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Abstract: A statistical non linearization method is used to approximate systems modeled by the Bouc differential equa-

tion and excited by a Gaussian white noise external load. To this aim restricted potential models (RPM) are used, which 

are suitable for an extended number of nonlinear problems as have been proved several times. Since the solution of RPM 

is known by the probabilistic point of view, all statistical characteristics can be derived at once with advantages by the 

computational point of view. Hence, this paper discusses the possibility to determine sets of parameters characterizing po-

tential models that are valid for describing a hysteretic behavior. In this way the characterization of the hysteretic behavior 

of a system can be performed with computational efforts lower than that normally requested.  
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1. INTRODUCTION 

The possibility of dissipation of energy under cyclic 
loading is basic for structures in seismic zones. This is a 
characteristic that contributes to prevent the crash and for 
this reason design strategies are commonly adopted that al-
low the exhibition of a structural ductile behavior. In this 
context a reliable assessment of the structural capacity re-
quests a reliable modeling of the energy dissipation (viscous 
and hysteretic) capacity.  

With regards to the behavior under cyclic excitations, 
solutions were found for dissipative systems based on 
generalized differential equations. These equations were at 
once applied in the case of stochastic excitations 
(earthquake, wind etc.).  

A solution for dynamic hysteretic systems was obtained by 
Bouc [1]. An extension of this solution was given by Barber 
and Noori [2]. Further, a solution for the classical assumption 
of a bilinear hysteresis, which is used to describe the behavior 
of steel with large plastic cycles, was found by Suzuki and 
Minai [3] later on. However more and more applications of 
the Bouc model or specializations/ modifications of it can be 
found in the literature proving its success. 

Regarding the strategies for solving motion equations 
with stochastic excitations, different approaches are 
available. One class of methods consists of finding a solution 
of the associated Fokker-Planck-Kolmogorov equation. On 
the other hand the moment closure technique can be applied. 
Also, linearization and averaging methods can be used as in 
[4] and in [5] where the cases of nonlinear systems and 
hysteretic systems are respectively discussed. Alternatively  
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an equivalent non linearization method may be used (e.g. [6-
8]), that is the substitution of the original model with an 
equivalent nonlinear one having characteristics that simplify 
the structural analysis. Referring to the modeling of 
hysteresis, approaches different from the Bouc model can be 
found in the literature (e.g. [9-11]).  

In the field of equivalent non linearization, the main 
purpose here is to check if differential nonlinear equations 
exist, whose solution is known in a symbolic form by the 
probabilistic point of view, capable to describe the hysteretic 
behavior of a Bouc system. Since for the class of restricted 
potential models discussed in [7, 8] it is known that the exact 
expression of the probability density function of the processes 
that governs, and the suitability of these models to represent 
the behavior of a large number of typologies of systems (e.g. 
[12-16]) has been proved, in this paper this class of equations 
will be investigated. Hence in this paper, first the 
characteristics of Bouc models and potential models will be 
presented, then an equivalent non linearization technique will 
be described and specialized in two different methods 
involving only the dissipation forces. Also, applications will 
be presented in order to verify the degree of reliability of any 
equivalent model. Finally a modification of the presented 
equivalent non linearization approaches will be discussed 
involving the dissipation forces and the restoring forces.  

2. STOCHASTIC EQUIVALENT NON LINEARIZA-
TION OF HYSTERETIC SYSTEMS BY POTENTIAL 

MODELS 

The hysteretic systems described by Bouc [1] can be 
modeled by the following equation  

 
X(t) + cX(t) + kx X(t) + kzZ(t) = W (t)  (1) 

where X (t), X (t) , X (t)  mean respectively acceleration, 
velocity and displacement and depend on time t, c is the 
parameter describing the viscous damping, kx and kz, 
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properly combined, condition the stiffness in the elastic stage 
and in the post elastic stage, W(t) is a Gaussian zero mean 
white noise process acting as an external force on the 
system, finally Z(t) is an additional state variable described 
in the generalized differential equation: 

  
Z = AX X Z Z n 1 X Z n         (2) 

For simplicity the system is normalized in such a way 
that the dynamic mass is set to one. 

Because of the computational effort in finding the solution 
of Eq. (1) in terms of probability density function of the state 
variables (Monte Carlo simulation) and because of the 
extreme approximation of the approaches based on equivalent 
linearization or on a moment closure, an equivalent non 
linearization is discussed here based on the use of Restricted 
Potential Models (RPM) [7, 8] whose equation is: 

 

X +
dQ(H )

dH
X + r(X) = W (t) ;            (3) 

The displacements of the system, as in the case of Eq.(1), 
are described by the process X(t) depending on time t. W(t) is 
a Gaussian zero mean white noise process acting as an 
external force on the system, while H is the total energy of 
the system, that is 

 

H (X, X) =
1

2
X(t)2

+ r(y)dy
y=0

X (t )

         (4) 

where r is the restoring force generally expressed as a 
nonlinear function of the displacement X. Finally, the 
damping "coefficient" is a derivative of a function Q, 
depending on the total energy H of the system. 

The solution of the Fokker-Planck-Kolmogorov equation 
associated to RPM is known. This is an important advantage 
of this class of models. This solution is the joint probability 
density function of the displacement and the velocity, 

  
p

x,x
x,x( ) , given in the form 

px,x (x, x) = q exp
1

S0

Q(H (x, x))             (5) 

where the symbol S0 refers to the intensity of the white noise 
process W(t) with the relationship 

2 S0 (t2 t1) = E W (t1)W (t2 )[ ]  

(t2 t1)              (6) 

being the Dirac delta while E[·] is the average operator. 

The parameter q is a normalization factor given by 

1

q
= exp

1

S0

Q(H (x, x)) dx dx .            (7) 

Hence, potential models have a known solution by the 
probabilistic point of view. Therefore it may be useful to 
approximate a hysteretic system which is described in 
Eqs.(1-2) by a potential model described in Eq.(3) with the 
solution given in Eq.(5). 

The equivalent non linearization technique is very similar to 
the equivalent linearization one, the only difference is that, in 
the first case, the substituting system itself is a nonlinear system. 

If the restoring force in Eq.(3) is chosen as 

r(X) = kx X,              (8) 

the total energy becomes 

 

H (X, X) =
1

2
X2

+
1

2
kx X2

.             (9) 

The difference  between the two systems described in 
Eq.(1) and in Eq.(3) is given by 

 

=
dQ(H )

dH
X cX kzZ            (10) 

Further, if the function Q is chosen as a polynomial 
function of the total energy H, that is 

Q(H ) = ai

i=1

k

H i ,            (11) 

the joint probability density function becomes 

ik
2 2

x ,x i x

i 10

1 1 1
p ( x,x ) q exp a x k x

S 2 2=

= +  (12) 

with q reducing to 

1

q
= exp

1

S0

ai
1

2
x2

+
1

2
kxx2

. i

i=1

k

 dx dx , (13) 

and the error  becomes 

 

= iai

i=1

k
1

2
X2

+
1

2
kx X2

i 1

X cX kzZ .      (14) 

The minimization of the averaged quadratic error with 
respect to the parameters ai 

E 2 X, X, Z( ) min
ai

,           (15) 

can be done setting the gradients to zero: 

ai

E 2 X, X , Z = 0 , i = 1....k .           (16) 

The derivatives are sorted in the linear system 

A a = d,       (17) 

where a is a vector of the parameters ai and A and d 

respectively are a matrix and a vector of averages: 

A

 

=

E X 2E HX2   kE H k 1X2

2E HX2 4E H 2 X2   2kE H 2 X2

    

kE H k 1X2 2kE H k X2   k2E H 2(k 1)X2

,
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 a =

a1

a2

ak

, d  =

E M[ ]

2E HM[ ]

kE H k 1M

  (18) 

with the abbreviation 

 
 M = cX + kzZX   (19) 

The moments in the vector d depend on the hysteretic 
state variable Z defining the Bouc model. Solving Eq.(17) 
with respect to the vector a allows the identification of the 
potential model equivalent to the hysteretic system.  

3. CRITERIA FOR SOLVING EQ. (17) 

For solving Eq.(17) the evaluation of the moments 
contained in the vector d needs. Because the substituting 
potential model does not depend on the hysteretic variable Z, 
Monte-Carlo simulations by the nonlinear Bouc system have 
to be used to evaluate these moments. In the further 
calculations, these moments are fixed. The moments of the 
matrix A can be obtained from the Monte-Carlo simulation 
(method 1) or deriving the moments from the joint 
probability density function of the potential model (method 
2) as better explained below. In both cases, considering the 
symmetry of the matrix A, k(k+1)/2 moments have to be 
evaluated, that is 

 

Aij = i j E
1

2
X2

+
1

2
kx X 2

i+ j 2

X2 ;

  1 < i < k;  1 < j < k; j i

   (20) 

After the determination of the parameters ai of the 
equivalent potential model, for a comparison between the 
Bouc model and the equivalent potential model, the 
hysteretic state variable Z can be obtained assuming that the 
error  of the Eq.(14) is almost zero, that is  

  

Z =
1

k
z

ia
i

i=1

k
1

2
X 2

+
1

2
k

x
X 2

i 1

X cX ,   (21) 

3.1. Method 1 

In this case the moments appearing in the matrix A 
depend on the variables X and  X while the moments 
appearing in the vector d, considering Eq.(19), depend on the 
variables X , X and Z . All these moments can be calculated 
by a Monte Carlo simulation carried out by using the Bouc 
model. Once the above moments are calculated the unknown 
a of Eq.(17) can be obtained. In conclusion the method 1 for 
obtaining the equivalent potential model includes the 
following steps: 

1) Fixing the number k of the parameters, ai, to be used for 
defining the dissipation force of the equivalent potential 
model; 

2) Calculating the kxk entries of the matrix A and the k 
entries of the vector d by a Monte Carlo simulation by 
using the Bouc model; 

3) Solving Eq.(17) and obtaining the k coefficients defining 
the dissipative force of the equivalent potential model; 

4) Specializing Eq.(12) for any stochastic analysis of the 
Bouc system. 

3.2. Method 2 

Considering that the moments appearing in the matrix 

A depend on the variables X and  X , the entries of the 

matrix A can be calculated in dependency of the 
distribution of the substituting potential model. This 

approach needs for a double integration in fact the 

moment 
  
E f X , X( ) of the generic function f X ,X( ) of 

the response is obtained as  

  

E f X , X( ) = f X , X( ) p
x,x

x,x( )dx dx .  (22) 

But by considering some simplifications, if the matrix A 

contains kxk entries, only k one dimensional integrals have to 
be performed. 

First, reduction of the computational effort is possible for 
the case of a linear restoring force being true the following 

relation 

 

E H i X2
= E H1+ i

.  (23) 

Further, as proved in [7], the following relation holds: 

E(H i ) = q hie

1

S0
Q(h)

0

dh ;   i = 1, k 1 .  (24) 

being q 

1

q
= e

1

S0
Q(h)

0

dh   (25) 

The semi-infinite integrals in Eqs.(24-25) have to be 

solved numerically. Finally, moments of higher order can be 
derived using the recursion [7] 

E = H i+ k 1
=

1

kak

i S0E H i 1 ja jE H i+ j 1

j=1

k 1

;

 i = 1, k 1 .  (26) 

The use of Eq.(24) and Eq.(26) depends on the unknown 

coefficients ai defining the function Q(H). For this reason the 
evaluation of the entries of the matrix A requests an iterative 

procedure considering that the moments appearing in the 

vector d, taking  Eq.(19) into account, depend on the 
variables X , X and  Z , these moments have to be calculated 

by a Monte Carlo simulation by using the Bouc model. 

In conclusion the method 2 for obtaining the equivalent 

potential model includes the following steps: 

1) Fixing the number k of the parameters, ai, to be used for 
defining the dissipation force of the equivalent potential 
model; 

2) Fix arbitrarily the values of the parameters ai; 
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3) Calculating the kxk entries of the matrix A by using  
Eqs. (23-26) and the k entries of the vector d by a Monte 

Carlo simulation by using the Bouc model; 

4) Solving Eq.(17) and obtaining the k coefficients defining 
the dissipative force of the equivalent potential model 
(generally the values calculated will be different from the 
values assigned at the step 2); 

5) Going back to the step 3 for an iterative estimation of the 
parameters ai until the difference between the values 
calculated at the previous iteration and the actual 
iteration is acceptable;  

6) Specializing Eq.(12) for any stochastic analysis of the 
Bouc system. 

4. APPLICATION OF THE PROPOSED APPROACH 

The Bouc model shall be evaluated using a Monte Carlo 
simulation.  

More than one realization needed to obtain stable 
moments for the non linearization technique. Especially 
higher moments were very sensitive and an average of long 
time series needed for this reason. Furthermore, to be able to 
receive a stationary response, in the application a value 
sufficiently far from zero was assigned to the parameter kx, 
in fact assigning values close to zero, as a consequence of 
the numerical integration method, can produce non 
stationary responses. 

One example shall illustrate the method. In the original 

Bouc model the damping coefficient was chosen to be 0.1 

and the stiffness was assumed to be 1. The value of spectral 

density of the input was assumed constant and equal 

to S0 =
1

2
. The hysteretic parameters of the Bouc model 

were set to A=1, = 0.9 , = 0.1 , n=1. 

In the potential model the expansion of H was at the third 
degree for two reasons. The first approach that was used 
showed that the forth term of the expansion tend to a very 
small negative number, therefore the influence of the 
parameter a4 will be small for normal regions, but of course 
the probability distribution will tend to infinity at the 
boundaries. The other reason is a numerical problem of the 
second approach (method 2), namely the numbers tend to the 
maximum allowed dimensions for a representation with 
double precision. 

Referring to the first method all needed moments 
appearing in Eq.(18) derive from the Monte-Carlo 
simulation. Therefore the matrix A can be solved at once and 
no iteration is needed. The second method evaluates the 
moments of matrix A from the equivalent potential model. 
Since these moments depend on the unknown parameters of 
potential model, for the estimation of the entries of the 
parameters ai an iterative procedure needs. 

The parameters that were evaluated are listed in Table 1.  

Each parameter has a different dimension (a1[1/s], 
a2[s/cm

2
], a3 [s/cm

4
]) allowing to obtain globally the 

dimension of an acceleration for the second term in the left 
side of Eq.(3). One can observe that the sets of parameters 
obtained by the method 1 and by the method 2 are different 

as a consequence of the different procedures but these two 
set of parameters lead to very close responses as it is proved 
by the comparisons in terms of response histories, dissipated 
energy, probability density functions, commented below. In 
spite of the similar results, the two methods request different 
computational efforts allowing method 2 to obtain a solution 
more quickly because of the simplified way of obtaining the 
terms of matrix A in Eq.(17).  
 

Table 1. Parameters of the equivalent restricted potential 

model.  

 Method 1 (k=3) Method 2 (k=3) 

a1 2.86688e-1 6.3544e-1 

a2 -5.32726e-3 -1.0775e-1 

a3 1.00443e-4 7.5067e-3 

 
The results are used to compare the original system and 

the two approximations with an expansion up to the third 
degree (k=3). Fig. (1) presents the displacement X(t), while 
Fig. (2) shows the velocity 

 
X(t)  and the plastic parameter 

Z(t) is shown in Fig. (3). Finally in Fig. (4) a comparison of 
the dissipated energies is shown. 

Referring to the approach 2, at some points the hysteretic 
force of method 2 is outside the assumed range. This seems 
to be a numerical problem of the derivation. It can be seen 
that the derivation of the velocity results in an extending 
roughness. It is also obvious that a load level was chosen 
with great plastic reactions, since the plastic variable Z keeps 
within the region [-1, 1], while the total displacement X tends 
from [-5, 5].  

The hysteretic behavior derived from the Bouc model 
and the potential model is different although the plastic force 
is tending to the same level. This is clear from the Figs. (5-

6). 

The joint probability distributions in accordance with 
Eq.(3) of the equivalent potential model are presented in 
Figs. (7, 8). While in Fig. (7) the results of the approach 1 
are presented in the two cases of expansion Q(H) defined 
respectively by three and four parameters, in Fig. (8) the 
result of the approach 2 is presented in the case of expansion 
Q(H) defined by three parameters. A decisive difference 
between the probability distributions presented in the ranges 
represented for the state variable cannot be observed. This 
fact suggests to proceed in general with an expansion 
characterized by three parameters.  

5. RELIABILITY OF THE ASSUMED APPROXI-
MATION 

The dissipative behavior of the potential model is 
described by the function Q(H). The behavior of some of the 
terms of the series expansion used for Q(H) is investigated in 
detail in this section.  

If the series expansion is truncated after the forth 
expansion the dissipative forces of the potential system 
consists of nine nonlinear additive terms and one further 
linear, that is:  
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Fig. (1). Displacement history X(t) of the Bouc model and the equivalent potential model. 

 

 

Fig. (2). Velocity history X(t) of the Bouc model and the equivalent potential model. 

 

 

Fig. (3). Hysteretic variable history Z(t) by the Bouc model and Eq.(21). 
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Fig. (4). Dissipated energy (cx(t)
0

t0

+ kzz(t))x(t)dt by the Bouc model and by the equivalent potential model. 

 

 

Fig. (5). Phase plot in the X-Z plane for the Bouc model. 

 

 

Fig. (6). Phase plot in the X-Z plane for the potential model: a) method 1 (k=3); b) method 2 (k=3). 

 

 
            a)                                                                                         b) 
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Fig. (7). Joint probability distributions (not scaled by q) of the potential model: a) method 1 (k=4) ; b) method 1 (k=3). 

 

 

Q(H )X

H
= a1X +

  
  a

2
k

x
X 2 X + X 3( ) +

  

  a
3

3

4
k

x

2 X 4 X +
3

2
k

x
X 2 X 3

+
4

3
X 5 X 5 ) + 

  

+a
4

1

2
k

x

3 X 6 X +
3

2
k

x

2 X 4 X +
3

2
k

x
X 2 X 5

+
1

2
X 5 )       (26) 

The sign of the dissipative force is controlled by the sign 
of the velocity, since all other terms are even. Therefore each 
singular term in Eq.(26) is not capable of representing 
hysteretic behavior. 
 

 

Fig. (8). Joint probability distribution (not scaled by q) of the poten-

tial model method 2 (k=3). 

 
Since the term depending on a1 is only a linear damping 

term the parameter a1 itself can be set equal to the parameter 
c of Eq.(6) in order to have the same linear damping as in the 
Bouc model. With this restriction only parameters a2 up to a4 

can be optimized. In Figs. (9-12) the loops of the terms in 
Eq.(26) are presented varying the displacement cyclically. 
Fig. (9) is concerned with the linear damping belonging to 

coefficient a1. In the same manner Figs. (10-12) present the 
dissipative terms belonging to a2, a3 and a4. 
 

 

Fig. (9). Hysteresis loop for   X  during a periodic movement 

X=sin(t). 

 

One difference, that cannot be changed, is that at the time 
of an extreme value for the displacement, all nonlinear terms 
are zero, because at this time the velocity of the system 
becomes zero. 

Most of the components are also zero at the zero point of 
the displacement. The only exception regards the factors X k

. 
This is the consequence of the transforming of the hysteresis 
dissipated energy in damping dissipated energy. 

Using Bouc model the behavior of the variable Z, that is 
proportional to the force of the hysteric part due to the 
displacement X, can be plotted. Using the potential model, Z 
is approximated by Eq. (21). This equation depends directly 
on a combination of the terms presented above. As a result, 
at the specific points of zero velocity for the potential model 
the restoring force consists of r(x). This is not true for the 
Bouc hysteresis, because in this case nonlinear restoring 
force has its maximum at the points of zero velocity, where 
the system changes its direction of movement.  
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Fig. (10). Hysteresis loop of expression   X
2

and   X
2X  during a periodic movement X=sin(t). 

 

 

Fig. (11). Hysteresis loop of expression  X
4X ,   X

2X3
and   X

5
during a periodic movement X=sin(t). 

 

 

Fig. (12). Hysteresis loop of expression  X
6X ,   X

4X ,   X
2X5

and   X
5

during a periodic movement X=sin(t). 

 

In order to solve this problem two steps are possible. 
First if one does not equate the linear restoring forces of 
both systems the parameters on which the linear restoring 
forces depend can become part of the optimization process. 
Because of the dependency between the restoring force and 
the total energy the approximation can no more be 
separated in the way it is done at Eq. (16). In another step, 
the restoring terms themselves can be assumed to be 
parameters for the approximation process, but on the other 
side these parameters are coupled in products of higher 
order. Assuming a nonlinear symmetric behavior of the 
restoring force r(x), for which the underlying method is 
valid, that is: 

r(X) = bj
j=1

i

X
j
sgn(X),             (27) 

the total energy will be 

 

H =
1

2
X 2

+
bj

j +1j

i

X j+1 .             (28) 

Furthermore the expression of Q(H) will be 

  

Q( H ) = a
i

i=1

k
1

2
X 2

+

b
j

j + 1
X j+1

j=1

i
i

,             (29) 

and the derivation with respect to H 

  

dQ( H )

dH
= ia

i

i=1

k
1

2
X 2

+

b
j

j + 1
X

J +1

J 1

i
i 1

.       (30) 

The coupling of the parameters ai and bj is obvious. At 
least the optimization has to be done minimizing the error 
including the additional restoring forces. 
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Now the error can be expressed as: 

 

= iai
1

2
X2

+
bj

j +1
X j+1

j=1

i
i 1

i=1

k

X + bj

j=1

l

X j sgn(X) cX kx X kzZ

.

  (31) 

The derivations have to be done with respect to bj in 
addition to those with respect to ai: 

 
ai

E 2 X, X, Z( )( ) = 0 ;  i = 1...k  and

 

 
bj

E 2 X, X, Z( )( ) = 0 ;  j = 1....l .  (32)  

It has to be mentioned that the derivatives with respect to 
bj are more complicated then those with respect to ai. The 
latter can be written as 

 

E 2

ai

= E 2 mamH m 1 X + bm sgn(X) X m c X kx X kzZ
m=1

l

m=1

k

iH i 1X = 0 ,
  

ki ...1=  (33) 

that can be rewritten as 

  

ma
m

E H m+ i 2 X 2

m=1

k

+

b
m

m0=1

l

E sgn( X ) X
m

H i 1 X =

cE H i 1 X 2
+ k

x
E H i 1 XX + k

z
E H i 1 XZ

 (34) 

While the former can be written as: 

E 2

b
j

= E 2 ma
m

m=1

k

H m 1 X +

b
m

m=1

l

sgn X( ) X
m

cX k
x
X k

z
Z

 

 

m(m 1)amH m 2 X
1

J +1
X j+1

+ sgn(X) X j

m=1

k

= 0, j = 1...1

 (35) 

that becomes: 

1

j + 1
m m 1( )na

m
a

n

n=1

k

m=1

k

E H m+n 3 H
j+1

X 2
+

+
1

j + 1
m m 1( )a

m
b

n
E

n=1

l

m=1

k

H m 2 sgn X X( )
n+ j+1

X +

 

 

1

j + 1
m m 1( )a

m
cE H m 2 X

j+1
X 2

m=1

k

1

j + 1
m m 1( )a

m
k

x

m=1

k

E H m 2 sgn X( ) X
j+2

X +

 

  

1

j + 1
m m 1( )

m=1

k

a
m

k
z
E H m 2 X

j+1
XZ +

ma
m

E H m 1 sgn X( ) X
j

X

m=1

k

+

b
m

E X
m+ j

m=1

i

+ cE sgn X( ) X
j

X

k
x
E X

j+1
k

z
E sgn X( ) X

j
Z = 0

 (36) 

The nonlinear restoring force Z can be again estimated 
after the optimization assuming the error tends to zero by 

  

Z =
1

k
z

ia
i

1

2
X 2

+

b
j

+ 1
X

j+1

j=1

l

i=1

k

X + b
j

j=1

l

X
j
sgn X( ) c X k

z
X

.  (37) 

In this model the linear terms can be equalized by a1= c 
and b1 = kx, this has as effect that the linear parts of both 
equations are identical. The energy will now become: 

 

H =
1

2
X2

+
1

2
kx X2

+
bj

j +1
X j+1

j=2

l

,  (38) 

and the function Q(H), that is needed to calculate the joint 
probability distribution, expands to 

Q H( ) = c
1

2
X 2

+

b
j

j + 1
X

j+1

j=1

l

+

              a
i
X 2 1

2
X 2

+

b
j

j + 1
X

j+1

j=1

l

i=2

k
i

.

  (39) 

The error function reduces to 

  

= ia
i

1

2
X 2

+
1

2
k

x
X 2

+

b
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X

j+1

j=2

l

i=2

k

i 1

     X + b
j

X
j

j=2

l

sgn X( ) k
z
Z

, (40) 

and of the hysteretic state variable Z reduces to 
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ia
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2
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+ 1
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l
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i 1
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X
j
sgn X( )
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l

.(41) 

Of course the derivation is now only needed for the 
remaining variables a2 up to ak and b2 up to bl.  

Another problem that arises if method 2 is chosen, 
because one has to derive the moments from the potential 
model, is due to the computational effort necessary for 
solving the two dimensional numerical integrals. 
Nevertheless, Eqs.(22-25), that simplify the calculation of 
these integrals, can be simply extended if the following 
nonlinear restoring force is chosen: 

r X( ) = b sgn X( ) X .            (42) 

In this case only one additional integral has to be solved 
numerically. Eq.(23) becomes 

E H i X2
= E H i+1

,            (43) 

And Eq.(25) has to be changed in 

E H i+ k 1
=

1

kak

1
+ i 1 S0E H i 1

ja j

j=1

k 1

E H i+ j 1

,

  i = 1, k 1 .            (44) 

At least the derivatives of the error estimate reduces to 

 

E 2

ai

= E 2
mamH m 1 X + b sgn X

m=1

k

X c X kx X kzZ

iH i X = 0,  

  i = 1, k 1 .            (45) 

and 

 

E 2

b
= E 2

mamH m 1X +

m=1

k

b sgn H( ) X cX kx X kzZ

 

 

m(m 1)amH m 2 X
1

+ 1
Xv+1

+ sgn(X) X
m=1

k

= 0    j = 1...i

. (46) 

6. GENERALIZATION FOR DIFFERENT LOAD 
INTENSITIES 

As mentioned before, it is not the main purpose of this 
study to present a non linearization method, but to use this 
method as a tool to approximate the behavior of a given 
hysteresis by a potential model. The non linearization 

discussed earlier refers to one specific load level. Therefore, 
the response of the equivalent model will be only worth for 
this level. Especially in the observed case, the Bouc model, 
with the chosen parameters, keeps always within a range of 
minus one to one. This will be not the case for the potential 
system, since the hysteretic behavior is directly connected to 
the displacement X and its time derivative.  

In order to receive a global approximation the non 
linearization has been set in dependency of the load intensity 
S0. At least the parameters have to be evaluated at different 
load levels and an interpolated function will be established. 

Due to some instabilities of the method 2 that are coming 
up, because of the chosen integration procedure of the semi 
infinite integral, if the parameter a3 becomes negative, during 
the iteration, the method 1 will be used to present the 
dependency of the parameters in accordance of the intensity 
of the load 

KK = 2 S0             (47) 

Fig. (13) displays the behavior of the displacement X 
with respect to time t of the Bouc model and of the 
approximating potential system. Fig. (14) presents the 
dependency of the parameters ai of the potential system on 
the load intensity KK. It is obvious that there is only a slight 
change of the parameters due to the change of the load 
intensity. This is of great importance, because the 
approximation of a measured hysteretic behavior of a 
material has not to be performed at great amount of different 
load levels. This reduces the effort rapidly. In a calculation 
the parameters can be kept constant, if the load level varies 
within a bounded domain. This means also, that the potential 
models seem to be globally applicable to hysteretic behavior. 

When the load intensity increases, the values of the 
coefficients of the higher order terms of the potential series 
(namely a2 and a3) tend to zero, this means that the 
distribution of the state variables tends to become Gaussian 
(see Eq. (12)). It is also visible that with greater load 
intensities the approximation becomes better (Fig. 15). This 
might be astonishing, since the hysteretic behavior is of 
greater importance, but it was shown that the chosen 
approximation is not able to represent the cyclic behavior in 
an exact way. If the cycles become larger also the volume 
increases and therefore the cycles of the potential model will 
fit the cycles of the Bouc model in a better way. 

Figs. (15 and 16) present this behavior at two extreme 
load intensities KK=10 and KK=0.1. 

This problem can be solved, if bj are introduced as 
additional parameters as before mentioned. If the parameters 
are adjusted to measured data the equivalent non 
linearization is not appropriate. Therefore, the problems, that 
arise if this method is used, are of no importance for the case 
that the parameters are adjusted to measured hysteresis 
loops. 

CONCLUSION 

The possibility to use potential models for the 
approximation of the hysteretic behavior given by the Bouc 
model has been presented. The advantage is that the statistics 
of the response of the potential model are known in exact 
form, while the statistics of the Bouc system can be known 



90    The Open Construction and Building Technology Journal, 2014, Volume 8 Cavaleri et al. 

 

 

 

Fig. (13). Approximation of the Bouc model by a potential model (k=3) for different load intensities KK [cm
2
/sec

3
]. 

 
only by a Monte Carlo simulation. Once the parameters 
defining an equivalent potential model are obtained they can 
be directly used to approximate the observed hysteretic 
behavior of materials. The strategy for obtaining the above 
parameters is a statistical equivalent non linearization that can 
include the dissipative forces or also the restoring forces. In 
the first case the non linearization can be used to determine 
regions for these parameters, which represent with good 
approximation the measured hysteretic behavior of tested 

materials. Analyses have shown that the better approximation 
in terms of shape of the displacement- hysteretic force cycles 
is obtained for great level of the external force. In order to 
obtain optimal results in the case of low level of the external 
forces the usage of a non linearization method to approximate 
the Bouc model including nonlinear restoring forces should be 
preferred, against the assumption of a linear restoring force in 
the potential model equal to the linear restoring force in the 
Bouc model. 
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Fig. (14). Parameters a1 to a3 in accordance of the load intensity 
 
KK = 2 S

0
. 

 

 

Fig. (15). Hysteretic cycles in X-Z plane for the Bouc model and equivalent potential model KK=10 cm
2
/sec

3
. 

 

 

Fig. (16). Hysteretic cycles in X-Z plane for the Bouc model and equivalent potential model KK=0.1 cm
2
/sec

3
. 

 

However it must be noted that nonlinear restoring forces 
in the potential model show an increase in the computational 
effort for the estimation of the equivalent parameters with 
respect to obtain faster result when the non linearization 
involves only the nonlinear dissipating forces. 
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