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Abstract:

Background:

When  subjected  to  time-dependent  blood  pressure,  human  arteries  undergo  large  deformations,  exhibiting  mainly  nonlinear
hyperelastic type of response. The mechanical response of arteries depends on the health of tissues that comprise the artery walls.
Typically, healthy arteries exhibit convex strain hardening under tensile loads, atherosclerotic parts exhibit stiffer response, and
aneurysmatic parts exhibit softening response. In reality, arterial dynamics is the dynamics of a propagating pulse, originating in
heart ventricle, propagating along aorta, bifurcating, etc. Artery as a whole cannot be simulated as a lump ring, however its cross
section can be simulated as a vibrating ring having a phase lag with respect to the other sections, creating a running pressure wave. A
full  mathematical  model  would  require  fluid-solid  interaction  modeling  continuity  of  blood  flow  in  a  compliant  vessel  and  a
momentum equation. On the other hand, laboratory testing often uses small-length arteries, the response of which is covered by the
present work. In this way, material properties that change along the artery length can be investigated.

Objective:

The effect of strain hardening on the local dynamic response of human arteries (excluding the full fluid-structure interaction) is
examined through appropriate hyperelastic models related to the health condition of the blood vessel. Furthermore, this work aims at
constituting a basis for further investigation of the dynamic response of arteries accounting for viscosity.

Method:

The governing equation of motion is formulated for three different hyperelastic material behaviors, based on the constitutive law
proposed by Skalak et  al.,  Hariton,  and Mooney-Rivlin,  associated with the hardening behavior  of  healthy,  atherosclerotic,  and
aneurysmatic  arteries,  respectively.  The  differences  between  these  modelling  implementations  are  caused  by  physiology,  since
aneurysmatic arteries are softer and often sclerotic arteries are stiffer than healthy arteries. The response is investigated by proper
normalization of the involved material parameters of the arterial walls, geometry of the arteries, load histories, time effects, and pre-
stressing. The effect of each problem parameter on the arterial response has been studied. The peak response of the artery segment is
calculated in terms of radial displacements, principal elongations, principal stresses, and strain-energy density. The validity of the
proposed analytical  models  is  demonstrated through comparison with previous studies  that  investigate  the dynamic response of
arterial models.

Results:

Important metrics that can be useful to vascular surgery are the radial deformation and the maximum strain-energy density along with
the radial resonance frequencies. These metrics are found to be influenced heavily by the nonlinear strain-hardening characteristics of
the model and the longitudinal pre-stressing.
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Conclusion:

The proposed formulation permits a systematic and generalizable investigation, which, together with the low computational cost of
analysis,  makes  it  a  valuable  tool  for  calculating  the  response  of  healthy,  atherosclerotic,  and  aneurysmatic  arteries.  The  radial
resonance frequencies can explain certain murmures developed in stenotic arteries.

Keywords: Hyperelastic arterial model, Human artery segments, Strain hardening, Dynamic analysis, Energy density.

1. INTRODUCTION

A simple way to view the human circulatory system is to think of a pump (heart) and a number of conduits (artery,
veins)  that  circulate  the  blood [1].  The  heart  is  basically  a  muscle  that  (normally)  contrasts  cyclically,  resulting  in
pulsatile blood flow. Accordingly, the blood pressure rises to a peak (heart contrasts) and then falls (heart refills) during
the cardiac circle. As blood pressure moves away from the heart, the systolic peak decreases and the diastolic value
increases. The vascular elasticity is an important aspect of blood-flow dynamics. Arteries exhibit nonlinear mechanical
behavior  when  extended,  with  their  stiffness  depending  on  strain  [2].  Typically,  their  stiffness  is  monotonically
increasing with strain, thereby protecting the artery from aneurysms and other instabilities under increasing pressure.
Arteries  are  composite  structures  formed  of  tissues  made  of  soft  rubber-like  proteins  (elastin)  reinforced  by  stiff
collagen fibers. At a meso-level, arteries are formed by inhomogeneous layers, exhibit anisotropy, and have residual
stresses. Furthermore, arteries show a viscoelastic response which accounts for a relatively low-energy loss in each
inflation-deflation cycle, preventing reflected pressure waves from resonating in the arterial systems [3].

The stress-strain relationship of an arterial tissue exhibits anisotropic nonlinear behavior for finite deformations [4,
5]. The arterial tissue can be modeled as a hyperelastic material and as such its stress-strain relationship derives from a
strain-energy function. Some, relatively simple, representative constitutive laws that describe the mechanical behavior
of biological tissues are the Mooney-Rivlin [6, 7], Fung [8], Gent [9], the strain-energy function of Skalak et al. [10],
and the constitutive law proposed by Delfino et al. [11]. Even though more sophisticated constitutive laws have been
developed in recent years, they require a multitude of parameters that are not easy to be measured and are harder to be
parametrized  (see  for  example  the  model  proposed  by  Holzapfel  et  al.  [12]).  Investigation  of  straight  short  artery
segments requires dynamic cyclic inflation testing and models that use hyperelastic constitutive laws that are able to
reproduce the test results.

In fact, there are several references in the literature suggesting that the use of too complex hyperelastic laws may be
very  difficult  in  revealing  the  generality  of  results  and  underlining  the  most  important  aspects  of  the  problem.
Humphrey and Na [13] observed that the more complex the arterial model, the less complex the stress field appears to
be. Moreover, Hariton [14] modeled the realistic orientation of collagen fibers of the arterial tissue and observed that
there is no significant difference regarding the macroscopic response of a simplified model that does not include the
fiber orientation anisotropy.

To the authors’ best knowledge, very few publications are available in the literature that address analytically the
dynamic response of arteries.  The most representative studies are perhaps the works of Demiray and Vito [15] and
Humphrey and Na [13] which both investigated the case of an exponential hyperelastic constitutive law. However, they
assumed the spatial dependence of the deformation field in order to solve the problem.

Several quantitative methods for arterial wall function have been suggested, with the most popular ones being the
pulse wave velocity and the flow-mediated vasodilatation [16]. Regarding the pulse wave velocity methodology, several
one-dimensional models have been suggested to assess the propagation of the pressure pulse along the artery (see for
example Pedley [17] and Formaggia et al. [18], for recent advancements of the mathematical modeling). It should be
noted, however, that the aforementioned models presuppose the solution of the radial deformation of the arteries with
respect  to  time.  Taylor  and  Humphrey  [19]  pointed  out  that  among  the  open  problems  in  computational  vascular
biomechanics is the development of more robust techniques to create analytic models in order to include the general
characteristic bevariors and provide predictive capability for artery failures.

Some investigations suggest that inertial effects appear insignificant for forcing frequencies less than 10 Hz (see for
example David and Humphrey [20]). However, this is not at all the general case. Foreman and Hutchison [21] measured
natural resonant vibration characteristics of the artery walls with stenosis. Stenosis excites the artery wall to vibrate over
a wide range of frequencies within which are discrete resonant frequencies, the highest of which was recorded to be 550
Hz.



The Effect of Strain Hardening on the Dynamic Response The Open Biomedical Engineering Journal, 2017, Volume 11   87

The aim of this study is to investigate the effect of strain hardening on the dynamic deformation of the artery cross-
section, assuming three different physical behaviors: (a) hardening behavior of healthy arteries, (b) hardening behavior
of  atherosclerotic  arteries,  and  (c)  softening  behavior  of  aneurysmatic  arteries.  These  factors  are  investigated  by
adopting the following hyperelastic laws for each case respectively: (a) the constitutive law proposed by Skalak et al.
[10], (b) the constitutive law of Delfino et al. [11], as modified by Hariton [14], and (c) the Mooney-Rivlin hyperelastic
material [6, 7].

Fig.  (1)  plots  the  stress-strain  relationships  of  the  three  nonlinear  constitutive  laws  for  typical  values  of  their

material parameters, in the absence of longitudinal pre-stretch (  = 1).

Fig. (1). Stress-strain diagrams of hyperelastic incompressible models. No pre-stretch is applied to the models ( = 1). By σθθ is
denoted the circumferential Cauchy stress.

Note  that  the  artery  segments  are  assumed  to  be  in  taut-state  of  stress  and  under  pre-stressed  condition.  The
longitudinal (along the blood flow) pre-stress is accounted for explicitly, whereas other pre-stress effects are assumed to
be incorporated in the constitutive law. An important side result of this work is the effect of loading and prestretch to
the  radial  resonance  frequencies  of  the  aforementioned  models.  Radial  resonance  can  explain  murmures  (acoustic
sounds) developed in stenotic arteries followed by atheromatic plaque deterioration. Radial dynamic effects (impulse
pressure) were found to be dangerous to aneurysmatic arteries because of the high deformations and stresses that may
develop due to strain softening and thinning of the artery walls.

2. METHODS

The mathematical formulation is based on the following assumptions: (a) vessel cross-section in the undeformed
state forms a full circle with thickness-averaged radius R; (b) the arterial wall has constant thickness along the circle
and  is  small  compared  to  the  internal  radius  of  the  vessel;  (c)  the  ring  deforms  radially  only,  under  plain  strain,
incompressible conditions; (d) the arterial tissue consists of a single homogeneous layer; and (e) viscous effects are
ignored.

Herein, the radius, thickness, and length of the initial configuration are denoted by R, H, L respectively; and the
radius,  thickness,  and length of  the deformed configuration are denoted by r,  h,  l  respectively.  Fig.  (2a)  shows the
configuration of the idealized arterial model at the deformed state.

By considering the force equilibrium along the radial direction of the infinitesimal element abcd shown in Fig. (2b),
the equation of motion of the deformed configuration is obtained as a balance of forces (including inertia):

(1)

where ρ denotes the density of the arterial tissue, p(t) is the uniform internal pressure, N(t) is the circumferential force
that can be derived from a suitable hyperelastic constitutive law, and ur(t) is the radial displacement. Note that, due to
the  mass  conservation and incompressibility  of  the  arterial  tissue,  the  initial  density  of  the  artery  ρ0  is  equal  to  the
density of the artery at the deformed state ρ (ρ = ρ0 ). The deformed radius can be expressed as:

(2)
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Fig. (2). Proposed arterial model. (a) Arterial model at deformed state, (b) typical element of circular ring at deformed state.

For  incompressible  materials  (such  as  the  arterial  walls  and  many  artificial  grafts),  the  determinant  of  the
deformation  gradient  is  given  by:

(3)

where λθ (t) = r(t)/R is the elongation (stretch) of the circumferential direction,  = l / L is the elongation of the axial
direction (considered to be the constant pre-stretch value caused by longitudinal residual stresses), and λr(t) = h(t)/H is
the elongation in the radial direction. Substituting in Eq. (3) we obtain,

(4)

The artery is subjected to uniform intraluminal pressure. Fig. (3a) plots the aortic pressure-time profile as proposed
by Zhong et al. [22, 16]. A normal cardiac cycle consists of a systolic (0 ≤ t ≤ ts) and a diastolic phase (ts < t ≤ tcp). The
aortic  pressure-time profile  is  approximated in  this  study by the  loading shown in  Fig.  (3b),  representing the  most
conservative loading scenario [23, 17]. The value of the maximum systolic pressure is ps = 120 mmHg = 16 kPa, the
diastolic pressure is pd = 80mmHg = 10.66kPa, the systolic-phase duration is ts = 0.35 sec, and the total duration of the
cardiac pulse is tcp = 1 sec.

The following sections present the mathematical formulation of the arterial models for the three constitutive laws
adopted in this study.

2.1.  Arterial  Model  Based  on  the  Strain-Energy  Function  of  Skalak  et  al.  (Hardening  Behavior  of  Healthy
Arteries)

To investigate the response of a healthy artery, we adopt the two-dimensional strain-energy function of Skalak et al.
[10]. This strain-energy function, originally developed for red blood cell membranes, demonstrates hardening behavior.
The strain-energy function proposed by Skalak et al. is given by:

(5)

where B and C are the material properties of the artery, having units of elastic modulus multiplied by artery thickness
[N/m], satisfying the condition C ≥ B ≥ 0 and I(t) and II(t) are alternative forms of the strain invariants, expressed as:

(6)

(7)

in which eθθ and ezz are the Green strain tensors.
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Fig. (3). Blood pressure time-profiles approximations (after Roussis et al. [23, 17]): (a) Aortic pressure time-profile following Zhong
et al. [22, 16], (b) arterial pulse time-profile approximation.

The  circumferential  and  longitudinal  Cauchy  stresses,  multiplied  by  the  current  artery  thickness,  are  obtained
respectively as:

(8)

(9)

Note that, for B/C = 0 the circumferential and longitudinal normalized stresses are equal.

The axial force acting along the circumferential direction N(t) is identical to Tθ  (t) (N  (t) = T  (t)). Therefore, by
substituting Eqs. (2), (4), and (8) in Eq. (1), the normalized equation of motion governing the arterial response becomes
a non-linear differential equation for the radial displacement ur (t):

(10)
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Equation (10) can be solved for four complexity levels, each one having a different order of nonlinearity (zero-,
first-, second-, and third-order). The “third-order nonlinear” equation stands for the fully nonlinear problem described in
Eq. (10).  The “zero-order nonlinear” equation is  a second-order linear non-homogeneous differential  equation with
constant coefficients. To obtain the “zero-order nonlinear” equation, we neglect the second- and third-power terms of
radial displacement and the term p(t)ur (t) / R of Eq. (10), resulting in

(11)

For  = 1, Eq. (11) is identical to the equation of motion of the linear model. The natural circular frequency (for
p(t) = 0) of the “zero-order nonlinear” equation is given by:

(12)

Equation (12) implies that periodic solutions (  real) are possible if  ≥ 1 (which is physically true for most
healthy arteries) or C ≤ 24 B. If these inequalities are not observed, then it is possible to have material instability. We
are  particularly  interested  in  the  artery  response  in  terms  of  the  circumferential  elongation  λθ,  current  thickness  h,
circumferential stress Tθ, longitudinal stress Tz, and strain-energy density values W. The normalized functions for these
response quantities can be synopsized as:

(13)

(14)

(15)

(16)

(17)

Note that, Eq. (14) is obtained by solving Eq. (3) for h (t)/H, and Eqs. (15) through (17) are obtained by normalizing
Eqs. (8), (9), and (5), respectively, by the (non-zero) material parameter C.

2.2. Arterial Model Based on the Strain-Energy Function of Hariton (Hardening Behavior of Atherosclerotic
Arteries)

Atherosclerotic  arteries  are  stiffer  than  healthy  arteries.  To  study  the  response  of  an  atherosclerotic  artery  that
demonstrates  exponential  hardening,  we  adopt  the  isotropic,  three-dimensional  strain-energy  function  proposed  by
Hariton [14], which is a modification of the strain-energy function proposed by Delfino et al. [11]. The strain-energy
function proposed by Hariton is given by

(18)

where a > 0 is a stress-like parameter, and b > 0 is a non-dimensional material parameter. Typical values of the material
parameters are a = 44.2 kPa and b = 16.7 [11]. Additionally,  is the first strain
invariant.
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The Cauchy stress-strain relationships of the circumferential and longitudinal directions are then obtained as

(19)

(20)

where  P  is  the  hydrostatic  pressure  (due  to  incompressibility).  For  a  thin-wall  assumption  and  a  stress-free  outer
surface, P ≈ 0.

The  circumferential  arterial   force  is   equal  to  the   circumferential  stress  multiplied  by  the  current  thickness 
 On substituting Eqs. (2), (4), and (19) in Eq. (1) the normalized equation of motion governing the

arterial response becomes

(21)

The  six  dimensionless  quantities  of  this  model  are ,
 where  the  term   is the characteristic time of the response. Note that the natural frequency of the
“zero-order nonlinear” equation is zero. Equation (21) is again a non-linear differential equation that should be solved
for the radial displacement ur (t) as a function of time.

2.3. Arterial Model Based on the Strain-Energy Function of Mooney-Rivlin (Softening Behavior of Aneurysmatic
Arteries)

Healthy  arteries  exhibit  hardening  with  increased  strain,  whereas  aneurysmatic  arteries  exhibit  softening.  The
softening behavior of aneurysmatic arteries can be described by the isotropic three-dimensional  constitutive law of
Mooney-Rivlin. The strain-energy function suitable for incompressible materials has the following form [7]:

(22)

where is the second strain invariant for incompressible materials, µ is the
shear  modulus  of  the  material  under  infinitesimal  deformation  of  the  initial  undeformed  configuration,  and  β  is  a
dimensionless material constant. The value β = 1/2 corresponds to the Neo-Hookean model.

The circumferential and longitudinal Cauchy stress-strain relationships can be obtained by using the equations of
Chadwick [7] for the internal surface of the artery. Based on the thin-wall assumption, and in the absence of pressure in
the outer wall, the radial stress is almost zero (σrr ≈ 0). Therefore, the stress-strain relations of the circumferential and
longitudinal directions are approximated respectively by

(23)

(24)

Note  that,  in  the  absence  of  longitudinal  pre-stretch,  the  material  parameter  β  has  no  effect  on  the  stress-strain
behavior.
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The normalized equation of motion of the Mooney-Rivlin arterial model is then obtained as

(25)

In  this  case,  the  six  dimensionless  quantities  of  the  Mooney-Rivlin  arterial  model  are  β,  ,  p(t)R  /  µH,  ur(t)  /R,

tMR
2ür(t)/R,  t/tMR,  where  the  term   corresponds  to  the  characteristic  time  of  the  response  of  the

Mooney-Rivlin arterial model.

The natural frequency (for p(t) = 0) of the equivalent “zero-order nonlinear” model is given by

(26)

This result (that applies to Mooney-Rivlin nonlinear behavior) agrees with the classic results of Knowles [24] for λZ
0

= 1 (no prestretch) ω0  
MR = 2/tMR. Note that Eq. (26) predicts a real natural frequency for all values of λz

0  and β. The
natural frequency increases with the prestretch λZ

 0 ≥ 1.

2.3.1. Numerical Solution

The nonlinear dynamic equations that describe the physical problem can be characterized, from the numerical point
of view, as “stiff”, hence their solution demands special methods. An ordinary differential equation (ode) is “stiff”,
when there are computational efficiency issues (large computational time) and the numerical method must drastically
reduce the time step to obtain satisfactory results of the solution. In our case, the efficiency issues are caused due to the
large differences in the order of magnitude of the differential equation coefficients.

The formulated differential equations can be solved numerically through the appropriate ode solvers in MATLAB
[25, 26]. The problem is solved by transforming the second-order differential equation into two first-order equations
(state-space analysis). The ordinary differential equations of the arterial models based on the strain-energy function of
Skalak et al. (Eqs. (10) and (11)), and on the strain-energy function of Mooney-Rivlin (Eq. (25)) are solved numerically
by using the ode23s function in MATLAB, a one-step solver based on the modified Rosenbrock method [27, 28]. The
ordinary differential equation of the arterial model based on the strain-energy function of Hariton (Eq. (29)) is solved
numerically by using the ode23tb solver in MATLAB. The ode23tb solver uses an implicit Runge-Kutta method [29],
which is suitable for very stiff problems.

Furthermore, the problem has been investigated by proper normalization of the involved material parameters and of
the pressure time-profile.

3. RESULTS

Representative  analysis  results  are  presented  in  this  section  in  terms  of  response  spectra  for  the  three  models
adopted in this  study:  healthy,  atherosclerotic,  and aneurysmatic arteries.  The maximum radial  displacement of  the
arterial model, as well as the response spectra of the circumferential elongation, variation of thickness, circumferential
stress, longitudinal stress, and strain-energy density are investigated by varying the problem parameters.

In  order  to  compare  these  models  with  the  linear  arterial  model,  the  initial  tangent  Young's  modulus  Eθ  of  the
respective case is substituted in the linear equation of motion [17, 24]:
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The expressions giving the tangential circumferential Young's modulus Eθ of the Skalak et al., the Hariton, and the
Mooney-Rivlin constitutive laws are obtained, respectively, as

(28)

(29)

(30)

The  solution  of  Eq.  (27),  for  the  dynamic  loading  of  Fig.  (3b),  can  be  expressed  in  closed  form [24,  17].  The
longitudinal pre-tension of the linear model is taken into account through the initial displacement ur(0) = u0 . We assume
that the initial displacement is u0 = R (λZ

 0 - 1) and the initial velocity is .  Note that λZ
0 ≥ 1 for all cases (and so

Eθ> 0 for all models).

3.1. Response of Healthy Arteries

The  total  response  of  the  Skalak  model  is  obtained  by  solving  the  fully  (“third-order”)  nonlinear  model.  A
comparison  between  the  linear  model,  the  “zero-order  nonlinear”  model,  and  the  “third-order  nonlinear”  model  is
presented through radial-displacement spectra in Figs. (4) and (5).

Fig. (4) suggests that an increase of the longitudinal pre-stretch λZ
 0  or the ratio B/C, stiffens the artery and decreases

the radial displacement. For pre-stretch values between 1.1 and 1.15 (typical values for healthy arteries), the absolute
value of the radial deformation is minimized (for psR/ C = 0.16). However, for λZ

 0  > 1.12 we observe that a negative
radial displacement spectrum, indicating a possible reverse flow in the artery. The resonant frequency increases from
2000 s-1 at no prestretch (λZ

 0  = 1) to 3200 s-1 at λZ
 0  = 1.3. On the other hand, Fig. (5) shows that an increase in the

normalized systolic pressure psR/ C, yields increased radial deformation response (Fig. 5a), whereas the characteristic
time tSk seems not to affect the problem at low levels of normalized pressure psR/C (Fig. 5b). Note that, for λZ

 0  = 1, the
linear  and  the  “zero-order  nonlinear”  models  yield  identical  response.  Zeroth-order  resonant  frequency  :  (a)
increases from 2000 s-1 to 3200 s-1 with increasing λZ

 0  from 1 to 1.3 (B/C = 0, psR/C = 0.16, tcp/tSk = 2000), (b) increases
slightly from 2000 s-1 to 2800 s-1 with increasing B/C from 0 to 1 (λZ

 0  = 1, psR/C = 0.16, tcp/tSk= 2000), and (c) increases
from 2000 s-1 to 9000 s-1 with increasing tcp/tSk (B/C = 0, λZ

 0 = 1, psR/C = 0.16).

It is evident that the most important parameters influencing the problem are the pre-stretch value λZ
 0, the ratio B/C

and the normalized systolic pressure psR/C. Accordingly, the spectra of the response quantities of Eqs. (13) through (17)
are investigated by varying the values of the aforementioned parameters. Fig. (6) presents response spectra as a function
of the ratio B/C for three different values of parameter ps R / C. It can be observed that the maximum response of the
system is decreased with increasing values of B/C or with decreasing values of the normalized systolic pressure ps R / C.
Moreover, the “zero-order nonlinear” model seems to be conservative compared to the “third-order nonlinear” model.
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Fig. (4). Displacement spectra of the healthy (Skalak) arterial model. Plots for (a) pre-stretch values λZ
 0 = {1 ÷ 1.3} and B/C = 0,

psR/C = 0.16, tcp/tSk = 2000, (b) ratios B/C= {0 ÷ 1} and λZ
0 = 1, psR/C = 0.16, tcp / tSk = 2000.

Fig. (5). Displacement spectra of the healthy (Skalak) arterial model. Plots for (a) normalized systolic pressure values psR / C = {0.16

÷ 1.28} and B / C = 0,  = 1, tcp/tSk = 2000, (b) normalized characteristic time values tcp/tSk = {1000 ÷ 10000} and B /C = 0, λZ
 0 = 1,

psR/C = 0.16.
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Fig. (6). Response spectra of the healthy (Skalak) arterial model. Plots for B / C = {0 ÷ 1}, for three values of the normalized systolic
pressure psR/C and for λZ

 0 = 1, tcp / tsk = 2000: (a) circumferential elongation λθ, (b) normalized thickness h/H, (c) normalized strain
energy W/C, (d) normalized circumferential stress T θ / C, (e) normalized longitudinal stress Tz / C.

Table 1. lists the peak value of the normalized strain energy W / C along with the time of its occurrence for different
longitudinal pre-stretch values, for three values of the ratio B / C and for psR / C = 0.16.

Table 1. Maximum normalized strain energy W/C and occurrence time for range of λz
 0 and B / C values (psR/C = 0.16).

λz
 0

B/C
0 0.5 1

Maximum W/C Time (sec) Maximum W/C Time (sec) Maximum W/C Time (sec)
1 0.051184 0.001383 0.034112 0.001174 0.025579 0.00104

1.05 0.0321 0.001349 0.02378 0.001163 0.019512 0.001038
1.1 0.017248 0.001319 0.017016 0.001154 0.017996 0.001039
1.15 0.013001 0 0.019501 0 0.026002 0
1.2 0.0242 0 0.0363 0 0.0484 0
1.25 0.041494 0.35078 0.060049 0.35011 0.079324 0.34928
1.3 0.097124 0.99934 0.10226 0.99997 0.12222 0.35024

3.2. Response of Atherosclerotic Arteries

Figs. (7) and (8) plot the peak normalized radial deformations of atherosclerotic arterial systems (arterial model
based on the strain-energy function of Hariton) for different values of four basic non-dimensional parameters (λz
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psR/aH, tcp / tH). As can be seen from these figures, the artery becomes stiffer exhibiting reduced radial displacement as
the  longitudinal  pre-stretch  (Fig.  7a)  or  the  material  parameter  b  (Fig.  7b)  is  increased.  Fig.  (9)  presents  response
spectra for different values of the material parameter b and for three different values of the normalized systolic pressure
psR/aH. An increase of the material parameter b results in a decrease of the circumferential elongation and normalized
strain energy, and an increase of the normalized circumferential and longitudinal stresses.

Fig.  (7).  Displacement  spectra  of  the  atherosclerotic  (Hariton)  arterial  model.  Plots  for  (a)  pre-stretch  values
 (b) material  parameter  values  b  =  {2  ÷  26}  and  λz

0  = 1.25, 

psR/C = 3.2, tcp / tH = 1 / 3E-4.

Fig.  (8).  Displacement  spectra  of  the  atherosclerotic  (Hariton)  arterial  model.  Plots  for  (a)  normalized  systolic  pressure  values
 ,  (b)  normalized  characteristic  time  values  tcp/ tH =

{500 ÷ 5000} and  = 1.25, b=16.7, psR/aH = 3.2. 0
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Fig. (9). Response spectra of the atherosclerotic (Hariton) arterial model. Plots for b = {5 ÷ 25}, for three values of the normalized
systolic pressure psR / aH and for λz

 0 = 1, tcp/tH = 1/3E - 4: (a) circumferential elongation λθ, (b) normalized thickness h / H, (c)
normalized strain energy W / a,(d) normalized circumferential stress σθθ/ a, (e) normalized longitudinal stress σZZ/a.

Table 2 lists the peak values of normalized strain energy W / a, for different cases of longitudinal pre-stretch, for
three values of the material parameter b, and for psR / aH = 3.2. Table 3 lists the peak values of the normalized strain
energy W / a, for different cases of longitudinal pre-stretch and for three values of the normalized systolic pressure psR /
aH. Reported in Tables 2 and 3 is also the time instant at which the peak value of the normalized strain energy occurs.

Table 2. Maximum normalized strain energy W / a and occurrence time for range of  and b values (psR / aH = 3.2).

b
5 15 25

Maximum W / a Time (sec) Maximum W / a Time (sec) Maximum W / a Time (sec)
1 2.6255 0.00020 1.9443 0.00017 1.6900 0.00016

1.05 2.6272 0.00019 1.913 0.00017 1.6495 0.00016
1.1 2.5968 0.00019 1.8488 0.00016 1.5688 0.00015
1.15 2.5317 0.00019 1.747 0.00016 1.4549 0.00015
1.2 2.4317 0.0009 1.6072 0.00016 1.2991 0.00014
1.25 2.2964 0.00018 1.4287 0.00015 1.0992 0.00014
1.3 2.1241 0.00018 1.2076 0.00015 0.8538 0.00013

 0
z�

0
z�

λz
0=1, tcp/tH=(1/3)e+4

5 10 15 20 25

M
ax

im
um

 c
irc

um
fe

re
nt

ia
l

el
on

ga
tio

n 
λ θ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Rps/aH=0.8
Rps/aH=2.4
Rps/aH=4.0

5 10 15 20 25

M
ax

im
um

 c
ha

ng
e 

of
 n

or
m

al
iz

ed
 a

rte
ria

l t
hi

ck
ne

ss
 h

/H

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25

M
ax

im
um

 n
or

m
al

iz
ed

 st
ra

in
 e

ne
rg

y 
W

/a

0

1

2

3

Material parameter b
5 10 15 20 25

M
ax

im
um

 n
or

m
al

iz
ed

 c
iru

m
fe

re
nt

ia
l 

str
es

s σ
θθ
/a

0

20

40

60

80

100

Material parameter b
5 10 15 20 25

M
ax

im
um

 n
or

m
al

iz
ed

 lo
ng

itu
di

na
l 

str
es

s σ
zz
/a

0

20

40

60

80

100

(a)

(b) (c)

(d) (e)



98   The Open Biomedical Engineering Journal, 2017, Volume 11 Charalambous et al.

Table 3. Maximum normalized strain energy W / a and occurrence time for range of λz
0 and psR / aH values (b = 15).

psR / aH
0.8 2.4 4

Maximum W / a Time (sec) Maximum W / a Time (sec) Maximum W / a Time (sec)
1 0.40285 0.00033 1.4107 0.00020 2.4879 0.00015

1.05 0.39027 0.00032 1.3863 0.00019 2.4441 0.00015
1.1 0.36872 0.00032 1.3341 0.00019 2.374 0.00019
1.15 0.33763 0.00031 1.2558 0.00018 2.2506 0.00014
1.2 0.29761 0.00030 1.1483 0.00018 2.0825 0.00014
1.25 0.2494 0.00030 1.0106 0.00017 1.8603 0.00013
1.3 0.19548 0.00029 0.84355 0.00017 1.5873 0.00013

3.3. Response of Aneurysmatic Arteries

This section compares the radial displacement of the Mooney-Rivlin arterial model with that of the equivalent linear
model. All models in the analysis assume the same initial tangent elasticity modulus Eθ. Furthermore, peak values of the
respective response quantities (Eq. (13), Eq. (14), and Eqs. (22) through (24) normalized by the material parameter µ)
are presented for different values of the non-dimensional parameters.

Figs. (10) and (11) plot the peak radial displacement as a function of the longitudinal pre-stretch , the material
parameter β,  the normalized systolic pressure psR /  µH,  and the normalized characteristic time tcp  /  tMR  for different
values of the problem parameters. Fig. (12) present response spectra as a function of the material parameter β, for three

values of the parameter psR / µH and for  = 1.1.

Fig. (10). Displacement spectra of the aneurysmatic (Mooney-Rivlin) arterial model. Plots for (a) pre-stretch values λz
 0 = {1 ÷ 1.3}

and β = 0, psR/µH = 0.64, tcp / tMR = 1000, (b) material parameter values β = {-0.5 ÷ 0.5} and  = 1.1, psR/µH = 0.64, tcp / tMR = 1000.
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Fig. (12). Response spectra of the aneurysmatic (Mooney-Rivlin) arterial model. Plots for β = {-0.5 ÷ 0.5}, for three values of the
normalized systolic pressure psR/ µH and for  = 1.1, tcp / tMR = 1000: (a) circumferential elongation λθ, (b) normalized thickness h /
H, (c) normalized strain energy W / µ, (d) normalized circumferential stress σθθ/µ, (e) normalized longitudinal stress σZZ/µ.
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Fig. (11). Displacement spectra of the aneurysmatic (Mooney-Rivlin) arterial model. Plots for (a) normalized systolic pressure values
 (b)  characteristic  time  values  tcp / tMR = {1000 ÷ 5000}  and  λz
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Tables 4  and 5  report the time instant at which the peak value of normalized strain energy occurs. Again, in all
cases, the peak value occurs during the systolic phase.

Table 4. Maximum normalized strain energy W / µ and occurrence time for range of  and β values (psR / µH = 0.32).

β
-0.5 0 0.5

Maximum W / µ Time (sec) Maximum W / µ Time (sec) Maximum W / µ Time (sec)
1 0.0757 0.34535 0.0757 0.34535 0.0757 0.34535

1.05 0.0558 0.001836 0.0606 0.001897 0.0662 0.31852
1.1 0.0473 0.001788 0.0556 0.001902 0.0666 0.002042
1.15 0.048 0.001739 0.0589 0.001902 0.0754 0.002115
1.2 0.0672 0 0.0697 0.005671 0.0916 0.002191
1.25 0.1013 0 0.1013 0 0.1145 0.002283
1.3 0.1409 0 0.1409 0 0.1435 0.002305

Table 5. Maximum normalized strain energy W / µ and occurrence time for range of λz
 0 and psR / µH values (β = 0).

psR / µH
0.16 0.32 0.48

Maximum W / µ Time (sec) Maximum W / µ Time (sec) Maximum W / µ Time (sec)
1 0.0152 0.001724 0.0757 0.34535 0.2298 0.35121

1.05 0.0114 0.005146 0.0606 0.001897 0.1958 0.35078
1.1 0.0182 0 0.0556 0.001902 0.1735 0.34967
1.15 0.0393 0 0.0589 0.001902 0.1612 0.34799
1.2 0.0672 0 0.0697 0.005671 0.1578 0.002133
1.25 0.1013 0 0.1013 0 0.1621 0.002123
1.3 0.1409 0 0.1409 0 0.173 0.002116

3.4. Numerical Examples

To illustrate the applicability of the proposed analytical models, numerical examples are presented and compared
against studies that investigate the dynamic radial response of arterial models. Such studies are the works of Demiray
and Vito [15] and Humphrey and Na [13], which both considered the case of an exponential hyperelastic constitutive
law.

Demiray  and  Vito  [15]  studied  the  radial  deformations  of  arteries  subjected  to  dynamic  inner  pressure.  They
assumed an isotropic, homogeneous, incompressible artery obeying the exponential strain-energy density function of
Blatz et al. [30]. They presented a numerical example based on data corresponding to a dog's abdominal aorta. The
aorta,  having  inner  radius  3.12  mm,  outer  radius  3.80  mm,  longitudinal  pre-stretch  equal  to  1.53,  is  subjected  to
dynamic  loading  with  systolic  and  diastolic  pressures  9.892  kPa  and  3.466  kPa,  respectively.  According  to  their
calculations, the circumferential stress at the artery centerline, at the beginning of the systolic phase, was 395.7 kPa.

Utilizing the data from the example of Demiray and Vito, we calculated the arterial response for the hyperelastic
functions  adopted  in  this  study.  The  material  parameters  of  each case  were  selected  to  have  about  the  same initial
tangent  modulus  and  adequate  curve  fitting  compared  to  the  circumferential  stress-strain  curve  of  the  analysis  of
Demiray and Vito (Fig. 13a). Table 6 lists the data used for each model and the corresponding response values. The
Hariton  model  yields  a  peak  circumferential  stress  equal  to  446.69  kPa,  approximating  well  the  respective  value
calculated  by  Demiray  and  Vito  (395.7  kPa).  The  linear  model  and  the  Skalak  model  yield  lower  values  of
circumferential stress, whereas the Mooney-Rivlin arterial model is not suitable for the data (large pre-stretch value) of
this example. Note that, the peak strain-energy density values corresponding to the Skalak model and Hariton model are
comparable, whereas the linear model yields larger strain-energy density values.

Humphrey  and  Na  [13]  studied  the  dynamic  response  of  an  artery  and  the  corresponding  wall  stresses.  They
assumed that the artery is anisotropic, homogeneous, incompressible and obeys the exponential hyperelastic law of
Chuong and Fung [31].  They presented a numerical  example on the passive response of an artery subjected to two
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cardiac cycles with systolic and diastolic pressures of 105 mmHg and 91 mmHg, respectively. The artery has inner
radius  1.39  mm,  outer  radius  1.99  mm,  and  longitudinal  pre-stretch  1.832.  The  model  also  accounted  for  residual
circumferential stresses by using the approximate “opened-up” stress-free configuration [31]. The peak circumferential
and axial stresses of the inner surface were calculated by Humphrey and Na as 212.8 kPa and 177 kPa, respectively (in
general the inner surface has lower stress values than the outer surface). The maximum radial displacement of the outer
surface was computed to be 0.72 mm (mean strain 42%).

Adopting the data from the example of Humphrey and Na, we investigated the arterial response for the hyperelastic
functions considered in this study. The material parameters of each case were selected to have about the same initial
tangent  modulus  and  adequate  curve  fitting  compared  to  the  circumferential  stress-strain  curve  of  the  analysis  of
Humphrey and Na (Fig.  13b).  To account  for  the residual  circumferential  stresses,  we assumed that  a  compressive
pressure  equal  to  50  mmHg is  applied  to  the  arterial  wall.  By  calculating  the  difference,  the  systolic  and  diastolic
pressures are 55 mmHg and 41 mmHg, respectively.  Table 7  lists  the data used for the linear,  Skalak,  and Hariton
arterial model and the corresponding response values. Note that the Mooney-Rivlin hyperelastic function is not suitable
for the data (large pre-stretch value) of this example.

It should be noted that our calculations are based on the average-stress assumption, whereas the values reported in
Humhprey and Na refer to the stresses of the inner surface. The calculated values of the arterial model of Skalak (strain
55% and  circumferential  stress  153.22  kPa)  approach  better  the  results  of  Humprey  and  Na.  Additionally,  we  can
observe that there is a variation of the peak values of strain energy for the different material constitutive laws.

Based on these results, we can say that the response of the numerical examples presented in the aforementioned
studies can be adequately approximated by the arterial models proposed in the present study (presupposing that the
circumferential stress-strain curves adopted in the present study have sufficient curve fitting over the stress-strain curves
of the numerical examples).

Table 6. Data and response values of the Demiray and Vito [15] numerical example. Data based on the Demiray and Vito
study, and parameters and response values of the respective arterial models proposed in this study.

Data
R (mm) 3.46
H (mm) 0.68

1.53

ρ0 (kg/m3) 1160
ps (mmHg) /(Pa) 74.2/9892
pd (mmHg) /(Pa) 26.0/3466

ts (sec) 0.35
tcp (sec) 1

Linear arterial model
Parameters

Eθ(kPa) 4.17
u0 (mm) 1.83

Peak response values
ur / R 0.53

σθθ (kPa) 221
σzz (kPa) 221
W (kPa) 117

Skalak arterial model
Dimensionless parameters

B / C 1
psR / C 1.16
tcp / tSk 2187

Peak response values
ur / R 0.06

σθθ (kPa) 96.68
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Data
σzz (kPa) 161.75
W (kPa) 39.56

Hariton arterial model
Dimensionless parameters

b 1.5
psR / aH 4.19

tcp / tH 1143
Peak response values

ur / R 0.42
σθθ (kPa) 446.69
σzz (kPa) 523.77
W (kPa) 43.90

Table 7. Data and response values of the Humphrey and Na [13] numerical example. Data based on the Humphrey and Na
study, and parameters and response values of the respective arterial models proposed in this study.

Data
R (mm) 1.69
H (mm) 0.6

λz
 0 1.832

ρ0 (kg/m3) 1160
ps (mmHg) /(Pa) 55/ 7.333
pd (mmHg) /(Pa) 41/5.466

ts (sec) 0.3
tcp (sec) 0.8

Linear arterial model
Parameters

Eθ (kPa) 53.9
u0 (mm) 1.406

Peak response values
ur / R 0.83

σθθ (kPa) 44.85
σzz (kPa) 44.85
W (kPa) 37.31

Skalak arterial model
Dimensionless parameters

B / C 0.5
psR / C 4.04
tcp / tSk 1679

Peak response values
ur / R 0.55

σθθ (kPa) 153.22
σzz (kPa) 164.83
W (kPa) 103.43

Hariton arterial model
Dimensionless parameters

b 1.5
psR / aH 111.9

tcp / tH 319
Peak response values

ur / R 0.46
σθθ (kPa) 354.27

(Table 6) contd.....
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Data
σzz (kPa) 569.67
W (kPa) 22.28

Fig. (13). Circumferential stress-strain curves of the linear and hyperelastic constitutive laws used in the numerical examples. Based
on the data of (a) Demiray and Vito [15] (b) Humphrey and Na [13].

DISCUSSION

The effect of strain hardening in the dynamic response of human arteries has been examined through appropriate
models related to the health condition of the blood vessel.

Regarding the Shalak model we observe the followings. In cases of hypertension, the systolic pressure ps can be as
high as 200 mmHg, i.e. 5/3 of the normal systolic pressure (120 mmHg). What does this mean for the radial  response
 of  a  healthy  artery?  According to Fig. ( 5a),  in  case  of  hypertension,  it  would  reach  a  value  of psR/C = 0.27  and
 the   normalized   radial  displacement  would  increase  from  28%  to  42%.  In  the  case  that  the  elasticity  modulus

 decreases,  the  material  parameter C/H of the artery decreases. Considering that the
material parameter C/H has typical values between 0.1 and 1 MPa, the normalized systolic pressure psR/C is potentially
increased by a factor of 10 for soft arteries, yielding a radial displacement response over 100%, as shown in Fig. (5a). In
most cases, the peak strain-energy value occurs during the systolic phase. As expected, the circumferential elongation
decreases with increasing values of the longitudinal pre-stretch , while the normalized strain energy and normalized
stresses exhibit an optimized minimum value for  between 1.1 and 1.15. When  is increased over this optimized
value, the normalized strain energy is increased rapidly, indicating possible failure for pre-stretch values close to 1.3.
For increasing values of the ratio B/C, the response decreases for pre-stretch values up to 1.1-1.15, and increases for
higher pre-stretch values.

Regarding the Hariton model we observe the followings. The normalized radial displacement increases slightly with
increasing values of the normalized systolic pressure psR/ aH (Fig. 8a), whereas the characteristic time tH seems not to
affect the problem (Fig. 8b). As expected, the linear model yields larger normalized radial displacements compared to
the  hyperelastic  model,  except  for  large  pre-stretch  values  and  low  values  of  the  normalized  systolic  pressure.

(Table 7) contd.....
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Moreover,  the  peak  values  of  the  circumferential  elongation  (Eq.(13)),  normalized  thickness  (Eq.(14)),  normalized
strain-energy density, normalized circumferential stress, and normalized longitudinal stress are investigated by varying
the pre-stretch value λZ

0 , the material parameter b, and the normalized systolic pressure psR / aH. The latter response
quantities are obtained on normalizing Eqs. (18), (19), and (20) by material parameter a.

The normalized strain energy W / a and the circumferential elongation of the artery are decreased with increasing
values  of  the  longitudinal  pre-stretch  λz

0  or  the  material  parameter  b.  Note  that  for  the  different  values  of  material
parameter b  the calculated stresses present intersection points. Consequently, the hoop stress is not a representative
criterion to obtain the response limits of different arterial systems. On the contrary, the strain-energy density and the
radial displacement of different arterial systems appear distinctive (Table 2). Volokh [32] was the first to indicate that
the strain-energy density constitutes a trustworthy criterion for the arterial strength.

The normalized strain energy W / a, the circumferential elongation, and the normalized circumferential stress are

decreased with increasing values of longitudinal pre-stretch . In all cases, the peak value of W / a occurs during the
beginning of the loading.

Regarding  the  Mooney-Rivlin  model  we  observe  the  followings.  As  can  be  seen  from  Figs.  (10)  and  (11),  an
increase of the longitudinal pre-stretch , results in a decrease of the radial displacement and in stiffer arterial systems
(Fig.  10a).  On  the  other  hand,  by  increasing  the  material  parameter  β  (Fig.  10b),  the  normalized  systolic  pressure
psR/µH  (Fig.  11a),  or  the  normalized  characteristic  time  tcp  /  tMR  (Fig.  11b)  ,  the  normalized  radial  displacement  is
increased. Zero-th order resonant frequency ω 0

MR: (a) increases slightly fom 1000 s-1 to 1200 s-1 with  from 1 to 1.3 (β
= 0, psR / µH = 0.64, tcp / tMR = 1000) (b) decreases slightly from 1250 s-1 to 1000 s-1 with β from -0.5 to 0.5 (  = 1.1,
psR / µH, = 0.64, tcp / tMR = 1000). The linear model yields lower radial displacements than the Mooney-Rivlin arterial
model, especially for low pre-stretch values or high normalized systolic-pressure values. Note that, when the material

parameter β is increased the effect of the second invariant is reduced, resulting in softer systems. For  = 1, there is no
effect of the parameter β on the response of any system.

As follows from Fig. (12), the response parameters λθ , W / µ and σθθ / µ, are increased for increasing values of the
material  parameter  β  whereas  all  response  quantities  are  increased for  increasing values  of  the  normalized systolic
pressure psR / µH. The abrupt pressure loading gives periodic (thus bounded) radial displacement, provided psR / µH <
1 . As psR / µH →1, the radial displacements become unbounded ur / R →∞, as seen in Fig. (11a) [33]. This could
render aneurysmatic arteries vulnerable as shear modulus and thickness reduces, and artery diameter increases.

The response spectra were investigated for different values of longitudinal pre-stretch, and for three values of the
material parameter β. As expected, the circumferential elongation is reduced with increasing values of longitudinal pre-
stretch . It was observed that the normalized strain energy has an optimized (minimum) point corresponding to a
particular pre-stretch value of 1.1 (Table 4). Interestingly, 1.1 is the prestretch value reported in vivo arteries. On the
other hand, the response quantities are increased with increasing values of the material parameter β.

Response  spectra  were  also  constructed  for  different  longitudinal  pre-stretch  values  and  for  three  values  of
normalized systolic pressure psR / µH.  By increasing psR / µH  (case of hypertension or low elasticity modulus) the
response  is  increased.  Furthermore,  for  each case  of  normalized  pressure,  the  normalized  strain  energy exhibits  an
optimized (minimum) point for a particular pre-stretch value (Table 5).

Inherent limitations of the model are associated with the assumptions related to the single homogenized layer and
isotropic material. However, longitudinal transverse isotropy will not alter the present results, except for the material
constants [34]. In fact, several hyperelastic constitutive laws that consider more detailed arterial structure are available
in the literature. The drawback of these models is that they depend on a plethora of material parameters (as opposed to
the models analyzed herein, which contained only two material parameters), which cannot be easily obtained, nor are
they available in the existing literature. The arterial material parameters are characterized by large uncertainty and vary
with topology, age, gender, and disease of the artery. Accordingly, at this point, it may not be useful to consider more
detailed multi-parameter hyperelastic laws. Viscoelasticity is yet one additional aspect that was not examined in this
work. Due to its additional complexity, we have addressed the problem in a separate work [35]. It suffices to mention
that without the present results a large-deformation hyperelastic formulation is pointless.

In order to establish a basis of comparison between the linear-elastic and hyperelastic displacement response, the
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same initial tangent Young's modulus derived from the circumferential Cauchy stress-strain relationship was used. It
appears that, in most cases, the solution of the linear model is conservative compared to the Skalak model, constituting
overall a good approximation of the Skalak solution (Figs. 4  and 5). The Mooney-Rivlin model yields larger radial
displacements compared to the linear model (Figs. 10 and 11), as expected. On the other hand, the linear approximation
is not good for the Hariton model, especially for low pre-stretch values, due to the fact that the initial tangent modulus
approaches zero (the slope of the stress-strain curve becomes steeper at higher strains, (Figs. 7 and 8). The use of the
tangent  Young's  modulus  corresponding  to  circumferential  strains  between  10%-20%  is  expected  to  yield  better
approximations.

As demonstrated in this study, the peak response of the hyperelastic models is heavily influenced by the longitudinal

pre-stretch  and the  normalized pressure  value.  In  particular,  the  normalized radial  displacement  decreases  with
increasing values of pre-stretch (Figs. 4a, 7a and 10a). Fig. (14) offers a reasoning as to what this means for the human
health along the years, for the case that the material law is not significantly altered over the years. The longitudinal pre-
stretch is caused due to the delayed growth of arteries compared to the rest of the body.

Fig. (14). Radial deformation as a function of the longitudinal pre-stretch. Explanatory diagram for the longitudinal pre-stretch and
radial deformation effect on the arterial behavior of different age groups. It is assumed that the material law is not significantly
changed over the years.

Therefore,  human  arteries  exhibit  increasing  longitudinal  pre-stretch  with  aging.  The  gradual  arterial  stress
softening, caused by aging, can be balanced by the longitudinal pre-stretch and the decreased radial response. On the
other  hand,  at  old  age  the  human  body  exhibits  small  shrinkage  causing  the  longitudinal  pre-stretch  to  decrease.
Combined with the continuous loss of strength, the arterial response cannot be easily balanced, thus the human vascular
system becomes vulnerable.

In  cases  of  hypertension  or  soft  arterial  tissue,  the  normalized  pressure  is  increased.  Increasing  the  normalized
pressure results in an amplified artery displacement and stressing (Figs. 5a, 8a, 11a), especially for the Mooney-Rivlin
model as the systolic pressure approaches µH / R. This indicates a limit index between artery radius, artery thickness,
shear modulus and systolic pressure. Aneurysms could become critical if psR / µH → 1.

Of particular interest is the magnitude of the strain-energy density of the arterial systems. The normalized strain
energy is increased with increasing values of the absolute normalized displacement .

In some cases, the stress value is not an appropriate criterion for distinguishing the limit strength of different arterial
systems. On the contrary, the corresponding strain energies and displacements are distinctive, making such quantities
more trustworthy criteria for healthy arterial response (Figs. 6, 9, 12, and Tables 1-5). The energy density criterion of
the arterial tissue is consistent with a failure criterion, namely, if the energy density of the system reaches a limit value
the artery will fail.

It was suggested that post-stenotic weakening of arterial walls is caused by arterial wall vibrations and structural
fatigue initiated by pressure disturbances in turbulent blood flow. Therefore, dynamic effects can be very important and
resonant  frequencies  can be triggered by abrupt  application of  the  blood pressure  as  suggested in  this  work.  High-
frequency vibration generated by turbulence downstream from stenosis appears to be transmitted to the upstream wall
and  increase  the  possibility  of  rupture  at  atherosclerotic  plaque,  or  destabilize  aneurysmatic  arteries  [36].  New
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applications can also emerge from this work regarding the assessment of the dynamic elastance of superficial arterial
walls (see for example, Wang et al. [37]).

4.1. Connection with Arterial Pressure Wave Propagation

A recent analysis of arterial wave propagation along the artery using direct measurements of blood velocity and
arterial wall diameter has been undertaken by Feng and Khir [38].

The wave speed c along the arterial tube is given by

(31)

which is a relation between the cross sectional area A of the artery and the local transmural pressure P (ρb is the blood
density). Using the wavelet approach of Parker and co-workers [39, 40] one can cast the wave speed as

(32)

where U is the local average blood velocity and D=2(R+ur) is the local artery diameter (± denote pressure pulses in the
forward and backward directions).  Feng and Khir  [38]  measured simultaneously D  and U  waveforms and obtained
c≈6.9m/s for human carotid artery. A close look at the results of Feng and Khir show high frequency wave upon long
waves for D(t) wave forms. Such waves are also shown by Meinders and Hoeks [41] and Canic et al. [42], which of
course, are due to the radial wall vibrations. Moreover, Feng and Khir confirmed that In D and U are linearly related in
the absence of wave reflections, as also indicated by Womersley [43] for the linear elastic response of arteries. The
technique of wavelets bypasses the need for pressure measurements and uses the diameter waveform, irrespective of the
relationship between pressure and diameter.

Meinders et al. [44] proposed measurement of the arterial diameter waveforms directly at certain positions along the
artery  by  means  of  ultrasound  imaging  (having  the  advantage  of  being  non-invasive).  Thereafter,  the  diameter
information is converted to pressure p using an empirically derived exponential relation, Meinders and Hoeks [41].

(33)

(34)

where pd is the diastolic pressure, Ad is the diastolic arterial cross section and α is a positive dimensionless parameter
that  depends on the artery properties.  Therefore,  by inversion one can obtain A(p),  that  is  the area as a function of
pressure, as a local valve along the specific locations of the artery that D(t) is measured. The parameter a was measured
from 1 to 8 and increases with age (in years) for carotid arteries approximately as

(35)

Meinders et al. [44] measured multiple adjacent diameter distension waveforms as

(36)

simultaneously along a short carotid artery and found c ≈ 5.5m/s for young healthy subjects.

Turning to our analysis, we can easily show that our method can provide the stretching for the systolic and diastolic
pressures ps and pd denoted by λθ

s and λθ
d accordingly. Remembering that λθ

s = 1 + ur
s / R and λθ

d = 1 + ur
d / R, we can

obtain that
(37)
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The following Table 8 gives estimates for the α parameter in accord with the experiments.

Table 8. Estimation of α parameter (ps = 16kPa, ps/pd = 1.51, R = 3.38 mm, H = 0.6mm).

psR / C 0.80 0.16 0.16
B / C 0.5 (soft) 0.5 (medium stiff) 1 (stiff)

1.1 1 1

ur
s / R 0.2960 0.0972 0.0745

ur
d / R 0.1961 0.0644 0.04932
α 2.37 6.59 8.49

A few words should be mentioned regarding the axial displacement uz that has been recently found to be important,
see for example Cinthio et al. [45]. We can follow the general approach of Naghdi and Cooper [46] to estimate the

relative magnitude of the systolic axial displacement  relative to the systolic radial displacement. To this end,
we need the Poisson ratio (v = 1/2), the thickness of the artery (H = 0.6 mm), the radius of the artery (R = 3 mm), the
ratio of the artery density to the blood density (ρ0 / ρb ≈ 1) the longitudinal wave length (λ ≈ 120 mm), and the phase
velocity  (c  ≈  5m/s).  The  natural  frequency  of  the  surrounding  tissue  is  2πc  /λ  ≈  262rad/s.  Using  the  linear  elastic
approximation for the arterial wall

(38)

with 

The result is  which together with ur
s = 0.29mm gives mm, close to the 0.9 mm value of

Cinthio et al. [45] (see also Warriner et al. [47]).

CONCLUSION

The present study proposes an analytical method to investigate the strain-hardening effect on the dynamic behavior
of  human  artery  segments.  The  governing  equation  of  motion  has  been  formulated  accounting  for  three  different
hyperelastic  material  behaviors:  (a)  the  constitutive  law  proposed  by  Skalak  et  al.,  associated  with  the  hardening
behavior of healthy arteries; (b) the constitutive law introduced by Hariton, associated with the hardening behavior of
atherosclerotic  arteries;  and  (c)  the  constitutive  law  of  Mooney-Rivlin,  associated  with  the  softening  behavior  of
aneurysmatic arteries.

The response of each model was numerically investigated calculating in a general manner the radial displacement,
circumferential elongation, circumferential stress, the longitudinal stress, and the strain-energy density. The analysis
showed that the peak response of the hyperelastic models is strongly affected by the longitudinal pre-stretch and the
normalized pressure. In particular, a decrease in the pre-stretch and/or an increase in the normalized pressure (case of
hypertension or soft arterial tissue) results in an increase in the normalized radial displacement. Of particular interest for
the stability of artery response, is the assessment of the natural frequencies of the various models, especially for the
softening models like the Mooney-Rivlin that models aneurysmatic arteries.

As demonstrated in this study, important metrics that can be useful to vascular analysis are the radial deformation
and the maximum strain-energy density. These metrics were found to be influenced heavily by the strain-hardening
characteristics  of  the  model  and  the  longitudinal  pre-stressing.  It  has  been  shown that,  the  strain-energy  density  is
directly related to the normalized radial displacement, , (with the strain-energy density being increased with
increasing values of the absolute normalized radial displacement), thus making the strain-energy density a trustworthy
criterion for the arterial strength.

The analytical formulation of the problem permits a systematic and generalizable investigation of the hyperelastic
models commonly used in the mechanical modeling of arteries, which, together with the low computational cost of
analysis,  makes  the  proposed  model  a  valuable  tool  for  calculating  the  response  of  healthy,  atherosclerotic,  and
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aneurysmatic  artery  segments.  Our  model  can  be  used  for  the  natural  biomechanical  test  of  a  cyclic  inflation  of  a
straight artery segment. The model can easily adapt for the different mechanical properties encountered along a real
artery. The present results are useful in the development of circulatory system models providing the time evolution of
the cross-sectional area  that is required by fluid-solid interaction models. The present results are also
prerequisites for the development of more complex models that include viscosity [35].

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

A.E. Giannakopoulos acknowledges that part of this project was implemented under the “ARISTEIA II” Action of
the  “OPERATIONAL  PROGRAMME  EDUCATION  AND  LIFE  LONG  LEARNING”  and  is  co-founded  by  the
European Social Fund (ESF) and National Resources.

REFERENCES

[1] R.E. Shadwick, "Mechanical design in arteries", J. Exp. Biol., vol. 202, no. Pt 23, pp. 3305-3313, 1999.
[PMID: 10562513]

[2] Y.C. Fung, Biomechanics: Motion, Flow, Stress, and Growth., Springer: New York, 1998.

[3] Y.C. Fung, Biodynamics: Circulation., Springer-Verlag, 1984.

[4] D. Mohan, and J.W. Melvin, "Failure properties of passive human aortic tissue. II--Biaxial tension tests", J. Biomech., vol. 16, no. 1, pp.
31-44, 1983.
[http://dx.doi.org/10.1016/0021-9290(83)90044-1] [PMID: 6833308]

[5] G. Wertheim, "Mémoire sur l’élasticité et la cohésion des principaux tissus du corps humain", Ann. Chim. Phys., vol. 21, pp. 385-414, 1847.

[6] M. Mooney, "A theory of large elastic deformation", J. Appl. Phys., vol. 11, no. 9, pp. 582-592, 1940.
[http://dx.doi.org/10.1063/1.1712836]

[7] P. Chadwick, "The existence and uniqueness of solutions to two problems in the Mooney-Rivlin theory for rubber", J. Elast., vol. 2, no. 2, pp.
123-128, 1972.
[http://dx.doi.org/10.1007/BF00046061]

[8] Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues., Springer, 1993.
[http://dx.doi.org/10.1007/978-1-4757-2257-4]

[9] A.N. Gent, "A new constitutive relation for rubber", Rubber Chem. Technol., vol. 69, no. 1, pp. 59-61, 1996.
[http://dx.doi.org/10.5254/1.3538357]

[10] R. Skalak, A. Tozeren, R.P. Zarda, and S. Chien, "Strain energy function of red blood cell  membranes", Biophys. J.,  vol.  13, no. 3,  pp.
245-264, 1973.
[http://dx.doi.org/10.1016/S0006-3495(73)85983-1] [PMID: 4697236]

[11] A. Delfino, N. Stergiopulos, J.E. Moore Jr, and J-J. Meister, "Residual strain effects on the stress field in a thick wall finite element model of
the human carotid bifurcation", J. Biomech., vol. 30, no. 8, pp. 777-786, 1997.
[http://dx.doi.org/10.1016/S0021-9290(97)00025-0] [PMID: 9239562]

[12] G.A. Holzapfel, G. Sommer, C.T. Gasser, and P. Regitnig, "Determination of layer-specific mechanical properties of human coronary arteries
with nonatherosclerotic  intimal  thickening and related constitutive modeling",  Am. J.  Physiol.  Heart  Circ.  Physiol.,  vol.  289,  no.  5,  pp.
H2048-H2058, 2005.
[http://dx.doi.org/10.1152/ajpheart.00934.2004] [PMID: 16006541]

[13] J.D. Humphrey, and S. Na, "Elastodynamics and arterial wall stress", Ann. Biomed. Eng., vol. 30, no. 4, pp. 509-523, 2002.
[http://dx.doi.org/10.1114/1.1467676] [PMID: 12086002]

[14] I.  Hariton,  "Vascular  Biomechanics:  Functional  Adaptation",  Anisotropy  and  Seeds  of  Micromechanics,  Ph.D.  Thesis,  Ben-Gurion
University, 2007.

[15] H. Demiray, and R.P. Vito, "On large periodic motions of arteries", J. Biomech., vol. 16, no. 8, pp. 643-648, 1983.
[http://dx.doi.org/10.1016/0021-9290(83)90114-8] [PMID: 6643535]

 ( )2( ( ) )rR u t 

http://www.ncbi.nlm.nih.gov/pubmed/10562513
http://dx.doi.org/10.1016/0021-9290(83)90044-1
http://www.ncbi.nlm.nih.gov/pubmed/6833308
http://dx.doi.org/10.1063/1.1712836
http://dx.doi.org/10.1007/BF00046061
http://dx.doi.org/10.1007/978-1-4757-2257-4
http://dx.doi.org/10.5254/1.3538357
http://dx.doi.org/10.1016/S0006-3495(73)85983-1
http://www.ncbi.nlm.nih.gov/pubmed/4697236
http://dx.doi.org/10.1016/S0021-9290(97)00025-0
http://www.ncbi.nlm.nih.gov/pubmed/9239562
http://dx.doi.org/10.1152/ajpheart.00934.2004
http://www.ncbi.nlm.nih.gov/pubmed/16006541
http://dx.doi.org/10.1114/1.1467676
http://www.ncbi.nlm.nih.gov/pubmed/12086002
http://dx.doi.org/10.1016/0021-9290(83)90114-8
http://www.ncbi.nlm.nih.gov/pubmed/6643535


The Effect of Strain Hardening on the Dynamic Response The Open Biomedical Engineering Journal, 2017, Volume 11   109

[16] G. Baltgaile, "Arterial wall dynamics", Perspectives in Medicine, vol. 1, pp. 146-151, 2012.
[http://dx.doi.org/10.1016/j.permed.2012.02.049]

[17] T.J. Pedley, "Mathematical modelling of arterial fluid dynamics", J. Eng. Math., vol. 47, no. 3, pp. 419-444, 2003.
[http://dx.doi.org/10.1023/B:ENGI.0000007978.33352.59]

[18] L. Formaggia, A. Quarteroni, and A. Veneziani, Cardiovascular Mathematics-Modeling and simulation of the circulatory system., Springer
Science & Business Media, 2010.

[19] C.A. Taylor, and J.D. Humphrey, "Open problems in computational vascular biomechanics: Hemodynamics and arterial wall mechanics",
Comput. Methods Appl. Mech. Eng., vol. 198, no. 45-46, pp. 3514-3523, 2009.
[http://dx.doi.org/10.1016/j.cma.2009.02.004] [PMID: 20161129]

[20] G. David, and J.D. Humphrey, "Further evidence for the dynamic stability of intracranial saccular aneurysms", J. Biomech., vol. 36, no. 8, pp.
1143-1150, 2003.
[http://dx.doi.org/10.1016/S0021-9290(03)00083-6] [PMID: 12831740]

[21] J.E. Foreman, and K.J. Hutchison, "Arterial wall vibration distal to stenoses in isolated arteries of dog and man", Circ. Res., vol. 26, no. 5, pp.
583-590, 1970.
[http://dx.doi.org/10.1161/01.RES.26.5.583] [PMID: 5443135]

[22] L. Zhong, D.N. Ghista, E.Y. Ng, S.T. Lim, and T.S. Chua, "Determination of aortic pressure-time profile, along with aortic stiffness and
peripheral resistance", J. Mech. Med. Biol., vol. 4, no. 4, pp. 499-509, 2004.
[http://dx.doi.org/10.1142/S0219519404001193]

[23] P.C. Roussis, A.E. Giannakopoulos, H.P. Charalambous, D.C. Demetriou, and G.P. Georghiou, "Dynamic behavior of suture-anastomosed
arteries and implications to vascular surgery operations", Biomed. Eng. Online, vol. 14, no. 1, p. 1, 2015.
[http://dx.doi.org/10.1186/1475-925X-14-1] [PMID: 25564100]

[24] J.K. Knowles, "Large amplitude oscillations of a tube of incompressible elastic material", Q. Appl. Math., vol. 18, pp. 71-77, 1960.
[http://dx.doi.org/10.1090/qam/112336]

[25] L. Shampine, and M. Reichelt, "The MATLAB ODE Suite", SIAM J. Sci. Comput., vol. 18, no. 1, pp. 1-22, 1997.
[http://dx.doi.org/10.1137/S1064827594276424]

[26] MATLAB R2011b., The MathWorks, Inc: Natick, Massachusets, 2011.

[27] L.F. Shampine, "Implementation of rosenbrock methods", ACM Trans. Math. Softw., vol. 8, no. 2, pp. 93-113, 1982.
[http://dx.doi.org/10.1145/355993.355994]

[28] H. Zedan, "Avoiding the exactness of the Jacobian matrix in Rosenbrock formulae", Comput. Math. Appl., vol. 19, no. 2, pp. 83-89, 1990.
[http://dx.doi.org/10.1016/0898-1221(90)90011-8]

[29] M.E. Hosea, and L.F. Shampine, "Analysis and implementation of TR-BDF2", Appl. Numer. Math., vol. 20, no. 1-2, pp. 21-37, 1996.
[http://dx.doi.org/10.1016/0168-9274(95)00115-8]

[30] P.J. Blatz, B.M. Chu, and H. Wayland, "On the mechanical behavior of elastic animal tissue, 1957-1977", Trans. Soc. Rheol., vol. 13, no. 1,
pp. 83-102, 1969.

[31] C.J. Chuong, and Y.C. Fung, "Three-dimensional stress distribution in arteries", J. Biomech. Eng., vol. 105, no. 3, pp. 268-274, 1983.
[http://dx.doi.org/10.1115/1.3138417] [PMID: 6632830]

[32] K.Y. Volokh, "Hyperelasticity with softening for modeling materials failure", J. Mech. Phys. Solids, vol. 55, no. 10, pp. 2237-2264, 2007.
[http://dx.doi.org/10.1016/j.jmps.2007.02.012]

[33] M. Shahinpoor, and J.L. Nowinski, "Exact solution to the problem of forced large amplitude radial oscillations of a thin hyperelastic tube",
Int. J. Non-linear Mech., vol. 6, pp. 193-207, 1971.
[http://dx.doi.org/10.1016/0020-7462(71)90055-2]

[34] D.P. Mason, and G.H. Maluleke, "Non-linear radial oscillations of a transversely isotropic hyperelastic incompressible tube", J. Math. Anal.
Appl., vol. 333, no. 1, pp. 365-380, 2007.
[http://dx.doi.org/10.1016/j.jmaa.2006.12.031]

[35] H.P. Charalambous, P.C. Roussis, and A.E. Giannakopoulos, "Viscoelastic dynamic arterial response", Comp. Biol. Med, 2017.
[http://dx.doi.org/10.1016/j.compbiomed.2017.07.028]

[36] K.  Sunagawa,  H.  Kanai,  Y.  Koiwa,  K.  Nitta,  and  M.  Tanaka,  "Simultaneous  measurement  of  vibrations  on  arterial  wall  upstream  and
downstream of arteriostenosis lesion and their analysis", J. Med. Ultrason., vol. 28, no. 4, pp. 157-173, 2001.
[http://dx.doi.org/10.1007/BF02481353]

[37] J.J. Wang, S.H. Liu, H.M. Su, S. Chang, and W.K. Tseng, "A vibration-based approach to quantifying the dynamic elastance of the superficial
arterial wall", Biomed. Eng. Online, vol. 15, no. 40, p. 40, 2016.
[http://dx.doi.org/10.1186/s12938-016-0147-4] [PMID: 27083405]

[38] J. Feng, and A.W. Khir, "Determination of wave speed and wave separation in the arteries using diameter and velocity", J. Biomech., vol. 43,
no. 3, pp. 455-462, 2010.
[http://dx.doi.org/10.1016/j.jbiomech.2009.09.046] [PMID: 19892359]

http://dx.doi.org/10.1016/j.permed.2012.02.049
http://dx.doi.org/10.1023/B:ENGI.0000007978.33352.59
http://dx.doi.org/10.1016/j.cma.2009.02.004
http://www.ncbi.nlm.nih.gov/pubmed/20161129
http://dx.doi.org/10.1016/S0021-9290(03)00083-6
http://www.ncbi.nlm.nih.gov/pubmed/12831740
http://dx.doi.org/10.1161/01.RES.26.5.583
http://www.ncbi.nlm.nih.gov/pubmed/5443135
http://dx.doi.org/10.1142/S0219519404001193
http://dx.doi.org/10.1186/1475-925X-14-1
http://www.ncbi.nlm.nih.gov/pubmed/25564100
http://dx.doi.org/10.1090/qam/112336
http://dx.doi.org/10.1137/S1064827594276424
http://dx.doi.org/10.1145/355993.355994
http://dx.doi.org/10.1016/0898-1221(90)90011-8
http://dx.doi.org/10.1016/0168-9274(95)00115-8
http://dx.doi.org/10.1115/1.3138417
http://www.ncbi.nlm.nih.gov/pubmed/6632830
http://dx.doi.org/10.1016/j.jmps.2007.02.012
http://dx.doi.org/10.1016/0020-7462(71)90055-2
http://dx.doi.org/10.1016/j.jmaa.2006.12.031
http://dx.doi.org/10.1016/j.compbiomed.2017.07.028
http://dx.doi.org/10.1007/BF02481353
http://dx.doi.org/10.1186/s12938-016-0147-4
http://www.ncbi.nlm.nih.gov/pubmed/27083405
http://dx.doi.org/10.1016/j.jbiomech.2009.09.046
http://www.ncbi.nlm.nih.gov/pubmed/19892359


110   The Open Biomedical Engineering Journal, 2017, Volume 11 Charalambous et al.

[39] J.J. Wang, and K.H. Parker, "Wave propagation in a model of the arterial circulation", J. Biomech., vol. 37, no. 4, pp. 457-470, 2004.
[http://dx.doi.org/10.1016/j.jbiomech.2003.09.007] [PMID: 14996557]

[40] A.W. Khir, A. O’Brien, J.S. Gibbs, and K.H. Parker, "Determination of wave speed and wave separation in the arteries", J. Biomech., vol. 34,
no. 9, pp. 1145-1155, 2001.
[http://dx.doi.org/10.1016/S0021-9290(01)00076-8] [PMID: 11506785]

[41] J.M. Meinders, and A.P. Hoeks, "Simultaneous assessment of diameter and pressure waveforms in the carotid artery", Ultrasound Med. Biol.,
vol. 30, no. 2, pp. 147-154, 2004.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2003.10.014] [PMID: 14998666]

[42] S.  Canić,  C.J.  Hartley,  D.  Rosenstrauch,  J.  Tambaca,  G.  Guidoboni,  and  A.  Mikelić,  "Blood  flow  in  compliant  arteries:  an  effective
viscoelastic reduced model, numerics, and experimental validation", Ann. Biomed. Eng., vol. 34, no. 4, pp. 575-592, 2006.
[http://dx.doi.org/10.1007/s10439-005-9074-4] [PMID: 16550449]

[43] J.R. Womersley, "Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission", Phys. Med.
Biol., vol. 2, no. 2, pp. 178-187, 1957.
[http://dx.doi.org/10.1088/0031-9155/2/2/305] [PMID: 13484470]

[44] J.M. Meinders, L. Kornet, P.J. Brands, and A.P. Hoeks, "Assessment of local pulse wave velocity in arteries using 2D distension waveforms",
Ultrason. Imaging, vol. 23, no. 4, pp. 199-215, 2001.
[http://dx.doi.org/10.1177/016173460102300401] [PMID: 12051275]

[45] M. Cinthio, A.R. Ahlgren, J. Bergkvist, T. Jansson, H.W. Persson, and K. Lindström, "Longitudinal movements and resulting shear strain of
the arterial wall", Am. J. Physiol. Heart Circ. Physiol., vol. 291, no. 1, pp. H394-H402, 2006.
[http://dx.doi.org/10.1152/ajpheart.00988.2005] [PMID: 16473960]

[46] P.M. Naghdi, and R.M. Cooper, "Propagation of elastic waves in cylindrical shells, including the effects of transverse shear and rotatory
inertia", J. Acoust. Soc. Am., vol. 28, pp. 56-63, 1956.
[http://dx.doi.org/10.1121/1.1908222]

[47] R.K. Warriner, K.W. Johnston, and R.S. Cobbold, "A viscoelastic model of arterial wall motion in pulsatile flow: Implications for Doppler
ultrasound clutter assessment", Physiological Measurement., vol. 29, no. 2, pp. 157-179, 2008.
[http://dx.doi.org/10.1088/0967-3334/29/2/001] [PMID: 18256449]

© 2017 Charalambous et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a
copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

http://dx.doi.org/10.1016/j.jbiomech.2003.09.007
http://www.ncbi.nlm.nih.gov/pubmed/14996557
http://dx.doi.org/10.1016/S0021-9290(01)00076-8
http://www.ncbi.nlm.nih.gov/pubmed/11506785
http://dx.doi.org/10.1016/j.ultrasmedbio.2003.10.014
http://www.ncbi.nlm.nih.gov/pubmed/14998666
http://dx.doi.org/10.1007/s10439-005-9074-4
http://www.ncbi.nlm.nih.gov/pubmed/16550449
http://dx.doi.org/10.1088/0031-9155/2/2/305
http://www.ncbi.nlm.nih.gov/pubmed/13484470
http://dx.doi.org/10.1177/016173460102300401
http://www.ncbi.nlm.nih.gov/pubmed/12051275
http://dx.doi.org/10.1152/ajpheart.00988.2005
http://www.ncbi.nlm.nih.gov/pubmed/16473960
http://dx.doi.org/10.1121/1.1908222
http://dx.doi.org/10.1088/0967-3334/29/2/001
http://www.ncbi.nlm.nih.gov/pubmed/18256449
https://creativecommons.org/licenses/by/4.0/legalcode

	The Effect of Strain Hardening on the Dynamic Response of Human Artery Segments 
	[Background:]
	Background:
	Objective:
	Method:
	Results:
	Conclusion:

	1. INTRODUCTION
	2. METHODS
	2.1. Arterial Model Based on the Strain-Energy Function of Skalak et al. (Hardening Behavior of Healthy Arteries)
	2.2. Arterial Model Based on the Strain-Energy Function of Hariton (Hardening Behavior of Atherosclerotic Arteries)
	2.3. Arterial Model Based on the Strain-Energy Function of Mooney-Rivlin (Softening Behavior of Aneurysmatic Arteries)
	2.3.1. Numerical Solution


	3. RESULTS
	3.1. Response of Healthy Arteries
	3.2. Response of Atherosclerotic Arteries
	3.3. Response of Aneurysmatic Arteries
	3.4. Numerical Examples

	DISCUSSION
	4.1. Connection with Arterial Pressure Wave Propagation

	CONCLUSION
	ETHICS APPROVAL AND CONSENT TO PARTICIPATE
	CONSENT FOR PUBLICATION
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES




