limit case:b Y= , Z !"  applies to 
Z

M  leading to  

2
1

2 6
z c

s hb
M f

+
= ! , or: when b Y= , h Z= : 

2
1

2 12
z c

s hb
M f

+
= ! … (36) 

In general is 
z

M : 

3 3 3 4

1 3
1 1 1 1 1

12 2 2 2 2
z c

s b h Y b Y h Y
M f YZb

Y Z b Y b Z b

! "! "+ ! " ! " ! " ! " ! "
= # # # # # + # + + #$ %$ %$ % $ % $ % $ % $ %$ %$ %& ' & ' & ' & ' & '& '& '

… (37) 

 

2.2.4.4. High tensional loading (Subcase III) 

 

The equations o Case III can not strongly be simplified and should be tabulated for different 

values of /h Z and /b Y or solved by a numerical method for a given loading.  Because for 

high tension and for lower qualities and large structural sizes the (long term) tensile strength 

will be lower than the compression strength and the behavior is linear elastic, based on the 

ultimate tensile stress leading to:  

2 2

6 6y uz
t

M NM
f

bh hb bh
= + +     or:  

, , ,

1
y uz

y u z u t u

M NM

M M N
= + + … (38) 

In this equation tension has the positive sign.  

 

2.3. Conditions for design equations   

 

The given equations for biaxial bending are easy programmable for numerical solutions. 

However it always is necessary to provide simple exact Code rules.  

The boundary conditions of application of the equations are determined by the uniaxial 

bending cases and therefore for the following conditions.  

 

2.3.1 Loading conditions 

Loading conditions for application of Case I equations: 

for: Y b!  ; Z h!   in Fig. 4:  
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In all equations is ( ) ( )1 / 3 1c mf f s s= + !   and ( ),
1 / 2v v ff f s= + , where mf  and 

,v ff  are the 

linearized values of the design regulations as the Eurocode.  

For dominating bending in the weak direction, (Subcase I: Z h!  and Y b! ), b and h should 

be exchanged in the Case I equations above. 

 



 

The loading conditions for application of Case II equations are: 

for: Y b! ;  Z h!  in Fig. 5  

( ) ,(5 ) / 6 / 1
u u m

s N N! " "  

/ 3u vV f bh! ,  

( )2

,
1 / / 4y c u u mM f bh N N! "  2 (1 ) / 24cf bh s! + , 

( )2

,
1 / / 4z c u u mM f hb N N! "  2 (1 ) / 24cf hb s! + . 

 

The loading conditions for application of Case III equations are: 

for: Y b! ;  Z h!  in Fig. 6  

( ) ( ),1 / 2 / (5 ) / 6
u u m

s N N s! ! " " !  

/ 3 2 / 3v u vf bh V f bh! ! ,  

( )2
1 / 24cf bh s + ! ( )2

1 /12y cM f bh s! + , 

( )2
1 / 24cf hb s + ! ( )2

1 /12z cM f hb s! +   

 

The condition for application of Subcase III for high a tension load 
u
N  is the ultimate state: 

2 2

6 6y z u
t

M M N
f

bh hb bh
+ + !     or:  
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1
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y u z u t u

M M N

M M N
+ + ! .  

Tension has the positive sign in this equation. )) 

 

2.3.2 Linearized M N!  design equations 

All equations show a linear relation with the normal force N, except for the case of 

dominating bending in the main direction, Eq.(6), combined with low shear loading.  

For design, Eq.(6) therefore should be linearized and can be written, using Eq.(16): 
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/ 6 3 1
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! " + # # $% &
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,  

where mf  is the fictive bending strength of the Eurocode. This equation will be written: 
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with ( )
1.8

1( / ) 4 5 /b Y b Y! = + . Similarly Eq.(12) can be written: 
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= ! " #
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with 1.8

2 ( / ) / 0.5( / )b Y b Y b Y! = + . This linear relation between m and n, also applies for the 

shear strength Eq.(21). 

The bending strength is measured on slender beams with a span to depth ratio over 7 to 8 in a 

3-point bending test. Then is: 
u u
V a M= , where a = L/2  is the distance of the load in the 

middle of the beam to the support. Thus / /
u u

a h M V h=  is the shear-slenderness with critical 

value:  2 2

, ,/ ( / 6) / ((2 / 3) ) / 4c m v f m v fa h f bh f bh f f= = . 

This critical value were below the bending stress decreases due to the shear loading and of 

where of maximal bending and maximal shear failure occur at the same time is / 3
c
a h ! , 

providing the test-beam dimensions of the shear strength test for mean quality European 

softwoods. Eq.(21) thus may be written: 
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= = = "  or: 

1 (3 / ) yn h a m= ! … (41) 

For a  = 3h, the boundary is reached where below the maximal possible bending moment will 

be reduced by the maximal possible shear force and Eq.(41) then becomes: 

1
y

n m= ! … (42) 

This linear relation was the basis of the Dutch Code [8] and for a new proposal for the 

Eurocode, and should apply for all Codes as long as the shear calculation according to Eq.(41) 

is absent. Eq.(41) shows the parabolic Eurocode line to be a factor 2 too unsafe when a = 3h 

(see Fig. 7 and [3]).  

The curved line Eq.(39) the best also can be approximated by 

2 straight lines through the end points (m = 1; n = 0) and (m = 

0; n = 1), and through the point on the curve for n = 0.5 (see 

[3]) where according to Eq.(39): 
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for n =0.5, giving: 
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Fig. 7. Interaction curve cut off (by the dashed   

   bending- compression strength shear line  

   or no cut off by the drawn ultimate shear line)  

   

The same equations apply for dominating bending in the weak direction after interchange of b 

with h (and Y with Z and y with z).  

 

2.4. Design procedure and equations  

According to the derivation of the ultimate strength equations in Chapter 2, three cases are 

possible, depending on the location of the neutral line in the critical cross section. See the 

notations, for the meaning of the symbols and variables. 

 

2.4.1. Loading conditions 

The loading conditions for application of Case I equations when: Y b!  ; Z h!  (Fig. 4) are:  

( )1 1 / 2n s! ! " " .  

The negative sign of n stands for tensile stress.  
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In all equations is ( ) ( )1 / 3 1c mf f s s= + !   and ( ),
1 / 2v v ff f s= + , where mf  and 

,v ff  are the 

linearized values of the design regulations as the Eurocode.  

For dominating bending in the weak direction, (Subcase I: Z h!  and Y b! ), b and h should 

be exchanged in the Case I equations above. 

 

The loading conditions for application of Case II equations are for: Y b! ;  Z h!  (Fig. 5):  
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The loading conditions for application of Case III equations are (Y b! ;  Z h! , Fig. 6):  

( ) ( )1 / 2 (5 ) / 6s n s! ! " " !  

The negative sign of n stands for tensile stress 
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The condition for application of Subcase III for high a tension load 
u
N  is the ultimate state: 

2 2

6 6y z u
t

M M N
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bh hb bh
+ + !     or:  1

y z
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Where the bending strength mf  is equal to the tensile strength tf  Tension has the positive 

sign in this last equation.  

 

2.4.2. Design equations 

For Case I: (Y b!  ; Z h! , in Fig. 4), of dominating bending in the stiff direction, applies: 
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with 1.8

2 / 0.5( / )b Y b Y! = + ,  

based on the critical loading according to Chapter 3. From these equations /b Y  can be found 

and dimensions b and h can be adapted. The value of Z/h then follows from: 
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If the ultimate shear loading 2 2

u uy uz
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0, ,

2 2 2

3 1 3
v v fV f bh f bh

s
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+
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as ultimate uniaxial shear force with 
,v ff  as linearized ultimate shear stress of the Codes.  

For uniaxial loading is / 0b Y =  and eq.(17) turns to: 

, 0,
/ 1

u
V V n! ! = " … (21) 

The uniaxial shear strength also is determining when:  

1 (3 / ) yn h a m= ! … (41) 

where for the test beam: 2 2/ / (6 / ) / (2 / 3) / (4 )u u m vf m vfa h M V h f bh f bh f f= = =   

 

For Subcase I, (Z h!  and Y b! ), for dominating bending in the weak direction, the same 

equations as Case I apply, with interchange of z and y; Z and Y, b and h.  

 

For Case II: (Y b! ;  Z h!  in Fig. 5), of high biaxial bending and compression, applies: 

( )
1 3
3 1

3 1 2
y

s Z
m n

s h

+ !"
= # #$ %

# & '
…  (27) 

( )
1 3
3 1

3 1 2
z

s Y
m n

s b

+ !"
= # #$ %

# & '
… (28)  

From these two equations, h/Z and b/Y are known and can be controlled by: 
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When the shear strength is determining YZ follows from: 
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where ( )(5 ) / 6n s! "  

 

For Case III (Y b! ;  Z h!  in Fig. 6) of biaxial bending with moderate normal force, is:  
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Simplification by first eliminating /h Z  is not a right solution because ii leads to extended 

complicated equations. Thus trial and error solutions are necessary to find /h Z   and /b Y . 

Optimal dimensions for b and h can be chosen by equating: 
y z
m m=  or: / /b Y h Z= , which 

then are directly solvable. Else, if b and h are not free to choose, it provides the best start as 

initial value of / /b Y h Z= of the iteration process. Multiplying successively both variables 

with the same small factor give a parallel shift of the neutral line and multiplying one variable 

with the reverse of factor of the other variable will cause a rotation of the neutral line.  

 

For Subcase III for high biaxial bending with a high tensile load 
u
N  applies: 
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where tension has the positive sign in this equation. The same equation applies for first flow 

when tf  is replaced by cf , where compression then has the positive sign.  

Because by lack of knowledge the coupling of normal force with the ultimate shear force (as 

given by eqs.(21, 25, 41)) is not accepted in international Codes. Thus for sufficient 

reliability, the lower bound value of these equation has to be accounted leading to 1
y
m n+ =  

and 1
x
m n+ =  for uniaxial bending cases. For biaxial loading, when the maximal bending 

tensile stress occurs at one point this condition becomes: 1
y x
m m n+ + = . 

This eq.(38) was therefore applied for the Dutch design Code TGB, derived and discussed in 

[11] and [3], using the exact equilibrium equations of Chapter 3, and was applied in many 

other building regulations and by the old still acceptable version of the Eurocode. This 

equation and design method thus is approved during many decades (since 1972) as the Dutch 

Building regulation, TGB.  

 

The resultant bending curvature radius R in the ultimate state region follows from: 
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where 
2

l  is the distance AD in Fig.4, as extension of th uni-axial value discussed in [2],  
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3. Exact equilibrium equations of beams under biaxial loading 
 

3.1. Introduction 

The last proposed design rules of the Eurocode for lateral buckling are not general and 

consistent and not based on exact theory and thus, as shown, are inherently totally not able to 

provide real and sufficient reliability in all circumstances. A general, exact, approach is 

therefore discussed here of the buckling and twist-bend buckling problem of symmetrical 

profiles loaded in bending in the two main directions and at the same time loaded in torsion 

and compression. Accounted is for double eccentrically lateral loading, for instance by purlin 

hangers, in combination with bending in the horizontal direction (wind loading etc.), and for 



 

the influence of the initial eccentricities, the warping rigidity and the failure criterion. The 

failure behavior, treated in Chapter 2, is converted to apparent linear behavior until fracture, 

because empirical strength is expressed in this way. Local buckling of thin webs and flanges 

is assumed to be prevented by stiffeners. The stability calculation for this last case is provided 

separately in the Eurocode [4]. 

The here given derivation is based on an extension of the general differential equations for 

pure bending with compression of Chen and Atsuta [2], by adding double eccentrically 

applied lateral loading in 1981, which is applied e.g. in [11]. This is in accordance with the 

same extension of [2] since 2009. These equations account for the influence of warping and 

the Wagner effect. (The Wagner effect is the torsional moment appearing by the components  

of the normal stresses in a warped cross section).The solution of the equilibrium differential 

equations is based on the virtual work equation, what also is the basis of the rigorous upper- 

and lower bound theorems of limit analysis.  

 

3.2. Stability of symmetrical beams, loaded in compression and biaxial bending.  

 

3.2.1 General differential equations 

From equilibrium of a deformed element, the general differential equations are given by Chen 

and Atsuta ([2], eq.(2.179a)). For symmetrically beams these simplify to (see notations):  
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( )'''' '' '' ''' 2 '' ' '' 0
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( )'''' '' '' '' '' '' ' 0w t y z y z tEI GI K v M w M v M w M M! !" + + + " # " # + = … (48) 

Further simplification is possible by omitting small terms. This can be seen as follows by 

using the first term of the Fourier expansion of the variables. 

For simply supported beams is for instance: ( )sin /v v x L!=   and ( )cos /
t t

M M x L!=  and 

the term: 2 '' '
t

v M  of eq.(46) has a maximum value of order: 
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M q=  in eq.(46), because v b<<  
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omitted in eq.(46) and for the same reason also in eq.(47). The values in eq.(48) ''
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w M  and 
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z

w M!  are also comparable and equal to ( ) ( )2 2
/ sin /

z
L w M x L! !"  and in the same way is 

'' ''
y y

v M vM qv!� �  . 

From Fig. 8, (or Fig. 1 of [11]) follows that the increase of the torsional moment per unit 

length is:  

'
t p q p q

M ps qs pw qv p e q e! !" = + " + + + … (49) 

Thus: ( )( )2 2
2 '' ' 2 /

t p q p q
v M v L ps qs pw qv p e q e! " "+ # + + +� , and for high eccentricities, 

e.g. / 2ps h=  and / 2qs b= , the terms / 2 / 2ph qb+  dominate because / 2w h<< ; 

/ 2v b<< ; / 2pe b! <<  giving: 

( )( )2 2
2 ' /tvM v L ph qb!" + … (50) 

For small eccentricities , e.g. for 0
p q
s s= = , this term 2 '

t
vM  is much smaller and it follows 

that this term is always negligible.  



 

In eq.(48), ''''!  can be replaced by ( )2 2
'''' / ''L! " != # , in the usually applied order, giving:  

( )2 2( / ) '' '' ' 0w t y tEI L GI K v M q v M! "+ + # # $ # = … (51) 

According to eq.(49) is: 
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 is the twist buckling force, eq.(51) becomes: 

'' '' 0v y v vGI v M ps q e pw! !" + + " = … (52) 

For high beams the term: pw  is small and can be neglected in eq.(52).  

For high beams, y z
I I>>  and thus p q<< , is also the term: ( )''

z
M!  negligible in eq.(46) 

because: ( )'' 4 ''
y y

M p M q! !" << = #   

However in eq.(47) is, for high beams, ( )'' 4y
M q! !"  not always of lower order than: p!   

or ''''
z

EI v  and can only be neglected for low beams. For high beams , eq.(46) to eq.(48) are: 
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( )'''' '' '' 0
z y

EI v Fv M p!+ + " = … (47’) 

'' '' 0t y vGI v M q e! !" # + # # = … (48’) 

Eq.(46) is uncoupled and can be solved directly. This result is similar to bifurcation behavior 

and shows that the same loading path for failure is critical, and can be followed, as applies for 

elastic bifurcation. Thus, first allow only vertical movement w  in z-direction by choosing !  

and v  identical to zero, leading to eq.(46’). Then, at constant w, allow lateral buckling 

according to eqs.(47, 48) and solve eq.(46’) separately and use the result in eqs.(47, 48). This 

will be shown in Section 3.2.2.  

For low beams, where y
I  and 

z
I  are not far apart, eqs.(46, 47, 48) become: 
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Now also the second equation is uncoupled and this result can be inserted in eq.(48’’) to show 

that also this equation is uncoupled when z y
I I! . Eq.(48) can be written:  
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where ( )2 2
/

ey y
F L EI!=  and ( )2 2

/
ez z
F L EI!= .  

Eq.(48’’) now can be written, with '' ''
y y

qv M v M v= ! = ! :  
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or:  '' '' 0m y m mGI M v ps qe! !" + + = … (53’) 

where ,
v

GI  ,
v
s  and 

v
e  are multiplied by ( ) ( )1 / / 1 /

ey z y
F F EI EI! !  to get , , .

m m m
GI s e   

It follows from eq.(53) that for z y
I I! , the first and third terms dominate and thus ''

y
M v  

vanishes and thus also the coupling ends and the equation for pure torsional twist remains:  

'' 0v v vGI qe ps! !+ + = … (53’’) 

Thus equation (46’), (47’) and (53’) now apply in general for high as well as low beams. 

Inserting the initial eccentricities 
0 0 0
, ,v w !  these equations become: 

0( '''' '''') '' '' 0
y y

EI w w Fw M! + ! = … (46’’’) 

( )0( '''' '''') '' '' ' 0
z y y

EI v v Fv M M!" + + + = … (47’’’) 

0( '' '') '' 0m m y mGI qe M v ps! ! !" + " + = … (48’’’) 

where eq.(48’’’) is at the safe side when 
0

!  is important. The differential equations are now 

expressed in the usual applied form, but differ from these by the equivalent eccentricities and 

rigidity 
m

GI  by accounting for warping effects.  

 

3. 2.2 Solution of the differential equations 

Because every loading case is different in practice, 

and superposition is not allowed, it would be 

necessary to repeat the solution for every case. This 

can be, and is avoided here, by a solution based on the 

first expanded of the Fourier expansion of the 

loading. Then for any load combination the solution is 

known differing from each other by the resulting top 

value of the expanded terms. Eq.(46) is directly 

solvable.  

 

Fig. 8. Loading and displacements of a beam cross section 

 

With ( )sin /w w x L!= ; ( )0 0
sin /w w x L!= , and ( )sin /q q x L!= , is eq.(46’’’):  
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      with:  

2 2
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y
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Fw M
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F F
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!
… (54) 

The solution of the coupled eq.(47’’’) and eq.(48’’’) is possible by the use of the virtual work 

equation, which also is the basis of theorems of limit analysis as the normality rule and the 

upper and lower bound method. The total work of an equilibrium system which is subjected 

to a possible virtual deformation remains zero. Thus for the differential equation (47’’’) and 

(48’’’): 2 ( , ) 0! =L v  and 3( , ) 0! =L v  applies: 
2 ( , ) ( ) 0! =" iL v f x dx  and 

3( , ) ( ) 0! =" iL v f x dx , 

with sin( / )if x L!=  as possible virtual displacement satisfying the boundary conditions. 



 

These equations thus are solved for the first expanded of the Fourier sinus series of 

deformation and loading: 

sin( / )v v x L!= , 0 0 sin( / )v v x L!= , sin( / )x L! ! "= , 0 0 sin( / )x L! ! "= , sin( / )p p x L!=  

sin( / )
z z

M M x L!= , where 
2 2'' ( ) /z zp M d M dx= = . 

For the main loading also a second expanded term is accounted to show its small influence. 

Thus: ( ) ( )1 3
sin / sin 3 /! != +

y
M M x L M x L  and: ( ) ( )1 3

sin / sin 3 /q q x L q x L! != +  
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In these equations are: 

( )2 2 2

0 0 0

sin sin sin
2

L L

x x x
dx d d

L L L L

!! ! ! ! !
" "

# # #$ $ $
= = =% & % & % &

' ' '( ( (
) ) )   

( )3

0

4
sin

3
d

!

" " =# ;   ( ) ( )2

0

4
sin sin 3

15
d

!

" " " = #$ ;  ( ) ( )2

0

2
sin cos

3
d

!

" " " =# ;  

( ) ( ) ( )
0

2
sin cos cos 3

5
d

!

" " " " = #$ .  Thus the equations become: 

( )
4 2 2 2 2 2

0 1 3 1 34 2 2 2 2 2

4 4 2 2
2 2 3

2 2 3 15 3 5
z

EI v v Fv M M M M
L L L L L L

! ! ! ! ! ! ! !
" " " "# # # + + #  

2 2 2

1 32 2 2

4 4
9 0

3 15 2
z

M M M
L L L

! ! ! !
" "# + # = ,   and: 

( )
2 2 2

0 1 3 1 32 2 2

4 4 4 4
0

2 3 15 3 15 2
m m m mGI v M v M e q e q ps
L L L

! ! ! ! !
" " " "# # + # + # + =  

Thus: ( )
2

0 1 32

8 8
0

3 15

!
" "

! !
# # # + # =

z z
EI v v Fv M M M

L
,   and: 

( )
2 2 2

0 1 3 1 32 2 2

8 8 8 8
0

3 15 3 15
! ! ! !

" " " " " " "
# # + # + # + =m m m m

L L L
GI vM vM e q e q p s .  

With: 3

1

1

8
1

3 5!

"#
= $ %&

' (
e

q
q q

q
;   3

, 1

1

8
1

3 5!

"#
= $ %&

' (
y e

M
M M

M
;   

2

2ez z
F EI

L

!
= ;   

2

1

2m m

y

qL
e e

M!
=   

and:
2 2

1 /!
=

m m

z

pL
s s

M
, are these equations: 

( )0 ,
0!" " " " =

ey y e z
F v v Fv M M … (55) 

( ) 1 1

0 , ,
0! ! !" " " " =m y e m y e m zGI M v e M s M … (56) 

From these last two equations, v  and !  can be resolved, giving:  
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and because ( ) ( ) ( )
2

, 0 0 02
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= " " = " = " , is: 
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with 
z

M  and 
,y e

M  of the first order moments. 

In Table 1, values of 
,y e

M  are given based on the first expanded: 8 / 3M !  and based on the 

full series (or exact), and based on the mean value of M of middle half of the beam (the part 

that deflects the most at buckling). Because the virtual work equation follows ( )2
sin /x L!  

along the length of the beam, giving the value one at the middle half of the beam and the 

value of about zero over the other parts, only the middle part accounts for the work done. 

 

4. Conclusions  

- The given equations of the biaxial bending strength are in accordance with the limit analysis 

method and thus based on elastic-full-plastic behavior. Therefore, with the restriction of 

applying a mean hardening stress after initial “flow”, the analysis is rigorous and the strength 

prediction realistic and the result has to be applied in the Building Codes to provide the by 

Euro-law prescribed sufficient precise reliability calculation (also for totally new, never 

occurred and never measured, cases). 

- For the highest lower bound solution of biaxial bending strength is necessary that the neutral 

axis is a straight line and that unlimited flow in pure compression occurs, thus when there is 

bending-tension failure and when the shear stress is carried in the elastic part of the cross 

section. This is an improvement with respect to the thus far applied, (not unique) old model of 

[7] restricting the ultimate plastic compression strain at failure. 

- The derived general expressions in coordinates of the boundary line of the full compression 

area provide 3 cases for design. For simplicity of design, is chosen for separate ultimate shear 

strength and ultimate bending-compression strength equations.  

- The equations contain also the solution for uniaxial bending cases, which are already shown 

to precisely explain and fit data by the applied elastic full plastic limit analysis.  

- The value of /t cs f f=  appears to be about constant for all determining load combinations 

of bending with compression, indicating again (by the data of [7]) that there always is failure 

by the ultimate tensile strength. A volume effect by stress distribution thus needs not to be 

regarded as follows from the uniaxial data. The volume effect thus now is caused by the 

volume alone due to decreasing quality by volume increase.   

- The solutions of the most general equilibrium equations, eq.(54) and eq.(58) are exact, 

complete and universal, applicable for any material and load combination, based on the 

virtual work principle, which also is the basis of the lower and upper bound solutions of limit 

analysis and which always provides an exact solution however complex the equilibrium 

equations are. The equilibrium equations have to satisfy the mentioned biaxial failure 

criterion of the stability problem, which is always a strength problem for full scale timber 

beams as empirically verified in the past.  
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Notations  

A  area of the cross section of the beam 

b, h   beam dimensions  

y
EI , 

z
EI  bending rigidity about the y-axis and z-axis   

w
EI   warping rigidity 

,e s   eccentricity of the lateral loading  

F   normal force 

t
F    twist buckling force: ( )( ) ( )2 2

1 / /t t w t y zF GI A EI L GI I I!= + +   

, ,t c vf f f   real ultimate tensile, compression and shear stress  

,
,m v ff f  ultimate fictive, linearized, bending and shear stress of the Codes. 

( ) ( )3 1 / 1m cf f s s= ! + ;  ( ),
2 / 1v f vf f s= +  

t
GI   torsional rigidity ( St. Venant) 

v
GI   equivalent torsional rigidity for high beams ( )( )( )2 2

1 / 1 /
t w t t

GI EI L GI F F!= + "  

m
GI   equivalent torsional rigidity ( ) ( )1 / / 1 /v ey z yGI F F EI EI= ! !   

K   Wagner effect ( )/y zF I I A= ! +   

L    span, or effective buckling length 

y
M , 

z
M   bending moments about resp. the y-axis and z-axis 

'
y

M  derivative of y
M  to x,   



 

t
M    torsional moment about the beam-axis 

m   normalized moment 26 / ( )y y mm M f bh=   26 / ( )z z mm M f hb=  

N  normal loading; 
u
N  = applied maximal value; 

.u m cN f bh=  ultimate strength value. 

n  normalized normal loading, ,/ / ( )u m cn N N N f bh= =   

,p q , P  lateral loading  

s  ratio of real ultimate tensile and compressive stress /t cs f f=   

V  shear force. The total ultimate resulting shear force 
u
V

2 2

x y
V V= +  

v, w   displacements 

Y, Z   Coordinates of the boundary full plastic region  

,
t c

! !   tensile and compression stress 

,
t c
! !    tensile and compression strain  

!    rotation 
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